AN OPERATIONAL APPROACH TO THE r-WAY CROSSED
CLASSIFICATION!
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1. Summary. An operational method is used to obtain known formulas [2] for
the expected values of the mean squares and the variances of estimates of vari-
ance components obtained from the analysis of variance of an r-way crossed
classification. The results are independent of normality assumptions.

2. Introduction. We begin with the results and notation of a book by Mann
[4], considering an r-way classification with replication. An observation is

denoted by 2. = %4,...q,,,, @ = 1, -+, t;, where the last subscript is used
to indicate replications. Main effects and interactions are represented by
p(l, ar) = p(e1, *++, G} @iy, -+, a;,), where I = (41, -+, %) is a subset

of R = (1, ---,7),and u(I, a;) = uif I is the null set.

We now introduce two operators, D; = D,, which drops< and a; from u(R, az)
and M; = M., which averages a function over a;, if a; appears, and otherwise
leaves the function unchanged. These operators are commutative with respect
to themselves and each other and all the ordinary laws of algebra, excluding
division, hold. It is assumed that

(2.1) E(z.) = (1 + D)zu(R, az),
(22) Mij”(Iy al) = 0’ .7 =1,-- 7k’

where (1 4+ D)z = (1 + Dy)---(1 + D,). It is easy to establish
LemMa 2.1. Independent of condition (2.2),

2.3) M.D; = D;, (1 - M)D; =0, M1+ D;) = M; + D;,
' (1—M)1+D)=1-M,.

Subject to condition (2.2),
(24) (M:+ D:i)u(R, ar) = Din(R, ar), (1 — M:)u(R, ar) = p(R, az),

provided that these expressions are not multiplied by D; .
Mann establishes an identity [4, p. 52]

(2.5) tMz; = (1 + D)SS(R + 1)
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r-WAY CROSSED CLASSIFICATION 17

where R +1= (1. -, 7+ 1)t =tppu=t -+ tru, (1 + D) = (1 + D)zy,,
(2.6) SS(I) = tQ(I)/t; = tMA*(I, ar),
(2.7) AL ar) = Mayes(1 — M)z,
tho=tiy - i, Meyor = My - - Moo/ My, - My, and
(1=M) =1 —M,) (1 — M.

The following lemma is an immediate consequence of definition (2.7).
Lemma 2.2 A(1, a;) = My(tdw — 1)1 x» where

(t‘sab - 1)1 = (tixaa.‘lbsl - 1)“'(tik6¢i,‘b"k - 1)~

The above notation and operators can be employed to simplify considerably
the usual derivations of the analysis of variance for the r-way crossed classifi-
cation. As an example, we prove the identity (2.5). Making use of the equations
(2.6), (2.7), and Lemma 2.2, we have

(1 4+ D)SS(R+ 1) = (1 + D)ag, MaA*(R + 1, ars1)
= 41 + D)ag, MMMt — 1)ia(tbee — 1) nasste
= (1 + D)ag, MM (65 — 1) 4126,

MM (1 + oo — 1) pyatox, = tMyx? .

3. The Type I model. We define ¢, by the equation z, = E(z,) + ¢ and make
the usual assumptions for the Type I model [1, p. 348] save that we do not as-
sume that the ¢, are normally distributed. It will be sufficient if they are inde-
pendently distributed with zero means, a common variance, ¢*, and such other
moments as we require. In addition to the sum of squares SS(I), we will be
interested in the error sum of squares, SSE, which is obtained by summing all
SS(I) for which the last index is » 4+ 1. It is easy to verify, using the operators,
that

(3.1) SSE = tM[(1 — M,4)z).

The corresponding mean sums of squares, MS(I) and MSE, are obtained by
dividing the above sums of squares by their degrees of freedom which are (¢ — 1),
and £z(#,41 — 1), respectively. In the case where {,.; = 1, it is necessary to as-
sume that the u(R, ar) are zero. In this case the value of SS(I) is unchanged,
but SSE is SS(R) and the corresponding degrees of freedom are (¢! — 1)g.

We now state and prove two lemmas.

Lemwma 3.1. For the Type I model

(3.2) A(I, a,) = ,U,(I, a,) + MR+1—I(1 - M)Iéa.
Proor. We deduce from (2.7), and (2.1) that we must prove
#(I; at) = Z”R+1—1(1 - M),(l + D)n,u(R, au).
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By (2.3), (2.4), and (2.2)
Mpyt(1 — M)(1 + D)su(R, az) = Mpr(1 — M);(1 + D)r_in(R, ar)
= (1 — M)/(M + D)r-ip(R, ar)
= (1 = M)iDz_t(R, az) = (1 — M)wu(1, ar) = p(I, ar).
LemMma 3.2. For the Type I model
(3.3) EMpni(1 — M)iel = (t — 1)10°/t.

Proor. The desired expected value is necessarily of the form co® where ¢ is
a constant which does not depend upon the form of the distribution of the ¢, ,
which we may assume to be NID(0, ¢*). Under these conditions, SS(I) is dis-
tributed as x’o” when the u(I, a;) = 0 and the result (3.3) is easily established.

As an almost immediate consequence of these lemmas we obtain:

TueoreM 3.1. For the Type I model

(3.4) EMS(D)] = o + t*(I) /t;

where o*(I) = t;M’(I, a1)/(t — 1); . When t,,; = 1, E(MSE) = ¢* + o*(R),
and, otherwise, E(MSE) = ¢°.

Assuming that ¢,,; > 1 and equating mean squares to their expected values,
we obtain the unbiased estimates of the variance components

A(I) = t,[MS(I) — MSE]/%, o = MSE.

Examination of (SSE)’ indicates that E(SSE)* = ks + ks where k; and &,
are independent of the distribution of the e, . Accordingly, we may assume that
the e, are NID(0, ¢°) and obtain a linear relationship between k; and k; since
SSE is then distributed as x’s”. A little computation determines k; and leads

to the conclusion that Val'(c/rE ) = (ms — 3us)/t + 2us/ta(tys — 1).
Making use of (3.2), we find that ¢°(I) = o°(I) + D + F where

D = 2t1Mb/L(I, bI)Cb/(t - 1)1,
F = tIMch[(tabc - 1)/(t - 1)1 - (t7+18br+lcr+l - l)abo‘rc/(tr-il - l)lebec-

We note that the quadratic form F contains no squared terms, E(D) = E(DF) =
E(F) = 0, E(D*) = 46MMu(I, by)u(I, ¢1)beo’/(t — 1)7 = 4t (I)/
t(t — 1)1, and a similar, but longer, calculation gives

E(F*) = 26[1/(t — 1)1 4+ /ta(ta — 1)]uz/f.
These results lead to the conclusion that

varl@(I)] = 4’ (1) /t(t — 1);

(3.5) 2 4,2
+ 261/t — 1)1+ 1/ta(tsa — 1)]o'/t
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4. The Type II model. The usual assumptions are made for a Type II model
[3] save that we make no normality assumptions. We recall that equation (2.2)
no longer holds. We state

LemMma 4.1. For any model,

A(I, a;) = MR._[(]. —_ M)I(l + D)R_I#(R, an) + MR+1—]'(1 ad M)[éa.

Proor. This relation was established in the proof of Lemma 3.1.
This lemma and the method used to prove Theorem 3.1 leads at once to:
THEOREM 4.1. For the Type 11 model,

(4.1) EMS(I)] = ¢* + #(1 + D)zilo’(R)/tal,

where o*(R) s the variance of the u(R, az).
Equating mean squares to their expected values and solving we obtain:
LemMa 4.2. For a Type II model, without normality assumptions,

A(I) = (=1)™*(1 = D)n_MS(R))/trs11 (k <7),
and
Z(R) = [MS(R) — MSE]/t,; .

The estimates are given in a more convenient form in
LemMa 4.3. For a Type II model, without normality assumptions, ¢°(I) =
A+ B+ C (k < r), where

A = taMy Moy (toee — 1)1(1 — 8bc) m—1WopWer/(t — 1)4,
B = 2tzMy, M (8 — 1)1(1 — ) e_rtWopec/(t — 1)z,
C teMuM (865 — 1)1(1 — 85c) r—1evec/ (t — 1)&,
Wo, = (1 4 D)p—su(R, bz).
It will be noted that the coefficients of w, and e are equal to zero and it
follows that E[¢*(I)]' = E(A’ 4+ B* + C*), and computation gives us
varle*(D)] = (1) — 36D/t
(42) + 2, ”CZ 102(1 + X)L + Y)/t:i(t — D) itxy(t — Vxvix_xvtr_xy

R—.

+ 4t6°(1 4+ D)a_i[d®(R)/ (¢t — 1)g)/t + 2titre’/E(t — 1) (K <7),

where XY is the set of numbers common to X and Y.
Ift>1,

var[(R)] = [ws(R) — 36*(R))/te + 20*(R)/(t — 1)z + 40°6*(R)/tra(t — 1)
+ 201/t — )& + 1/ta(tra — 1)]o"/tr1 .

b. The Type III model. We assume that the ¢; expressions of the form u(I, a;)
are a sample from a finite population, P(I), consisting of T'; members with zero
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mean and variance
(5.1) 0'2(1) = T[m[}l.z(I, a,)/(T - 1)(

where NM; = 9N, is an operator which averages a function over a; when the
range of a; is from 1 to T's. We also assume that

(52) mi,‘"(l> aI) = 0, .7 =1,--- )k)

and that random variables from different populations are independent. We draw
our sample from P(I) by selecting ¢;; numbers at random from the set 1, - - -,
Ti;(j = 1,---, k). Lemma 4.1 holds under these conditions, so our problem
reduces to finding the expected value of expressions of the form

[Mn—z(l - M)III'(R, an)]2-

We will require the following lemmas.
Lemma 5.1. For a Type I1I model

Elp(1, an)u(I, b))l = (1 — 1/T)1o*(1)

where da; b, = 1 if a,; = bi; and s zero otherwise.
LemMmA 5.2. For the Type III model

EMzr(1 — M)m(R, ar)]' = (1 — 1/8)1(1/t — 1/T)z-1o"(R) (k < ).

The application of the above lemmas leads to the following theorem which
has also been stated by Bennett and Franklin [1].
TueorREM 5.1. For the Type 111 model

EMS(I) = o +t(1 4+ D)r_y(1 — t/T)sr_10"(R) /tz .

Equating mean squares to their expected values and solving we obtain
TureoreEM 5.2. For the Type 111 model

) = [(D — Da—t(1 — t/T)e-MS(R) — to MSE/Ts_l/trsss (k = 7).

Computations which are too long to be included in this paper lead to the
conclusion that

(5.3) E(Df=A+B+C+D
where

: |

4(t:/t)0*(1 + D)a—sl(1 — 1/T)pi(1 — t/T)a—r’(R)/(t — 1),
B = 2at:f[(t — 1)/T" + (1 — 1/T)las + (¢t — Da/tr(tess — 1)Ta_s}o'/ 1,
C=2 Y (A=t/Txerd’I+X)*T+ Y)/(t = 1)1(t — 1)xetxsr—xv,

X,YCR—I
X#Y
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and
te(t — 1)&D = XZR_I tar—x(t — 1)p_r-x(1 — t/T)x/

[T(T — 1)(T — 2)(T — Dx X 2, 2 2 2.

fI+X 9I+X hI4+Xx mIyX

(¢t — 1T — 3t — 1)t — DT + & + Bos50um
+ (T — (T — t — 1)(8pdgm + 3smdon)
+ T(T — ){(t — 1)T — ¢t — 18;80mdnmlr
X [(38 =t — t/T — 1/T)bremm + (T — 1)*(T — ¢ — 1)
(8s8gm + Omban)/T + {—2T° + (3t + DT — t — 1}
10adnmlx X p(I + X, frix)

p(I + X, grex)u( + X, hipx)n(I + X, Mryx).

The following formula which is used in the derivative of the expression for
D may be of interest:

[T(T — 1)(T — 2)(T — 3)1=E[u(R, bz)u(R, cr)u(R, dr)u(R, ex)]
= 23 S (AT + AT + As)dsedum + (BT* + BT + Bs)dpdom

frR OR bR mR

+ (CLT* + CuT + C3)dmdgn + (DiT® + DoT* 4 DT — 6)370051dumlz -
. M(R,fn)#(R, gn)M(R, hﬂ)ﬂ(Ry mn)
where

Ay = &b — C(3,4), A, = C(2,3) + C(3,4) — 8 — 82 — 3dbcdac

Ay = 1 + 38 + 36 — C(1,2) — C(2,3) + C(2,4), Bi = dudee — C(3,4),
By, = C(2,3) + C(3,4) — 6ba — e — 30padece ,

B; =14 36a + 38, — C(1,2) — C(2,3) + C(2, 4), Ci = dda — C(3, 4)
Cy = C(2,3) + C(3,4) — & — 8ca — 30bebca ,

Cs = 1 + 38 + 360 — C(1,2) — C(2,3) + C(2, 4), D, = C(3,4),

D, =C(3,4) — C(2,3) — C(2,4), D; = 20(1,2) — C(2,3) + C(2,4),

C(1,2) = 8 + St + S0 + 82 + b + Buc
C(2, 3) = dpcbea + Obcdee + Obadae + 6cabae -
C(2,4) = 6yedaec + Obadee ~+ Obebed

C(3,4) = dpcdeadas -
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