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THE STRONG LAW OF LARGE NUMBERS FOR A CLASS OF
MARKOV CHAINS

By LeEo BrEIMAN!

University of California at Los Angeles

1. Introduction. The following problem has arisen in the study of Markov
chains of the learning model type. (See [1] for definitions). Let the state space
be, for example, the unit interval [0, 1] and let the chain have a.unique invariant
initial distribution w(dz). Now let the chain be started at some point z ¢ [0, 1];
is it true that

1 N
(1) =2, X, —E.X; as?

N n=1
From the ergodic theorem we know that there is a set S < [0, 1] such that
w(S) = 1, and, if z ¢ S, then (1) holds. In learning models, however, r may be
singular with respect to Lesbesgue measure, so a stronger result is desirable. We
prove for a wide class of chains, including learning models, that (1) holds for
every possible starting point. This result is well known for chains satisfying
Doeblin’s condition. Unfortunately, learning models do not.

2. The theorem. Let the state space € be a compact Hausdorf space, and
® the Baire o-field in Q. The Markov transition probabilities P(A | z) are as-
sumed probabilities on ® for fixed x, ®-measurable functions on Q for fixed A4,
and such that there is a unique probability = on ® satisfying

w(4) = [ P(4|2)n(de), all 4 ¢ @

Let C be the class of all continuous functions on 2, and add the final restriction
that, if f£C, so is B(f(Xi1) | Xo = z). Let Q2 be the infinite sequence space
with coordinates in . In the usual way, we construct a o-field ® in 2 and,
using the initial distribution X, = z, a probability P, on ®&“. Then

TuroreM. Let ¢ € C, Then, for any x €,

N
llV ; ¢(X,) - E,®(X,) as.P,.

Proor. The proof of this theorem is a combination of the Kakutani-Yosida
norms ergodic lemma and an argument concerning conditional probabilities.

3. The topological part. We prove first a proposition which summarizes the
topological ergodic theorem we need. Define the operator T on C into C by
(Te)(x) = E(¢(X1) | Xo = ), so that (T"¢)(z) = E(¢(Xx) | Xo = ), and
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set Twp =D 1 T"¢/N. Then
ProrositioN 1. For any ¢ ¢ C, Tx¢ converges uniformly to E.¢(X;).
Proor. This proposition and its proof are well known in linear space theory.
However, for completeness, we give a short demonstration. Let 91 be the class

of probability measures on ®, and consider the operators V, Vy on 91 into 9
defined by

VO(4) = [ P(A|9)QW),  Tw@ = 3 V'/N.

By the Helly-Bray theorem, I is closed and compact in the weak dual topology,
so that there are plenty of convergent subsequences Vy,Q. But every limit point
of VxQ is invariant under V and hence is identified with =, so that VxQ — = in
our topology. Therefore, for every @ £ 91, and ¢ £ C we have

(Two, Q) = (¢, VaQ) — (¢, 7)

and hence Ty¢ converges weakly to E.¢. Applying the Kakutani-Yosida norms
ergodic lemma (see, for example, [2], pg. 441), we conclude that Tx¢ converges
uniformly to E.¢.

4. The probabilistic part. Let X,;, X,, - - be distributed according to P, ,
and define

7 - {qs(X,.) — E(¢(X,) | Xn), n>1
0, n=s1
Z® - {E(‘P(Xn) | Xoii1) — E(¢(Xn) | Xnor), n>k
0, n < k.

ProrosttioN 2. N7 D ¥ . Z8 50 as. P,.
(m

Proor. We use the following result (2], pg. 387). Let Y,, Y2, --- be a se-
quence of random variables such that E(Y,| Y., -, ¥1) = 0 and

EY, = M < =,
all ». Then

1 N
-A—rz Y,.—0 as.
n=1

To apply this, note that
EQZP |28, -, ZP)
=EEZP | Xoty Xnsas -+, Xa) | Z024, -+, Z),
and that, since the X;, X2, - - - form a Markov chain,
E(Z® | Xps.) = BE(ZP | Xos) = 0.
Further, E(Z{")* < 2(sup |¢| )?, thus giving the proposition.
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6. Conclusion of the proof. To complete the demonstration of the theorem,
write
$(Xa) — E@(Xn) | Xot) = Z + Z0 + --- + 2.7, n>k
Thus, by proposition 2,

R 1 <
lim |53 6(Xa) — 5 2 E($(Xa) | Xa)| =0, as.P..
N n=l n=k+41
Or, neglecting at most k terms,
1 N 1 N
lim | = 3% $(Xa) = 5 20 B($(Xan) | Xa)| =0, as.Ps,

so that, for fixed M,

1 & 1 & 1 M
RISt P [M"Z_: EG(Xa) X2 || =0, asP..

lim
N

By proposition 1, for any ¢ > 0, we may choose M such that

% > B(#(Xnis) | X0) = Exd(X)

S ¢
and for such an M we have

N
lm |1 6(X) — E,qs(xl)l <¢ asP)
N n=]

proving the theorem.
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EMPTINESS IN THE FINITE DAM

By A. GHOSAL
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1. Summary: The paper discusses the general problem of emptiness in the
finite dam and considers the probability that, starting with an arbitrary storage,
the dam dries up before it fills completely. Some exact results are given both for
discrete and continuous inputs. An interesting relation between this probability
and the asymptotic distribution function of the dam content has also been ob-
tained.
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