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6. Conclusion of the proof. To complete the demonstration of the theorem,
write
$(Xa) — E@(Xa) | Xos) = Z + 20 4+ --- + 2P, n>k
Thus, by proposition 2,

N

& 1
lim | = > ¢(Xa) — % 2, E(¢(Xa)|Xas)| =0, as.P.
x | N a=1 N <
Or, neglecting at most k terms,
1 N 1 N
li:,n N El ¢(Xn) X Zl E(¢(Xn+k) l Xn) = 0, a.8. P,,
so that, for fixed M,
& 11 &
lim | 23 6% = 3[4 3 BG(Kaw) 1K) || = 0, ss.Pe.

By proposition 1, for any ¢ > 0, we may choose M such that

rlf > B(3(Xa) | X) = Exs(X1)

S ¢
and for such an M we have

< e as P;)

lim L > 6(Xa) = Exp(Xy)

proving the theorem.

REFERENCES

[1] SamuEL KARLIN, “Some random walks occurring in learning models,” Pacific J. Math.,
Vol. 3 (1933), 725-756.
[2] MicHAEL Lo#ve, Probability Theory, D. Van Nostrand, New York, 1955.

et —

EMPTINESS IN THE FINITE DAM
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1. Summary: The paper discusses the general problem of emptiness in the
finite dam and considers the probability that, starting with an arbitrary storage,
the dam dries up before it fills completely. Some exact results are given both for
discrete and continuous inputs. An interesting relation between this probability
and the asymptotic distribution function of the dam content has also been ob-
tained.
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2. Introduction: This paper is based on the storage system model given by
Moran [5]. The storage, Z;, of a dam of finite capacity, ¥, is defined for discrete
time ¢ (¢ = 0, 1, 2, ---) as the dam content just after an instantaneous release
at time ¢, and just before an input, X,, flows into it over the time interval
(¢, t + 1). The model is subject to the conditions

(i) the inputs X, during the intervals (¢, ¢ + 1) are independently and identi-
cally distributed;

(ii) there is an overflow, max (Z, + X, — k, 0), during the interval (¢, ¢ + 1),
while min (k, Z, + X,) is left in the dam just before the release occurs;

(iii) the amount of water released at time ¢ + 1 is min (m, Z, + X,), where
m is a constant < k.

It has been shown that the processes (Z;) and (Z, + X,) are both Markov
chains, and the problem of obtaining their stationary distributions has been
dealt with by Moran [5], [6], Gani [2], Gani and Prabhu [3] and Prabhu [7], [8].

This paper deals with the problem of finding the probability that, given an
arbitrary initial storage and the distribution of the input (X,), the dam dries
up before it fills completely. It also shows that this probability bears an elegant
relationship with the asymptotic distribution function of the dam content. D.
G. Kendall [4] derived the time required by an infinite dam to dry up; Prabhu
[8] dealt with the probability of emptiness at a given storage level for the finite
dam, but for m = 1. Here, the problem for any m is dealt with.

3. The Probability of Emptiness—Discrete Input: If the release rules given in
Section 2 operate, we have

Z,+X;—m ifm<Zt+X¢<k,
(1) Zg+1-—- 0 ifZ;-I-Xtém,
k—m fZ.+ X, =k
Let {g;} be the probability distribution of X, so that
(2) Pr{Xt:j}=gJ'7 (j=0) 17"')‘

Let V; be the conditional probability that, starting with storage ¢, the dam
becomes empty before it fills completely. It is easy to derive the following:

m—1 k—m—1
jgo g;i + ; Gitma V; (t = m),
(3) V‘ = k—m—1
2 Giama V; m<iZ2k—m—1).
j=i—m

We note that the states 0 and £ — m are absorbing, so that V; = 1 fori < 0,
Viemir = 0 forr = 0.
3.1. Geometric Input: Consider an input distribution of the geometric type,

(4) gi=ab‘i (b=1—a’j=0; 17"')'
Applying the transformation V; = 1 — b~'¢; to (3), after substituting (4)
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in (3), we get

{ o X L (i é m))
(5) ¢ = L K]

=X X (> m),
where

(6) A = ab",

k—m—1
a="b"+2 Z b;.
=
We solve for ¢, successively for the ranges (m, 2m), (2m, 3m), --- in terms
of the unknown constant «. For instance, for m < 7 < 2m, we get
¢: = o[l — A7 —m — 1)].
Letk = (N + 1)m + U, where 0 < U < m. We get the general expression

a gm — 1 (nm <t = (n+ 1)m,
@ ‘—aQ-ZO( —M ( q >’ " n=0,1---N+1).

We solve for a from (6) and (7):

Y |

From (7) we have

1 i~ e ft—gm—1 (nm <t (n4+ 1)m;
9) Vi=1—ab ;( )\)( q ) n=01 - N).

In many cases, it may be enough to know the bounds within which V; should
lie, and these bounds are given by Feller ([1], inequalities 8.11, 8.12 on p. 303).
Prabhu [8] has obtained the bounds for m = 1. For general m, if we put E(U,) =
E(X; — m).= p — m, where p is the mean input, we have

(Ze™ — Ze*N /(2 - 1) s Vis 1 (p < m),
(10) (" =Y/ A - Z8) S Vi< Z; (p > m),
1—(m+i—1)/(k—1)<V:;=1 (p = m),

where Z, is the unique positive root (other than umty) of the equatlon
DZPr(Us=j4) = 1,ie. D50 Z%g; = Z™, and Zy 2 1 according as p 2 m

4. Continuous Input: It would be instructive to study the continuous analogue
of (3). If V (y) is the continuous analogue of V;, the equations (3) become

k—m
Gm—y + [ VO deu+m—y) (0<ysm),
(11) Viy) =

y—m

k—m
[ vy aec+m—y

where G(z) = Pr (X, < z).
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4.1. Exponential Input: Consider an exponential input of the type
(12) dG(z) = pe™ dz, 0O<z< o;u>0).

By applying the transformation V(t) = 1 — ¢*¢(¢) and substituting (12) in
(11), we get

o (y =m),
(13) o) =) fo"—’" (1) dt (y > m),
where
N = pe*"
(14) a=¢" 42 fow #(t) dt.

Suppose &k = (N + 1)m + U, where 0 = U < m. We can solve for ¢(y) suc-
cessively for the ranges (m, 2m), (2m, 3m), etc.
Fornm < y £ (n + 1)m, we have
n — q
(15) ¢(y)=a2:,)(—7\)“(yq—fm) (n=0,1,--- N+ 1).
qn

a is determined as follows:

k—m
a=¢" +>\f (t) dt
0

=e""+)\|:fom¢(t) dt + - +f:"¢(t)dt:|,

so that

(16) —uk/%l (=N k& — qm)q

q!
Thus, we have
1—- ¢ (y = m)y

17y V() = - cy—gm)? (mm <y = (n+ 1)m;
1= % 2 (=N i n=0,1- ).

We have the boundary conditions: V(0) = 1, V(k — m + r) = 0 for r = 0.
From (17) we find V(+0) = 1 — aand V(k — m — 0) > 0, indicating that
there are points of discontinuities at y = 0 and y = k — m.

4.2. Gamma Input: Consider a gamma input

(18) dQ(z) = W?/(p — 1)De™* 2" dr (0<z< o;u>0;p=1,2---).
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Again, applying the transformation V(t) = 1 — ¢*¢(¢) to (11), we get

p—1 .

Zo a;,yv (y £ m),
(19) #(y) = 7=1 .v v 1

p— —m — - t p—

Sl [Tew LT a > m),
where
(20) A= (=1)"pPe™m,

p—7—1 8 k—m N —1

— okk )Y (uk) pmEme 1\ (t+m)™"
o) ¢ (=W 2 5= +we™™(=1) fo #(t) oy
('y =0’1, ceep — 1).
We get
p—1 n +-
- S e (= gm)®T (nm <y = (n 4 1)m;

22) $0) = 2 e 2 (N ST n=0,1, N+ 1),

where £k = (N + 1)m + U, as in Section 4.1.
Prabhu [7] obtained (22) while deriving the distribution of dam storage. The
ay’s can be obtained by his method ([7], eqn. (13)).

Finally, we have
p—1

Y
1— vy oY (y < m),
=0 Y.

(23) V(y) =

=1 n (y — )qp+7 (nm <
1 — & )¢ y—gm Yy

2o % (N TG T = (e mnz 0).
V(y) has two points of discontinuity at ¥y = 0, y = k — m since the boundary
conditions are V(0) = 1, V(k —m +r) = 0forr = 0.

6. Relationship with the Asymptotic Distribution of Dam Content: If H (y)

is the stationary c.d.f. of the dam content Z, + X, we get the following integral
equation ([7], eqn. (2)) for continuous input:

- [ E®aetm 4y~ (v <k=m),
(24)  H(y) ={ .
Gy—k+m = [ H@dam+y—-0 wzk=-m)

By applying the transformation H(k — y) = 1 — ¢“¢(y) to the above, for
exponential and gamma inputs, (12) and (18), we obtain the same integral
equations in ¢(y), (13) and (19), as were obtained by applying the transforma-
tion V(y) = 1 — ¢“¢(y) to the integral equations for V(y). We, therefore,
obtain ‘ ‘

(25) V(y) = H(k — y).
We may verify that (25) holds good for discrete input also.
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