A MATRIX SUBSTITUTION METHOD OF CONSTRUCTING
PARTIALLY BALANCED DESIGNS!

By B. V. Suan?
Unaversity of Bombay

1. Introduction and summary. Vartak [6] has considered the construction of
experimental designs with the help of Kronecker products of matrices. The
method is equivalent to the replacement of two elements, 0 and 1, by two
matrices. A generalisation of the above idea is given by the author [4], using
only the incidence matrices of balanced incomplete block (BIB) designs for
substitution. In the present paper the same idea is extended to the case where
substitution is by the incidence matrices of partially balanced incomplete block
(PBIB) designs and factorial experiments. In Sections 2 and 3 some ideas re-
garding canonical vectors and PBIB designs are introduced. Section 4 deals
with associable designs and their properties. In Section 5 balanced matrices are
defined and in Section 6 a method is given for constructing designs by substitut-
ing for the elements of a balanced matrix, the incidence matrices of associable
designs. The application of this method to the construction of factorial experi-
ments is considered in Section 7.

2. A canonical matrix. Let N = [n;;] be the incidence matrix of a design, where
ni; is the number of times the ¢th treatment occurs in the jth block. Let the 7th
treatment be replicated r; times and the jth block have k; plots. The C-matrix
of the design is defined by

(2.1) C = diag (11,72, -+, 1) — N diag (ky, ks, ---, k)N,

where diag (a1, a2, - - -, @,) stands for a diagonal matrix with diagonal elements
equal to a;, a2, - -+, a, respectively.

If 1 is a vector such that I'l = 1 and Cl = al, then the vector 1 is called a
canonical vector of the design. If I, , I, - -+ | 1, form a set of » mutually orthog-
onal canonical vectors, then the » x v matrix L whose 7th column is 1; will be
called a canonical matrix of the design.

The importance of a canonical matrix is quite obvious, since knowledge of it
enables one to analyse even the most complicated design. For a design in which
nm=r=- - =7r,andky = ks = -+ = ky, the same canonical matrix L re-
duces both L'CL and L'NN’L to the diagonal form. Hence the properties of a
canonical matrix of such a design can be studied with reference to the matrix
NN
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METHOD OF CONSTRUCTING PBIB’S 35

In this paper we shall consider only those designs for whichn;; = 1 or 0, r; =
rg=--+r,=rand ky = ke = --- = ky = k. Above conditions are satisfied
in most of the designs used in practice.

The following matrix theorem (Thrall and Tornheim ([5], p. 189) will be
useful in later sections.

TarEoREM 2.1. Let Ay, Ay, -+, A, be a set of real symmetric matrices such
that every pair commute. Then there exists an orthogonal matrixz L such that L'AL =
D;, where each D; 1s diagonal.

3. Canonical matrix of PBIB designs. A PBIB design with m associate classes
has been defined by Bose and Shimamoto [1] substantially as follows: A PBIB
design with m associate classes m = 1 is an arrangement of » treatments in b
blocks of k& plots each such that ,

(1) Each of the v treatments is replicated exactly r times and no treatment
appears more than once in a block.

(ii) There exists a relationship of association between every pair of the treat-
ments satisfying the following conditions:

(a) Any two treatments are either first, second, - - - , or mth associates.

(b) Each treatment has exactly n; ith associates (7 = 1,2, .-+, m).

(¢) Given any two treatments which are 7th associates, the number of
treatments that are both jth associates of the first and kth associates of the
second is Dik and is independent of the pair of treatments with which we start.
Also pjr = pr; -

(iii) Two treatments which are sth associates occur together in exactly \;
blocks.

Further we shall define each treatment to be its own Oth associate and Oth
associate of no other treatment. Consistently we define

(31) N = T, Ny = 1’ pgt = 0, s pés = pﬁo - 5”’

where §;; is the Kronecker delta which is defined for all pairs of natural numbers
i,jas&i,- = l,lf’L = j;andéi,- = 0,1f’L?£J

Each of the associate classes of a PBIB design can define the corresponding
association matrix B, = [B};] (t = 1,2, -+, m), where Bf; = 1, if the sth and
jth treatments are the tth associates and Bi; = 0 otherwise. Now, from the
definition, it can be shown that for a PBIB design with incidence matrix N,

(3.2) NN’ = D \B..

It should be noted that the results of this and the next two sections lean almost
entirely on the fact that NN’ = D_AB, or on its canonical equivalents, such as
NIN; = E;zB of Theorem 4.1.

For the sake of brevity, we shall often denote the design by incidence matrix,
say N., and its parameters by v(c), b(c), r(c), k(c), m(c), \i(c), ni(c), pk;(c),
and the association matrices of the design by B,(¢) t = 0, 1, - -+, m(c). In two
PBIB designs N; and N., if »(1) = »(2), m(1) = m(2) and B,(1) = B,(2),
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{t =0,1, .-+, m(1)}; then the 7th and jth treatments of N, are pth associates
if and only if the ¢th and jth treatments of N. and pth associates. Hence n:(1)
= n(2) and pj(1) = pix(2). Consequently, it follows that the equality of
association matrices implies the equality of the secondary parameters n; and pj;
but the converse is not true in general. This point is important, since we shall
be concerned with the equivality of association matrices in Theorems 3.1, 4.1
and Definition 5.2.

The following four designs with given parameters and a suitable and appro-
priate association scheme can be considered as PBIB designs. (The parameters
n: and pj naturally depend upon the association scheme.)

(a) A null design with the incidence matrix O(», b) (av x b matrix with all
the elements equal to zero). Parameters: v, b,r =k =\ =X = -+ =\, = 0.

(b) A randomized block design with the incidence matrix E(v, b)(av x b
matrix with all the elements equal to unity). Parameters: v, b, r = b, k = v,
)\1=)\2= cte =)\m=b

(¢) A BIB design of v* treatments, each replicated r* times in b* blocks of k*
plots each, such that each pair of treatments occurs together in exactly A* blocks.

Parameters: v = v*, b = b¥, k = k¥, \; = Mo = +++ = A = N\X

(d) An identity design with the incidence matrix o(v)(a v x v Identity
matrix). Parameters: v = b,r =k =1L, N =N = -+ = A, = 0.

TaeoREM 3.1. If there are s PBIB designs Ny, Ny, ---, N, such that
v(1) =0v(2) = --- = 0(s) = v, m(1) = -+ = m(s) = m and B,(1) =
Bi(2) = -+ = Bi(s) = Bifort = 1,2, -+, m, then there exists an orthogonal

matriz L, which is a canonical matrixz for each of the s designs.
Proor: From the definition of a PBIB design it can be shown that

(3.3) Bth = Z p:sz .

Since pi = pi;, it follows that
(3.4) BB. = B.B, ’

Hence by Theorem 2.1, there exists an orthogonal matrix L such that L'B,;L
is diagonal for ¢ = 0, 1, --- , m. Since

(3.5) N.N. = > \i(¢)Bi,

1=0
it follows that L'N,N.L is diagonal for all ¢ = 1, 2, - -+ , s. Hence L is a canoni-
cal matrix for each of the s designs.

4. Associable designs.

DeriNITION 4.1. The s designs Ny, Nz, ---, N, , each in v treatments and b
blocks, will be called associable designs, if there exists an orthogonal matrix L,
such that L'N;N;L is diagonal for all 4, j = 1, 2, - -+, s. The matrix L will be
called a canonical matrix of association.
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LemMma 4.1. Any design N s associable with itself (N) and its complementary
design {E(v, b) — N}.

LemMA 4.2. Any design is associable with a null deszgn, or a randomised block
design, provided the numbers of treatments and blocks are the same for the different
designs.

LemMa 4.3. The identity design vs associable with any design whose incidence
matriz 1s a symmelric v X v mairix.

TareoreM 4.1. If two PBIB designs Ny and N, are such that

(1) 2(1) = 2(2) = v; b(1) = b(2) = b;m(1) = m(2) = m; B(1) = B(2) =
B,,t=1,2---,m

(ii) and if the b ‘double blocks’ formed by amalgamating jth block of Ny with
the jth block of N2 are such that a treatment © of N1 and a treatment j of Na occur
together in exactly u,(1, 2) double blocks if and only if the ith and jth treatments
are the pth associates in either of the designs;
then N, and N. are associable.

Proor. Let N\N; = [m:;]. Then mi; = Y nu(1)-ni(2) = the number of
double blocks in which the treatment 7 of N; and the treatment of j of N, occur
together = u,(1, 2), but u,(l 2) also appears in the ¢th row and jth column of
> eis(1,2) B, . Hence NiN; = D _,u,(1, 2)B,, and similarly for N.N; , whence
the result on applying an argument similar to that leading from (3.5) to the
conclusion of Theorem 3.1.

It should be noted that the conditions of Theorem 4.1 are not necessary, but
in some of the later results we shall assume that these sufficient conditions are
satisfied and then the parameters u,(1, 2) will be called the parameters of asso-
ciation. Further when a PBIB is associable with itself, its complementary de-
sign, a null design, or a randomised block design, the sufficient conditions
given in Theorem 4.1 are satisfied.

6. Balanced matrices.

DeriniTION 5.1. If there exist s(u x w) incidence matrices Ni , N> , NI ,
such that E,=1,Nl = E(u w), and if there exists an orthogonal matrix L* such
that L*¥ (NN}’ + NIN;')L* is diagonal forall 4,5 = 1, 2, ---, s, then the

matrix A = Zl iN; will be called a canonically balanced matrix in s integers
1,2, - ,8

There is great resemblance between the conditions imposed on N; in Defini-
tion 4.1 and N} in Definition 5.1. The condition, that all L* (NN}’ + N}"Nf "L*
are dlagonal implies that all the designs with incidence matrices N/ and
N} 4+ N have the same canonical matrix L*. On the other hand, the condition
that all L'(N.N J)L are dlagonal is slightly stronger and implies that not only
all the designs with incidence matrices N; and N; + N; have the same canonical
matrix L but also each N;N; is symmetric or N,~N,'- = N,N;.

DerinttioNn 5.2. If there exist s PBIB designs with s(u x w) incidence
matrices NT , N5, -+, NJ such that > iy N} = E(u, w) and such that the
designs N! and N} + N}k (¢>7=1,2,---,8) all have the same association’
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matrices B;, ¢ = 1,2, -+, m, then the matrix A = > :_; N7 will be called a
partially balanced matrix.
LemMA 5.1. A partially balanced matrix is also a canonically balanced matriz.
Proor. The condition N/ = E(u, w) is satisfied in both Definitions 5.1
and 5.2. Now, if N} and N} + N} are PBIB designs, then from (3.2), we have

(5.1) NINY = gx:“(i)m

and

(52) (N + N))(N! + N}) = 3l )B.
Hence

(53) NN} + NINP = > (u@) — MG) — NI,

t=0

whence the result on applying an argument similar to that leading from (3.5)
to the conclusion of Theorem 3.1.

LemmA 5.2. If s, tntegers are divided in s; groups each group containing at least
one integer, and if all the integers of a group are replaced by an indentical integer,
then a canonically balanced matriz in s, integers will be reduced to a canonically
balanced matriz in s integers. A similar result holds also for a partially balanced
matriz.

DerINITION 5.3. Let A = [a;5](z = 1,2, - -+ ,u;j = 1,2, - -+ , w) be a matrix
whose elements a;; take any one of the s values 1, 2, - - -, s. The matrix 4 will
be called a partially balanced matrix, if it satisfies the following conditions:

(a) The number of times the integer ¢ occurs in a row is the same for all the
rows and is equal to a(c), say.

(b) The number of times the integer ¢ occurs in any column is the same for
all the columns and is equal to 8(c), say.

(¢) The rows have an association scheme similar to the treatments of a PBIB
design with parameters n! and p'Z}k(i, 7,k =0,1, -+, h). The number of times
the combination of integers [fi:' and [f occur in any pair of rows, which are

the 7th associates, is the name for all the pairs of rows, which are the 7th asso-
ciates, and is equal to v:(c, d). (The combinations I:cci:' and [f] are considered
to be identical.)

The pair of integers I:C:I or [f:l will be used in Theorem 6.2 to ‘“mesh” so

d
to speak with the “double block” notion of Theorem 4.1; since the substitution
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of integers ¢ and d with matrices N, and N, will form double blocks of the form
N, N
[~ [ ]
The Definitions 5.2 and 5.3 are equivalent. This follows, since, starting with
Definitions 5.3, if we replace the integer ¢ of the matrix A by 1 and the remain-
ing s — 1 integers by 0, and if we call the resultant matrix N (e=1,2,---,53),

then from Definition 5.3, it can be shown that N and N¥ + NJ are PBIB de-
signs with the same association scheme.

6. Construction of designs. The operator ‘X’ will denote the Kronecker prod-
uct of matrices defined by

anB apB - @;,B
(6.1) AXB=la)xB=|™mP mB o @B
@B @uB - au,B

TrEOREM 6.1. If there exists a canonically balanced matriz A in s infegers
1,2, ---, s given by X iy iN? with the corresponding orthogonal matriz L*, if
there exist s mutually associable designs with incidence matrices Ny, No, -+, N,
with the canonical matrixz of association equal to L, and if the integer ¢ in A is re-
placed by the matriz N.(¢c = 1,2, ---, s), then the matrix A will be converted into
an incidence matrix N of a design whose canonical matrixz is L* X L.

Proor. From the method of construction, it follows that

(6.2) N=2 N XN

1=1

Since N,-N,'- =N ,-N,'- , NN’ can be expressed as
(6.3) NN = Z; (NINY') X N.N; + _;‘1 (NINF + NINF') X NN, .

1= 1>]=
Now each of the terms on the right hand side of the equation (6.3) will be re-
duced to the diagonal form by the orthogonal transformation (L* X L) by
virtue of Definitions 4.1 and 5.1. Hence the matrix (L* X L)'NN’(L* X L) is
diagonal. This proves the theorem.

THEOREM 6.2. Let there be s PBIB designs with incidence matrices Ny , Ny, -+, -
N, . Now let the parameters of the cth design be v, ¥, r(c), k(c), M(c), n: , and
p’,‘,' (4,, k = 0,1, ---, m). Let the cth design be associable with the dth design,
satisfying the sufficient conditions given tn Theorem 4.1, with parameters of asso-

ciation equal to pi(c, d)(¢ = 0,1, ---, m;e,d = 1,2, ---, s). Let there be a
u x w partially balanced matriz A in s integers with parameters a(c). B(c), ni,
p’,‘,* ,vile, d)(e,d = 1,2, -++ [ 8;4,5,k =0,1, ---, h) as given in Definition

5.3. Now, if we replace the integer s in the matriz A by the matriz N.(c = 1, 2,

-, 8), then the matriz A will be converted into an incidence maitriz, say N, of a
PBIB with (h + 1)(m + 1) — 1 non-zero associate classes and the following
parameters:
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’

v o= w,
b = wb,
(6.4) r = (),

k= cz:_:lﬂ(c)k(c).

Denoting associate classes by two subscripts (ij)(z = 0, 1, -+, h; 5 = 0, 1,
<+« ;m), the other parameters are given by

x 7
Nij = MiNy,

p::i:ut = p;:pi:,
(6.5) ot = ; a(e)(c), t=0,1,---,m.

Aij

Il

2 vl Dus(e, ),

i=1,2 - ,h5=01-,m.

Proor: The expressions for v, b, r, k are obvious and need no proof. The others
can be proved as follows:

From the method of construction, it can be seen that the uv’ rows of the new
matrix N can be grouped in u groups corresponding to the u rows of the matrix
A. Hence, the rows of N can be indexed in the natural way by the double index
(4 4),7i=1,2--,u;5=1,2,---,v. The treatments (7, j) and (¢, j')
will be called (g¢)th associates if the sth and #'th rows of A are gth associates
and the jth and j'th treatments of any of the designs N, are {th associates, ¢
=0,1,+--,h;t =0,1, ---, m. The class (00) is the Oth class as in (3.1). So
we have a PBIB design with (b 4+ 1)(m + 1) — 1 non-zero associate classes.
The expressions for n;; and pii .. follow from the above association scheme.

In any row the integer ¢ occurs a(c) times; therefore the matrix N, also oc-
curs a(c) times. In the design with the incidence matrix N. the ¢th associate
treatments occur together exactly \.(c) times; hence the (0f)th associates occur
together in exactly >~ a(e)h(c) blocks. Thus

8

(6.6) M = 2 a(c)hi(c), t=0,1, -+, m.

c=0
Similarly in any pair of rows which are ith associates the combinations I:;]

and [‘Ci] oceur exactly v:(c, d) times. The lth treatment of N, and the kth treat-

ment of N; occur together u;(c, d) times, if the kth and Ith treatments are jth
associates. Hence the (7j)th associate treatments occur together in exactly
> yi(e, d)pj(c, d) blocks. Thus
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(6.7) Nij = Zl'yi(c, Duile, d), i=1,2 -, hj=0,1,-,m
czd=

This proves Theorem 6.2.

7. Application to factorial experiments.

DerFinttioN 7.1. If &, &, -+, ¢, are the treatment effects, then the contrast
32 a; is called a normalised contrast, if )} a; = 0 and dial = 1.

DEeFINITION 7.2. A factorial experiment will be called a balanced factorial
experiment (BFE), if the following conditions are satisfied.

(i) Each of the treatments is replicated exactly r times.

(ii) Each of the blocks has the same size k.

(iii) Estimates of the contrasts belonging to the different interactions are
uncorrelated with each other.

(iv) For each of the interactions, all the normalised contrasts belonging to
the same interaction are estimated with the same variance.

DerFInITION 7.3. In a factorial experiment, if the conditions (i), (ii) and (iii)
given in Definition 7.2 are satisfied and the condition (iv) is not satisfied for
some of the interactions, then the experiment will be called a partially balanced
factorial experiment (PBFE).

TueoreM 7.1. A BFE in m factors, Fy, Fz, -+ , Fm at 81, 82, =+, 8m levels
respectively, is a PBIB design with an assoctation scheme given as follows: the two
treatments (212 - *%m) and (Yiy2- - Ym) (where y1, y: represent levels of the factor
F.) are (pips- - - Pm)th associates, where p; = 1, if x; = yi; and p; = 0, of z; # Y.
Conversely a PBIB design with the above association scheme is a BFE.

The proof of Theorem 7.1 follows from Theorem 6.1 of [3] on substituting

m=mg= +-+=my=1and h = m.
TaeoreM 7.2. Let there be s BFE’s with incidence matrices Ny, No, +++, N,
each in m factors Fy , Fo, -+, Fmat 81, 82, +*+ , Sm levels respectively. Let these

s BFE’s be associable PBIB designs satisfying the sufficient conditions given in
Theorem 4.1. Now, if there exists a partially balanced matriz A in s integers 1, 2,
-+« , s with an association scheme for rows equivalent to that for the treatments of a
PBIB design which is a BFE in n factors Fmy1, Fmiz, *** 5 Fmin 0 Smyr, Smaiz
-+, Smin levels respectively, then by substituting the matriz N; for the integer i in
the matriz A, the matriz A will be converted into an incidence matriz of a BFE in
(m 4+ n) factors.

The proof of the above theorem is obvious from Theorems 6.2 and 7.1.

As an application of Theorem 7.2, consider the following example:

ExampLE 7.1. Let us takem = 2, n = 1, s; = s, = 2, s3 = 3. Let the treat-
ments of 2° design be denoted by 00, 01, 10, 11 in order. Then confounding the
interaction between two factors Fy and F,, we get a BFE with the incidence
matrix

(7.1) N, =

-0 O M~
(=
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Let the balanced matrix A in 3 integers and 3 rows be given by

1 3 2
(7.2) A=(2 1 3
3 2 1

Now, putting N, = N; = E(4,2) — N; and ‘substituting for 7 in A, the matrix
N., 7 = 1, 2, 3, we obtain a BFE in 3 X 2° in 6 blocks of 6 plots each.
Alternatively, if we take N, = N(4, 2) — N; and N; = O(4, 2), we obtain a
BFE in 6 blocks of 4 plots each. The first design is identical with the plan num-
ber 6.9 of Cochran and Cox [2].

In Theorem 7.2, a BFE was constructed by exact analogy with Theorem 6.2,
similarly, a PBFE can be constructed by exact analogy with Theorem 6.1. The
necessary and sufficient condition is that the column vectors of the matrices L
and L* given in Theorem 6.1 must form normalised treatment contrasts belong-
ing to various interactions. The following example will illustrate the method.

ExampLe 7.2. Let Ni be the incidence matrix of a 3? factorial experiment in
3 blocks of 3 plots each, obtained by confounding only two degrees of freedom
of the interaction FiF,. Let N and Ni be the matrices formed by cyclically
permuting the columns of N{ . Then a canonically balanced matrix B in three
integers is given by

(7.3) B = Ni + 2N; + 3N; .

Take N; as a 2° BFE as given in (7.1). N; = E(4, 2) — N; and N; = 0(4, 2).
Then on substituting N; for 7 in B we obrain a PBFE in 3°2* in 6 blocks of 12

plots each.

The methods given may be of considerable importance for constructing con-
founded assymmetrical factorial designs in a large number of factors. Some of the
confounded factorial designs already known and many more can be constructed

by these methods.
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