A GENERALIZED PITMAN EFFICIENCY FOR NONPARAMETRIC
TESTS
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0. Summary. Asymptotic expressions up to terms of order n~* are given for
the efficiency of the Wilcoxon two-sample test relative to the standard-normal
test and ¢-test for nearby alternatives. The first term is the well-known Pitman
efficiency; the remaining terms are corrections for finite sample sizes. Efficiency
values are given for finite sample sizes in the case of normal and rectangular
distributions, and comparisons of the asymptotic with the exact efficiency values
are made. In general, the Wilcoxon test is shown to be nearly as good locally
for moderate sample sizes as it is known to be asymptotically. A similar analysis
is performed for the single-sample sign test.

1. The concept of efficiency. Let X;, - -+ ,X,» and Yy, - - -, ¥, be independent
and identically distributed according to the continuous distributions F(z) and
G(x) = F(x — 0), respectively. Let pm,.(8) and Bn,.(0) denote the power of
two tests for the hypothesis § = 0 against the alternative 8 > 0 at the same level
of significance «. Then the efficiency of the first test relative to the second (for
given values of 6, @, m and n), is

(1.1) e(6, @, m,n) = n*/n
where n* (not necessarily integer-valued) is defined by
(12) pm,n(a) = Bm‘,n'(o), m/n = m*/n*

Assume that the first derilvatives of the power functions are continuous at
0 = 0, with values Pmn = Pmn(0) and Bn,n = Bm.n(0), respectively. Then con-
dition (1.2) reduces in the vicinity of the hypothesis to

(13) ﬁm,n = Bm‘,n‘, m/n = m*/n*,

which can often be easily expressed in the form of an asymptotic series, as for
the sign test, which is done in Section 6.

In Sections 2, 3, and 4 we shall derive an approximation to the efficiency in
terms of (1.3) for the one-sided Wilcoxon test, using the Edgeworth expansion
up to terms of order O(n ). This expansion gives a good approximation to the
null-distribution of the Wilcoxon test, [4] and [7], and its applicability in our
problem seems also to be largely confirmed by comparison with the exact values,
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406 H. WITTING

where such a comparison is possible. Whether it presents a valid asymptotic ex-
pression is an open question, which appears to be of secondary importance with
regard to getting approximate values for the efficiency, but in any case we shall
denote the error of the Edgeworth expansion by the O-symbol of the first ne-
glected term to indicate in a simple manner what terms of this expansion are
taken into account. In Section 5 we shall give the results of a corresponding
analysis for the two-sided Wilcoxon test.

2. Edgeworth approximation of the Mann-Whitney statistic. The Mann-
Whitney ‘statistic U for the Wilcoxon test is

iMs

(2.1) U =

2

Z;so(Xi,Yf), o(X,Y) =1(0) asX>Y(X=SY)
e
The first four moments of U under the null hypothesis 8 = 0 are [4]
(BU) = & =mn/2, (VarU)" = us = mn(m + n + 1)/12,
0
us =0,
(2.2)
ui = [mn(m 4+ n 4+ 1)/240][56(mn + mn®) — 2(m* + n?) + 3mn
—2(m + n)].
General expressions for the first four moments are given by R. M. Sundrum [6],
from which the following formulae for the derivatives at 8 = 0 can be obtained
§ = —mnd
gz = mn(m — n)(2B — A)
s = 2Am’n® + (=34 + 3B — 30)(—4m’n’ + m’n + mn® + m*n + mn?)
(2.3) fiu = (—%4 + B)(m'n® — m™n') + (2B — 6C + 4D)(m'n — mn*)
+ (5A/2 — 27B + 66C — 44D)(m*n* — m’n®)

+ (=4 + 12B — 30C + 20D)(m*n — mn®),

E
Il

with the abbreviations
(24) A= [fde, B= fFf2 de, €= fF"’fz de, D= fF3f2 dz.
In the particular case that the underlying distribution is symmetric, F(z) +
F(—z) = 1, we have
(2.5) 2B = A, 4D = —A + 6C,
so that (2.3) simplifies to

£ = —mnd, g = 0, gy =0,

2.6
(26) fis = 3Am™n’ + (4 — 3C)(—4m™n® + m’n + mn® + m'n + mn®).
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Lehmann [5], among others, proved that U is asymptotically normally dis-
tributed. As mentioned above, the Edgeworth expansion with continuity correc-
tion up to terms O(n™") can be applied as an asymptotic expression, i.e., the
power of this test can be approximated [2] by

pa(U Su I m, n)
= ¢(z) + e0® (@) + e () + 0™ (z) + 8p(2) +0(n™?)

for a fixed value of x, where z is the normalized value of u with continuity
correction,

(2.8) = (u+3}— EU)/(m)"
The Edgeworth coefficients,

(2.7)

1 -
T ‘;/3;, = &0+ 0(6", - es =0,
(2.9) e = 1 (Ei 3) =3+ &0 + 0(6°) ef = l( - 3)
4! ) 4! ( 0)2 ’
e = 10 "‘; = 0(6%), e = & = 0,
6' Mo

-1/2

are of order n™"'%, n™" and n™", respectively, and é4(z) symbolizes the terms of

order O(n™"?).

In our problem, however, = is not a fixed constant, since the significance
probability « is considered to be given, and the location parameter 6 tends to
zero. More precisely, on the one hand, » and a are connected by (2.7), for
6 = 0, by
(210)  Py(U = u|m, n) = ¢(x) + es0®(m) + 0(n7?) = o

where % is the normalized value of u for 8 = 0, which can be determined from
a by solving (2.10) asymptotically using e; = O(n™):
. U+ 31— mn/2
(2.11) °= (mn(m + n 4 1)/12)12
=&"(a) — e [307'(a) — {37 (a)}3] + 0(n7?).

On the other hand, x and x, are connected by (2.8), which can be written in
the form

mnd _ % 2

(212) x=x0+ @0+ 006", @ =2(0) = ( BT g g

where z; = O(n"?).

Using the fact that both the normalized variable x and the Edgeworth co-
efficients depend on 6, and by differentiating (2.7) with respect to 6 at § = 0,
we get®

3 Here the remainder is still O(n™%2), since ép(x) vanishes for § = 0.
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(213) 7 = ame(w) + esmie (w) + a™ (20) + @ (20) + O(n™*?),
or, by means of (2.2), (2.11) and (2.12),

f = o(87(a)) [(M)' 4— gy

m+n+1 2u;
B 12mn 4 1 2
(214) ~ (a—3 (a2 y) 49) @ - @

B (@) + (307 (@) — (7)) | + 06,
122
In particular, for symmetric distributions g = & = 0 and (2.14) simplifies to

1/2
215) 9 =0@" (@) (A2 ) Al + Knsel1— (87 (@) + 07
with '

[mn + 2(1 — 3(C/A))(—4mn + m* + n* + m + n)
— 0.15(m* + n* + mn + m + n)]
[mn(m 4+ n + 1)]

3. Efficiency relative to the standard normal test. Let X; and ¥; be normally
distributed with known variance ¢°. Then (¥ — X)/o) (mn/m + n)'* is

N((8/d)(mn/m + n)'/* 1)

and the power of the standard normal test, written Z-test for short, is

30) = ¢ (/o) (;70) - 471 - )

n
m +
mn 1/2
= at (/o) (7)o@ (@) + 00",

Therefore, (1.3) can easily be solved for n*/n in terms of m and n, and we get
for the efficiency relative to the standard normal test

(2.16) Konac =

(3.1)

cans = (W) + (1/)) (p/p(a™ ()" =126 [1(0) o)
(3.2)
-[1 = (1/m+n+1)) + 2Knnac(l —{&7()}* + 0<n‘2)},

where 4 = 1/(2(x)"*) = 0.282095, 1 — 3C/A = 0.087733.

For small m and n, the exact values of § = p’(0) can be derived from the
integrals by which the power, p(6), is represented. (Dixon [3] has used these
integrals for computing the power numerically for some values of § > 0.) So
a comparison is possible. The accuracy becomes worse, of course, for decreasing
values of m and n. Some comparisons are shown in Table 3, Section 4.



PITMAN EFFICIENCY 409

TABLE 1
Comparison of the efficiency values exs.z and epx.; for underlying rectangular distribution

m=n =20 m = 20,n = 10 m=n=10
a 0.0298 0.0245 0.0315
€Ex.z 0.9071 0.8780 0.8210
€As. & 0.9091 0.8838 0.8308
relative error 0.229%, 0.66% 1.199,
TABLE 2

Efficiency values egx.; for 8 > 0 compared with the corresponding limit values for6 — 0 for
underlying rectangular distribution

m=mn=20 m = 20, n = 10 m=n =10
o 0.0298 o 0.0245 o 0.0315
¢(0) 0.9071 ¢(0) 0.8780 ¢(0) 0.8210
¢(0.01) 0.9031 ¢(0.02) 0.8684 ¢(0.05) 0.8139
¢(0.02) 0.9022 ¢(0.05) 0.8553 ¢(0.10) 0.8053

When the X; and Y; are distributed according to any other distribution with
finite fourth moment, us, and known o?, then ((¥ — X) /o) (mn/m + n)** is
normally distributed up to terms O(n ), and (3.2) can also be applied. For the
rectangular distribution R(0, 1), in particular, we have 4 = 1,1 — 3C/4 = 0.
In this case the exact values of § can be shown to be

p=—(m+n)p(U = u|mn) + mp(U £ u|m—1,n)
(34) + np(U £ ulmn —1) =nlp(U £ u|mn—1)
—po(U=u—m|mn—1)]

This comes from a private communication of Professor J. L. Hodges, Jr., which
is based on the fact that only those X; and Y'; which fall in the interval 6 S z = 1
contribute anything to (2.1), and they have there the same conditional dis-
tribution,

k=0 1=0

Expressions (3.4) and (3.5) can be evaluated numerically for m, n = 20 by
means of the tables of D. Auble [1] (Tables 1-4), on which the comparisons
and statements are based.

The concept of efficiency for nearby alternatives is valid only in the special
case of small values of 6, but here the choice of the appropriate test is of special
importance. The zero-order approximation of (3.2) is the well-known Pitman
efficiency, which is 3/r = 0.955 in the case of normal alternatives and 1 for
rectangular alternatives. The first-order approximation now indicates how the
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efficiency approximately changes with the significance probability « and the
sample sizes m and n. Besides depending on the Pitman parameter ¢°(f f*(z) dz)?,
it depends on the special underlying distribution only through the parameter
C = [ FY(2)f*(z) d=.

4. Efficiency relative to the ¢-test. A more realistic comparison than that made
in the preceding section is one made with the i-test, which is appropriate for
unknown, but common variance ¢’. Let us restrict ourselves to underlying
normal distributions. Expanding the density ¢s(x) of the noncentral ¢-distribu-
tion with respect to the noncentrality parameter 8 = (6/¢)(mn/m + n)"?, one
can verify that the derivative of the power function, 8(8) = [¢ts(z) dz, at
6 = 0 is given by

_ 1 mn 1/2 1 ( 02 —(m+n—2) /2
8= E<m+n> (2m)12 ! +m+n—2)
1/2 -
—2 () w0 (14 gy o).

Here C can be determined asymptotically from o by expanding the central
t-distribution tail integral with f = (m 4+ n — 2) degrees of freedom for large
values of f,

” m+ n — 4\'?

1 o) m-4+n—4 1/2] —
TimFn-6° [C<m) +0(™),

and solving for C. One obtains

(4.1)

(4.2)

1/2
o= <ﬁ_+.£;2> @1 — ) + (1/4(m + n — 6))(357()

(4.3) m-+n — 4

— {#7(a)}") + 0(n™)).
Therefore, asymptotically,

1 mn_\'? 1 —1 2
B () e — (a4 - 21 )

+ 0(n™)].
Solving (1.3) asymptotically we get

{27} () }? -
(45) €as.t = eAs.i<1 + 24(m + n — 2)0'2(,[f2(x) dll?)z + O(n ))

For comparison of the asymptotic and the exact values, we give the following
efficiency values; the values egx.. are obtained from (4.1) according to (1.3)
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TABLE 3
Comparison of the efficiency values relative to the Z-test and the t-test for underlying normal
distribution
m=n=4 m=mn =35 m=6n=4
a 0.0571 0.0286 0.0278 0.0159 0.0333 0.0190
€Ex.z 0.7840 0.7222 0.7697 0.7304 0.7787 0.7403
€Ex.t 0.9772 0.9825 0.9774 0.9775 0.9705 0.9749
eAs s 0.7817 0.7311 0.7713 0.7369 0.7803 0.7455
€As.t 0.9518 0.9620 0.9563 0.9593 0.9521 0.9553
TABLE 4

Efficiency values eas.. for different sample sizes m and n and reasonable values of o for
underlying normal distribution

a m=n=10 m=mn=20 m=n=40 m=10,n =20 \m = 10, n = 40 |m = 20, n = 40
0.100 0.9404 0.9466 0.9505 0.9437 0.9466 0.9488
0.050 0.9469 0.9498 0.9521 0.9471 0.9468 0.9505
0.010 0.9578 0.9566 0.9558 0.9531 0.9461 0.9542
0.005 0.9602 0.9591 0.9573 0.9546 0.9452 0.9556

by linear interpolation, after having taken C from Table 3, a table of the central
t-distribution.

The following table of efficiency values, Table 4, indicates that the Wilcoxon
test compared with the {-test is nearly as good locally for moderate sample sizes
as it is known to be asymptotically.

5. Efficiency for the two-tail Wilcoxon test. Up to now we considered only the
case of testing the hypothesis § = 0 against the one-sided alternatives § > 0
by one-tail tests. The analysis was based on the comparison of the first deriva-
tives of the power functions at 6§ = 0.

A similar analysis can be done in the case of two-tail tests for testing the
hypothesis § = 0 against the two-sided alternatives 6 s 0. In the particular
case that the first derivatives, pmn(8), B (8), both vanish at § = 0, condition
(1.2) reduces to

(5.1) i)m,n = 3m‘,n‘ y ' m/n = m*/n*)

where pmn = Pma(0) and Bma = Bmn(0) are the second derivatives of the
corresponding power functions at the hypothesis.

An analysis similar to that discussed in the preceding sections gives the fol-
lowing asymptotic expressions for the efficiency of the two-sided Wilcoxon test
compared with the corresponding standard-normal and ¢-tests, respectively:
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_ 2 .2 _ 1 __m2+n2+mn+m+n
Cros = 120°4 [1 m+n+ 1 mn(m + n + 1)
(3 2 . N, 1lm+n+14 m4+n+t1
(5.2) (5 = 1@ (a/2)})-|—§ — = .
+0(n‘2]

{97'(a/2)}?
24(m + n — 2)d*(ff*(z) dzx)
In contrast to the known fact that the Pitman efficiency for the two-tail test
is the same as for the one-tail test, the correction terms of order O(n™") differ
from those of (3.2) and (4.5), respectively. On the other hand they depend on
the special underlying distribution only through the Pitman parameter 120°4°
and

(5.4) I- f £ (z) da.

(56.3) €rs.t = €rs.z (1 + 3 + O(?f2 ) .

6. Efficiency of the sign test. Now, let X;, ---, X, be independent and
identically distributed according to the distribution F(x — 0), with F(0) = 3
and with a density f(z) continuous at x = 0. For testing the hypothesis § = 0
against the alternative § > 0 we consider the sign test with the power function

(6.1) P (0) = Z ( )p”q"’”

v=k

(62) p=3+06/(0)+00), q¢=1-p=3—06(0)+ 0.

Here the Edgeworth series, integrated according to the Euler-Maclaurin sum-
mation formula, can be checked by a direct expansion of (6.1). For fixed z,

pM)l—uw+q‘pmm+ifwu>

6 (npg)'™
(63) 11—6 — 4
— o P (@) — o = P9 (0) 4 p(a) + O(n7),
24 npq npq

where z is the normalized value of k with continuity correction, and é3(z)
symbolizes the terms of order n™*% which vanish for 8 = 0. For small values
of 6, (6.3) simplifies to

pa(0) = 1= ¢(@) — 20O 00y + L)

(64)
+ 5 ¢"(@) + 0D + 0(8),
n
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with
kE—mnp—1/2
(npg)'”

zo and « are connected by ».(0) = «, which can be solved asymptotically for
zo as follows:

(6.8) zo=9¢""(1—a)— (1/120)¢ '(a) + (1/120){¢ "' ()} + O(n™").
On the other hand, (6.4) gives, for fixed «,
2 f(0)

x
(67) Pn = —xm(mo) - g PTp ¢(2)($o) + —l——élﬁqo“)(xo)

(65) z = = a4+ @b + 08, x = —2n""%(0).

o+ é% o (z0) + O(n~*"?),

or, by (6.5) and (6.6),
(6.8) P = ¢(¢7(2))20f(0)(1 4 (1/4n) — (1/12n){¢™"(a)}* 4+ O(n™)).
Let us first compare the sign test with the Z-test, the power function of which
is ‘
(n*)'%
—— -

£\1/2
61— a>) = o+ ol () W

+ 0(8)").

Expression (6.9) holds exactly for normally distributed random variables and
up to (relative) errors of the order O(n™?) for any other distribution with finite
fourth moment. Therefore, in the vicinity of the hypothesis, the efficiency of
the sign test compared with the Z-test is given by

2 2
€As.: = n—* =2 < Pn ) = 4f2(0)a'2

n n \e(¢7(a))

: [1 + (1/20) — %:”2 + O(n‘2)],

N EOR (

(6.10)

the first term of which is the well-known Pitman value for the efficiency. For
the sign test with a value of o ~ ¢ '(— 3'%), which is a reasonable choice,
the first order correction is small and the approximation of the Pitman value
is an especially good one.

Corresponding to (4.5) a comparison with the i-test gives

_ {¢a—1(a)}2 —2
€As.t = Cas.z (1 + W + O(n ))

= 47%(0)*(1 + (1/2n) + {¢ () }*[(1/8nf*(0)s")
— (1/6n)] + O(n™™)).

(6.11)
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