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0. Summary. Certain tests of independence based on the sample distribution
function (d.f.) possess power properties superior to those of other tests of inde-
pendence previously discussed in the literature. The characteristic functions of
the limiting d.f.’s of a class of such test criteria are obtained, and the correspond-
ing d.f. is tabled in the bivariate case, where the test is equivalent to one originally
proposed by Hoeffding [4]. A discussion is included of the computational prob-
lems which arise in the inversion of characteristic functions of this type. Tech-
niques for computing the statistics and for approximating the tail probabilities
are considered.

1. Introduction. The idea of using various simple functionals of the sample d.f.
of vector chance variables in order to test the independence of components, is a
natural one. Only the difficult distribution theory prevents the use of such tests
and the resulting achievement of improvement in power performance over all
currently used tests. Specifically, let © be the class of continuous d.f.’s on m-di-
mensional Euclidean space R™, and let w be the subclass consisting of every
member of @ which is a product of its associated one-dimensional marginal
df.s. Let X;, -+, X, be independent random m-vectors with common un-
known d.f. F, a member of 2, and suppose that it is desired to test the hypothesis
Hy:F ¢ w against the alternative H;:F ¢ 2 — w. Let S, be the sample d.f. of
Xy, -+, X, ;ie., for zin R™, S,(z) is n~" times the number of X; all of whose
components are less than or equal to the corresponding components of z, i.e.,

S"(rl s T2 =00y rm) = %’ ZH ¢r.‘(X.§'i)):

j=1 =1
where X; = (X5, .-+, X$™) and

1 if z=r,
¢,(x)={0 if z>r.

Write S,; for the marginal d.f. associated with the jth component of S, (i.e.,
for the sample d.f. of the jth component of the X;), and let

(1.1) To(r) = Sa(r) — jfills,,j(rj).
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Then many tests based on 7', will have good power properties (see Section 4)
and will be similar on w. For example, the critical region based on large values of

A, = sup IT"(T)L

a statistic constructed in the spirit of the Kolmogorov-Smirnov statistics, evi-
dently has such properties. It follows from the results of [8] that the d.f. of n*d,
under H, differs from unity by less than ¢, exp ( —c¢s2”) for all n and all arguments
z > 0, where the ¢; are positive constants. It can be shown that the limiting
df. of n*4, exists (and hence has the same behavior with z); since the proof is
somewhat long but uses mainly ideas like those of [8], it will not be given here.
The calculation of this asymptotic distribution seems formidable; it is equivalent
to the computation of the d.f. of the maximum of a particular Gaussian process
with multidimensional #me parameter. A corresponding calculation of exact
(nonasymptotic) distributions for various values of n can, of course, be achieved
numerically, but such calculations are extremely laborious even if done by
machines for rather small n.

Another critical region, constructed in the spirit of the von Mises-Cramér
tests, is that based on large values of

(1.2) B, = f (T ()T dSa(r).

Adapting the well known technique of Kac and Siegert [5] to the present setting
(such a multidimensional computation was first carried out in [12]), we shall
obtain the characteristic function of the asymptotic distribution of »B, under
H, when m = 2 (Section 2), in which case the test turns out to be equivalent
to one constructed on other heuristic grounds by Hoeffding [4] (see Section 5
below for the form in which Hoeffding stated his test). Certain variants of nB,
in the case m > 2 will be considered in Section 3.

In Section 4 questions of distribution under H; , power, and estimation, and
certain modifications, will be taken up. A particularly simple and computation-
ally convenient form of the tests is given in Section 5. In Section 6 an approxi-
mation is suggested to the tail of the limiting distribution, which is compared
with the exact results; this idea clearly has useful applications in many other
problems. Methods for computing distributions of weighted sums of chi-square
variables, which are relevant for computing the asymptotic distribution of nB,
as well as many other important distributions in statistics, are discussed in
Section 7. The asymptotic distribution of nB, for the case m = 2 is tabulated in
Section 8. ' :

2. The case m = 2. The statistic B, is clearly distribution-free for ¥ in w.
As usual, we can therefore carry out our computations when F is the uniform
distribution on the unit square I*. Let T(x, y) be a separable Gaussian process
depending on the “time” parameter (2, y) for (z, ) in I*, and with

(2.1) ET(z,y) =0,
ET(z, y)T(u,v) = [min (z, 4) — zu] [min (y, v) — p].
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A routine computation (most easily accomplished by writing

81(2) Sna(y) = 28ma(y) + ySm(z) — zy + O0p(n™")
shows that (2.1) gives the mean and the asymptotic covariance of the random
function n!T, . It follows from the appropriate analogue in the present case of
the corrected argument of [12] or of the argument of Section 2 of [7] (the proof

being very similar here) that the asymptotic distribution of nB, is the same as
that of

1 1
B = f f T*(z, y) dady.
0 0

Writing s = (2, ¥), t = (u, v), and K(s, t) for the last member of (2.1), we
consider the integral equation

(2.2) fn K(s, t)¢(t) dt = np(t).
It is easily seen that the eigenvalues and (complete set of) eigenfunctions of
(2.2) are 1/7%°k’ and 2 (sin mjz) (sinwky);j, k = 1,2, - -- . Hence, exactly as
in [5] and [12], we conclude that
(2.3) Ee”® = [ (1 — 2iz/x"%%)

=

An equivalent result was first stated by Hoeffding [4], who stated two other
different methods for obtaining (2.3). The corresponding d.f. of B is tabled in
Section 8.

It is obvious that, because of the factorizability of K(s, ) we can similarly
obtain the characteristic function of the limiting d.f. for the case where a weight
function of the form W (S, (7)) W (8Sa2(r)) is inserted in the integrand in the
expression for B, ; one has merely to use the corresponding one-dimensional
results on weighted «” statistics (see, e.g., [1], [5]) to obtain the eigenvalues.

3. The case m > 2. For the sake of brevity we shall discuss in detail only the
case m = 3; the corresponding results for other cases require only obvious
changes.

Suppose, then, that F is the uniform distribution on the unit cube. Another
routine computation (most easily accomplished in a manner analogous to that
suggested in Section 2) yields

lim nET.(z, y, 2) Tn(y, v, w) = min (z, 4) min (y, ») min (2, w)
31) " -
— yzow min (x, ) — rzuw min (y, v) — ryw min (2, w) + 2zyzuvw.
This kernel does not permit the simple treatment which that of (2.1) did, and
th,e eigenvalues are at present unknown. This suggests that we look for a function
T. of S, for which

lim nET, (z, v, z)T;(u, v, w)
(3’2) n >0

= [min (z, ) — zu] [min (y, v) — w] [min (2, w) — zw].
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Denoting by S,; the 2-dimensional marginal d.f. of S, corresponding to the
Jth and kth coordinates (sample df of the jth and kth components of the X;),
we easily verify that the function T, defined by

Tn(il;, Y, z) = Sn(x) Y, Z) - Snl(x)sn%(y) z) - Snz(y)Snla(xy Z)
- na(Z)sz(x, y) + 2Sn1(x)Sn2(y)Sn3(z)
does in fact satisfy (3.2). It follows, in the manner of Section 2, that if

- f [T ()T dSa(r),

(3.3)

then for F in w we have

lim Be#® = JI (1 — 2i/=%2 52 5%) 7%

n->0 Jnigiz=1
Thus, the asymptotic distribution of nB. can be tabulated in the manner of the
tabu]atlon of Section 8. However, a test for independence based only on the
statistic B., is not to be recommended, since the power of any such test will be
small for many alternatives which are far from w; for example, it is clear that
ET, (r) = 0if F is of the form F(x, y, 2) = Fl(x)Fzs(y, 2). A solution to this
difficulty can be found i Jin the fact that, 4f the components of the X; are pasrwise
independent, then ET, (r) = 0 forall r if and only if F ¢ w. Thus, the three

2-dimensional sample d.f.’s of the components of the X can be used to detect

departure from pairwise independence, while B., detects other possible de-
partures from independence. There are obviously many ways in which these two
effects can be combined in constructing a test, and only one of them will be made
explicit here. Let Tnu(p, @) = Sni(p, @) — S2i(p)Sur(q), and let

B, = f[Tnjk(T)]2 dSnjk(")-

A computatlon of covariances readily shows that the functions n T,,u , N Tnla,
n*Tze, and n M, are asymptotically independent. Thus, arguing in the same
manner as before, we conclude that the statistic C, , defined by

(3.4) Cn = n(Buz + Bus + Buss + bB,),

where b is a positive constant, has the asymptotic distribution with character-
istic function
(35) lim Ee"** = II (1 — 26/~ TI (1 — 2biz/=% 52 53) 7"

n->cw Jnings
The corresponding asymptotic distribution can be tabulated in the manner of
Section 8. The power properties of a critical region consisting of large values of
C, can be obtained as in Section 4.

4. Asymptotic distribution under H, ; power; estimation; modifications. We
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consider the case m = 2 throughout this section; the analogous results obviously
all hold when m > 2.

If F(z, y) is not of the form G(2)H (y), where G and H are the two continuous
marginal df.’s of X;, the limiting d.f. of n!B, can be obtained by noting that
n'B, is asymptotically

#t [[ 180Gz, )T disue, ) — Pz, 9)]

+nt [[ W2, v) = BULz, )] dF (@, p) + 0,(1),

where
Un(z, y) = Sulz, y) — G(@)8ne(y) — H(y)Sm(z) + G(z)H(y).
Writing
Az, y) = F(z,y) — G(x)H(y),

@ 1) = [[ 16u() — Glign(y) — H@IA(, 0) dF(x,0),

we obtain that n}[B, — [[ AX(z, y) dF (z, y)] s asymptotically normal with mean
0 and the same variance as the random variable A2 (X, Y) + 2¢(X, Y), where
(X, Y) is distributed according to F. An equivalent form of this result was given
by Hoeffding [4]. ‘

Of greater interest for most applications is the limiting d.f. of nB, when we
consider a sequence F*™ of alternatives on I for which

nF™ (z, y) — GV (2)H™ ()] — ¢(z, v)

(finite and continuous) as n — «. We obtain, using arguments similar to those
of Section 2, that the limiting d.f. of nB, is the same as the d.f. of

B = [[ G + o, )P dody.
Recalling the eigenvalues and eigenfunctions of K obtained in Section 2, we
can write

T(z,y) = j}l;l 2#‘23—110"1 (sin wxg) (sin wky) X ,

where the X j; are independent normal variates with means 0 and variances 1.
Hence, writing

2 = [[ 24(a, 4) (sin ) sin why) dod,

we obtain for the limiting characteristic function of nB, ,
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B'it _ _ 2t _%\
Be *{H (l w‘.?"k’) f

o \—1
ep{= 1T g + 1 T e (1- 2) )
7k IR wiy2k?

For simple ¢(z, y)’s (e.g., where all but a finite number of the ¢ are zero),
one could easily compute tables of the power, in the manner of Section 8. Even
for general q(z, y), an argument like that of Section 6 would yield information.

Without obtaining such quantitative results, we can easily give a lower bound
on the power. The power properties of tests based on the sample d.f. have been
discussed in detail in [6] and [7], and it will suffice to state briefly the analogous
results for the problems treated in the present paper. Such results will clearly
apply for arbitrary m, and for the sake of clarity and brevity we shall only state
them for the case m = 2, the extensions to m > 2 being obvious.

Let F be a d.f. on R* and let F; and F; be the corresponding marginal d.f.’s.
Write

oy = sup |F(z, y) — Fi(z)F(y)|

and
L]

vr ={ [, P 0) = R@RWIT aR ) ar) -
(A similar treatment applies if the integrating measure is replaced by F in the
definition of 4# .) Then, for 0 < «, 8 < 1, there is a constant C(a, 8) such that,
for each d > 0, there is a critical region based on large values of A, with
n < C(a, B) d * and which has size <a on » and power =g for all alternatives
F for which 87 = d. Thus, the behavior of the required sample size as a function
of d is of the same order as in common parametric (e.g., Gaussian) examples.
The same conclusion for B, holds if ér is replaced by vr in the above.

It is clear that this guaranteed behavior of the power function against all
alternatives is far superior to that of the other nonparametric tests previously
described in the literature (outside of [4]). Many of the latter have zero efficiency
compared with tests based on A4, or B, . Perhaps the best of these classical tests
is the chi-square test with the observations divided into the k% classes determined
by k. — 1 equally spaced values of S.i(z) and Sn:(y). The optimum choice of
k. has not been investigated, but it is reasonable to suppose that the power
function for the optimum choice will behave no better, and possibly worse, than
that of the best chi-square test of goodness of fit (see [10], [6]). If this is so, we
would conclude that, if N observations are required by the test based on
A, (resp., B,) to achieve a goal in terms of 8 (resp., v#) like that described in the
previous paragraph, then at least C(a, B)N 5/ observations are required by the
best chi-square test.

We remark that the relationship between 8 and vr is easily seen to be
8¢ = vr = C5%, where C > 0.
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In many applications it is desirable not merely to test for dependence, but
rather to estimate the type of dependence. There are many possible formulations
of this problem. If it is desired to estimate the entire function F — F,F; , then,
for almost any reasonable weight function, a modification of the arguments of
[9] shows that S, — S»18.2 is asymptotically a minimax estimator (asn — ).
Similar results hold for the problem of estimating various functionals of F, F'y , F; .

These results on power and estimation also apply under such obvious modifi-
cations as that of considering the probabilities and empiric frequencies in all
rectangles instead of only in third quadrants, of inserting a weight function in the
definition of 4, and B, , etc. Also, as in [6], [7], [8], the results on size and
minimum power are not materially affected if discontinuous distributions are
admitted. We note also that, just as in [7], the results are unaffected if the
integrating measure S, is replaced by SuiSuz ‘- Sum in the definition of B,
(many other functions could be used, t00); in fact, the limiting df. is exactly
the same with this modification.

6. Computation of the statistics. The statistic B, (or one of its variants, such
as those mentioned at the end of Section 4) is rather unwieldy for practical
computations in its form (1.2), even if the integral is rewritten as a sum to
take account of the atomicity of the integrating measure. The form originally
suggested by Hoeffding for his statistic (which differs slightly from B,) for
n = 5 was

1
T In(n — D(n — 2)(n — 3)(n — 4)

2
-2 ,I.Il [¢x5‘f) (X)) - ¢x(i:;)(XE'i))][¢x(';;) (x) - ¢x§{) xM),

D,

(5.1)

where ¢ is defined as in Section 1 and »_.” denotes the sum over all 5-tuples
(%, -, 15) of different integers, 1 < ¢; < n. Another form of D , for use in
computations, was given by Hoeffding in Section 5 of his paper.

A more convenient form than (1.2) for computational purposes is obtained by

noting that, when m = 2,
T (X5", X§°) = Ni()Na(§) — N2(IN:(9),

where N1(7), N2(5), Na(j), Nu(j) are the numbers of points lying, respectively,
in the regions {(x; y) | z = XJ" Yy = YJ'}7 {(x7 y) lx > XJ" Yy = Yi},
{(x’ y) lil? = Xi’ y > Yj}i {(2), y) |x > XJ'7 y > YJ} Thus’ we have Only to
count the number of points lying in each of the four regions determined by the
vertical and horizontal lines through X; = (X", X{¥), and compute

(52) B, = n™* ; IV()NG) — Na()Ns(T

Similarly, when m > 2 a statistic such as that of (3.4) can easily be written
in terms of the numbers of points in each of the 2™ orthants determined by the
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m hyperplanes through X; = (X$, ---, X{™) and parallel to the coordinate
hyperplanes. Thus, for m = 3 the statlstlc C. can be written in terms of quanti-
ties N1(7), - -+, Ns(j). We omit the detaiis.

6. Approximation to the tail probabilities of the limiting distribution. We again
limit ourselves to the case m = 2, although the discussion which follows even
has obvious applications to problems outside this paper.

The Laplace transform of the asymptotic distribution of the test statistic nB,
under the null hypothesis is

2 2t T

1 —_—
(6.1) j;[;[l[l + W"f’kz]

The singularity of this express1on in the complex ¢-plane which has largest
real part is located at ¢ = — («*/2). In the neighborhood of ¢ = — (x*/2) the
expression (6.1) has the same behavior as

(62) <1 + 2‘)—* II [1 - .L]—}.
™/ GmpEan Jk?

Making use of the relation [(sin 2) /2] = [].21 {1 — [*/(7*n®)]} we see that

<j,k>I,‘I<1.1) [1 a .7“;02] - V2 }:-Iz (Slnw(/:/n)y

We have been unable to invert (6.1) directly. However, some of the
Tauberian theorems for Laplace transforms (see e.g., [2], p. 269) suggest that if
we invert (6.2) we should approximate the tail of our distribution reasonably
well. Thus we are led to approximate our distribution in the tail by

© 3 2

where X is a normal random variable with mean zero and unit variance.

The tabulation which follows gives the exact value of 1 — F(y) and the cor-
responding tail approximation, where F is the limiting distribution of #*n.B,/2,
tabled in Section 8:

y 1 - F@) Tail approximation
2 145 Jd15

3 0414 .0361

4 .0130 0118

5 00424 .00395

6 .00142 .00134

7 .00048 .00046

Thus, the agreement is quite good for even moderate values of the size. A similar
approximate computation for the asymptotic distribution of the von Mises
statistic tabled in [1] also gave good agreement.
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7. Some remarks on computations. The computation of the d.f. of a weighted
sum of independent chi-square variables, such as that whose characteristic
function is given by (2.3) or by (3.5), arises too frequently to require further
mention of examples. Unfortunately, the computational techniques now avail-
able in the literature for such problems are often extremely poor in applications.
While the authors have no panacea to suggest, it does seem appropriate to make
a few remarks whose content has proved helpful in considering the computations
of the present and other papers (e.g., [6], [7]).

A. Useful inequalities for estimating truncation error. In inverting expressions
like (2.3), it is usually convenient to work with a finite product, and it is there-
fore necessary to have a bound on the error introduced by truncating the in-
finite product. To this end, we consider the random variable

(7.1) Z = kZlech,

where ¢; > 0 and the Y; are independent chi-square variables with one degree
of freedom (it will be obvious that the case where Y, has n; degrees of freedom
can be reduced to this case). We seek an upper bound on the quantity

(72) b= P{Z > G},

where ¢ > 0. The usual Chebyshev inequality is not very good here, and any
of several modifications yields great improvement. The details of one such modifi-
cation will now be given. We have, for 0 < T < (2 max; &),

p = P{eTZ > eeT} < e~—eTEeTZ

(7.3) =exp{—eT — } ;log (1 — 2T¢)}.

Thus, for given ¢ and ¢, the best bound of this type is achieved by minimizing
the expression in braces with respect to T'. It is easier to obtain an explicit bound
by first invoking an inequality such as

(74) —log (1 — 2T¢;) < —(ex/c*) log (1 — 2T¢c*),

where ¢* = max; ¢; . Substituting the expression on the right side of (7.4) into
the last expression of (7.3) and then minimizing with respect to 7', and writing
S; = Duwciand e = Sy(1 + &), we obtain

(7.5) P{Z > (14 8)8} <exp{ —(8/2c*)[6 — log (1 + 6)]}.

This can be improved by ﬁsing a sharper inequality in place of (7.4). For ex-
ample, the substitution

(76) —log (1 — 2T¢,) £ Ter — (ci/c*) [log (1 — 2Tc*) + Tc*|
yields, in place of (7.5), the better bound

__ P2 _ S1 6*815
(1.7) P{Z > (1 +8)8} < exp{ ?[5 %3, log (1 TS )]}
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Further improvements can be made similarly. Of course, the usual Chebyshev
inequality is

(7.8) P{Z > (1488} =1/(1+9).

As an example, suppose we want to truncate the product in (2.3) by consider-
ing only terms for which j& < 10. To estimate the error involved in doing this,
we seek an upper bound on p where the set {c;} consists of the Aj of Section 2
for which jk > 10. Routine computations yield ¢ " and ¢ *** for the bounds of
(7.5) and (7.7), respectively, when & is small. In any event, we see that e in
(7.2) must be between S; and 28, for ¢; of this sort, in order to make p fairly
small. Since S; = .0043 and since EB = .027 (where B is as in (2.3)), we can
only conclude that an approximate computation of the d.f. of B obtained by this
truncation, at a value z of the argument, may actually yield the true value of the
df. at a value as far away as « 4+ .2EB, and this would probably be unsatis-
factory. A larger truncation value is thus indicated. If the value 10 determining
this truncation is increased to L, S; varies approximately inversely with L.

Since the ratio of S; to EB is the critical factor in determining the adequacy
of a truncation in computations like that just mentioned, and since S; often de-
creases very slowly with increasing truncation value in such examples, a large
number of terms in the product (2.3) will have to be used for even fair accuracy.
An improvement would probably result from substituting for the ignored terms
a multiple of a chi-square variable with appropriate low moments, but it seems
difficult to guarantee an appreciable improvement in accuracy in this way. We
shall return to these considerations in Section 7C.

B. Some methods of expansion and inversion. One of the most commonly used
techniques for inverting characteristic functions of the form

k

(7.9) H1 (1 — agt)™mi
7=

where the m; are positive integers and the a; are positive, is that of Pitman and
Robbins [11]. Although this technique and variants of it which represent the
solution in slightly different form are sometimes useful, these methods suffer
from three defects in many problems: (1) the solution is given in the form of an
infinite series which converges rather slowly; (2) the terms of the series are quanti-
ties such as incomplete gamma functions, which may not be convenient for some
machine computations; (3) the methods do not distinguish simple cases for
which a simple inversion in finite terms is possible. For a trivial example of (3),
we note that, if £ = 2, m; = ms = 2, a; = 1, and a; = 2, the distribution in
question is immediately found by a routine convolution of two exponentials to
be 2(¢™° — e*), whereas the method of [11] expresses the result as the sum of
an infinite series of incomplete gamma functions. )

This suggests that it will often be efficient to factor out of the expression (7.9)
the corresponding expression wherein each im; is replaced by its integral part
n; (say), to expand £ J] (1 — azt)™™ into partial fractions (the extra factor
! being introduced so as to give the Fourier transform of the d.f. rather than
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of the density), and then to invert term by term. Thus, for example, in inverting
the expression discussed in the paragraph following (7.8), we can factor out and
invert such an expression, leaving only the factors corresponding to Ai , Agz , and
As3 ; the d.f. corresponding to these terms must then be found by other means
and can then be convolved with the d.f. corresponding to the other terms. It
should also be noted that the partial fraction technique will often be easy to
apply in ca.ses where (7.9) is replaced by an infinite product. For example, the
expression £ ' [J7 (1 4+ 2t/7%%)™", which is the Laplace transform of the d.f.
“By”’ which was computed by other means in Section 4 of [7], can easily be re-
written as £ ' + D i (—1)%/2%°(1 + 2t/7%?), which we can invert at once
to give, for z > 0,

By(2) = 1 4 2 X (=1)% ™",
J=1

(Incidentally, this proves the following interesting relationship: if W, and W,
are independent and each is distributed according to the limiting nw?, distribution,
then (W, + Wi)*/2 is distributed accordlng to the limiting Kolmogorov-
Smirnov distribution. )

We must still discuss the inversion of general expressions like (7.9) or, with
the aid of a factorization like that just discussed, of expressions like (7.9) with
all m; = 1. There are many possible expansions akin to that of [11], and for
the sake of brevity we shall illustrate only a few such possibilities in the simple
case of (7.9) where k = 2,0, = 1,8o = ¢ with0 < ¢ < 1, and m; = my = 1.
Writing ¢ for —¢tin (7.9) (i.e., working with the Laplace transform), this expres-
sion becomes ¢() = (1 + &)1 + ¢%) . Factoring out (1 + ¢£) ™, (1 + ¢*) 7,
or [1 + (1 + &)¢/2]™", respectively, and then using the binomial expansion on
the remaining factor, we obtain the three expressions for ¢(¢),

i (1= 0)2th
@ o) = g3 05 ETOE

e = =&y
(b) Q(t)—m‘i;@m:

l-l-ct

(7.10)

() ) = — L <1:c>ltﬁ

= N L Ci 2 27 7
1+(1-|2-c>t7=0 [H_(Hz-c)t]

where ¢; = (27)!/2%(5!)%. The second of these corresponds to the method of
[11]. Thus we see that various expansions are available which differ in speed of
convergence and difficulty of inversion. If suitable partial fraction or other
routines are available for inverting the individual terms, an expression like
(a) might be useful for some values of ¢; in other cases, (b) might be satisfactory.
Without giving detailed calculations of examples, we can see how ill-advised it
is always to use, mechanically, the same routine in every case.

C. Other inversion techniques. Because of the large number of terms which must
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be kept in (2.3) in order to obtain reasonable accuracy (as discussed in Section
7A) when applying the techniques we have discussed, and because of the other
shortcomings of these methods (see Section 7B), it is reasonable to investigate
other inversion techniques. For example, in the problem of Section 2, if we first
take the product with respect to k, we obtain ]]; {sinh [(2m)}/mi)/[(2m) Y/l
for the Laplace transform, and one can try various manipulations with this
expression. Another possibility, which seems more fruitful in this and many other
problems, is that of direct numerical integration to invert the expression of (2.3).

In order to perform such an integration, one must first tabulate the function
(2.3) for various values of the argument. A method which seems to be much more
efficient than that of directly multiplying together an appropriately large number
of terms of the product is to use the fact that, in a neighborhood of » = 0, we
have

11 -1 > I S S

(7.11) 3 ,-,?:;:h og (1 + i2j2) 2w,

where a; = (—1)* (X;2272)?/2k (these coefficients can be written in terms of
Bernoulli numbers). On the basis of preliminary estimates of

g(@) = v [Lo (1 + o/

on the proposed line of integration, the value of & can be chosen so as to make
the series (7.11) convergent over that (finite) portion of the line where the
integration will actually be performed. The series can then be evaluated for
appropriate complex v, exponentiated, and the result multiplied by the remaining
factor of g(v), which can be expressed in terms of hyperbolic sines and of powers
of linear functions of ». The numerical integration can then be performed. This
was the method used to obtain the tables of Section 8.

A recent paper by Grenander, Pollak, and Slepian [3] discusses an interesting
computational technique for obtaining an approximation to limiting distributions
such as those discussed above by solving a set of linear equations whose solution
approximates that of an integral equation for the limiting d.f. or c.f. The reader
is referred to [3] for details and related discussion.

8. Tables. The inversion of (2.3) was carried out by the method outlined in the
second paragraph of Section 7C, which was calculated to require much less
machine time than any of the other available methods. The authors are grateful
to Professor R. J. Walker for carying out the computations on the Cornell Com-
puting Center’s 220. Table I gives values (under Ho) of

F(z) = lim P{ix*nB, < x},

while Table II gives values of F~'(p).

It is not very difficult to program a computing machine to evaluate the
statistic B, or the modifications of it mentioned in Section 4. It may be worth-
while, especially for small n. to reduce the error introduced when using the
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TABLE I
F(y) = limy.ewPry{i7'nB, < y}
y F(y) ¥ F(y) ¥ F(y)
.30 .00000 2.10 .87275 3.90 .98546
.35 .G0010 2.15 .88084 3.95 .98627
.40 .00086 2.20 .88835 4.00 .98702
.45 .00389 2.25 .89534 4.05 98774
.50 .01158 2.30 .90185 4.10 .98841
.55 .02614 2.35 .90791 4.15 .98905
.60 .04867 2.40 .91357 4.20 .98965
.65 .07899 2.45 .91885 4.25 .99022
.70 .11594 2.50 .92377 4.30 .99075
.75 .15784 2.55 .92838 4.35 .99126
.80 .20293 2.60 .93268 4.40 .99174
.85 .24960 2.65 .93670 4.45 .99219
.90 .20652 2.70 .94047 4.50 .99261
.95 .34267 2.75 .94400 4.55 .99301
1.00 .38730 2.80 .94730 4.60 .99339
1.05 .42994 2.85 . .95039 4.65 .99375
1.10 .47027 2.90 .95329 4.70 .99409
1.15 .50816 2.95 .95602 4.75 .99441
1.20 .54354 3.00 .95857 4.80 .99471
1.25 .57645 3.05 .96097 4.85 .99499
1.30 .60697 3.10 .96322 4.90 .99527
1.35 .63521 3.15 .96533 4.95 .99552
1.40 .66131 3.20 .96732 5.00 .99576
1.45 .68540 3.25 .96918
1.50 .70763 3.30 .97094 5.50 .99755
1.55 72813 3.35 .97259 6.00 .99858
1.60 74704 3.40 .97414 6.50 .99918
1.65 76449 3.45 .97561 7.00 .99952
1.70 .78060 3.50 .97698 7.50 .99972
1.75 79547 3.55 .97828 8.00 .99983
1.80 .80922 3.60 .97949 8.50 .99990
1.85 .82193 3.65 .98064 9.00 .99994
1.90 .83369 3.70 .98172 9.50 .99997
1.95 .84459 3.75 98274 10.00 .99998
2.00 .85469 3.80 .98370 10.50 .99999
2.05 .86406 3.85 .98461 11.00 1.00000
TABLE II
b F-1($) ? F(#)
.9 2.286 .998 5.68
.95 2.844 .999 6.32
.98 3.622 .9995 6.96
.99 4.230 .9998 7.82
.995 4.851 .9999 8.47




498 J. R. BLUM, J. KIEFER AND M. ROSENBLATT

limiting d.f. (in particular, in the limiting covariance funcfion) by using
(n — 1)B, instead of nB, .
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