MULTIVARIATE CORRELATION MODELS WITH MIXED DISCRETE
AND CONTINUOUS VARIABLES
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1. Introduction and summary. A model which frequently arises from experi-
mentation in psychology is one which contains both discrete and continuous
variables. The concern in such a model may be with finding measures of associa-
tion or with problems of inference on some of the parameters.

In the simplest such model there is a discrete variable x which takes the values
0 or 1, and a continuous variable 3. Such a random variable z is often used in
psychology to denote the presence or absence of an attribute. Point-biserial
correlation, which is the ordinary product-moment correlation between z and y,
has been used as a measure of association. This model, when z has a binomial
distribution, and the conditional distribution of y for fixed z is normal, was
studied in some detail by Tate [13].

In the present paper, we consider a multivariate extension, in which z =
(%0, 2y, -+, zx) has a multinomial distribution, and the conditional distribu-
tionof y = (y1, --- , ¥p) for fixed z is multivariate normal.-

" 2. Outline. Consider a random sample of # independent vectors (Ta, Ya),
a =1, ---,n, where x has a binomial distribution, b(1, p). The conditional
distributions of (y |z = 1) and (y |2 = 0) are assumed to be N (u , ¢*) and
(o, 0°), respectively. If we define A = (uw — wo)/o, then

pew = Alpg/(1 + pga®)].

Thus, studying p involves studying induced relations between means; for ex-
ample, p; = po if and only if p,, = 0. The exact and asymptotic distributions of
T2y Were obtained by Tate [13].

We are now concerned with a multivariate analog of this model. Let

(Y1er " * » Ypa s Toay " * *  Tka), @ = 1, - -+, m, be a sequence of independent ran-
dom vectors, where (2o, - -, ;) has the multinomial distribution,
f(@o, «++, @) = po°pi* -+ D&% Tm = 0,1;

k

San=10<pn<1l, X pmn=1

0

The conditional distribution of y = (y1, -, ¥p) given z,, = 1 is assumed to
be 0(u'™, =), that is, p-variate normal with mean vector u'™ = (pim, *** , Hpm),

m = 0,1, --- | k, and positive definite covariance matrix Z.
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As in the univariate case, the vanishing of various correlations, for example
multiple correlation coefficients, induces certain constraints on the means. In
Section 3, we give a number of relations between correlation coefficients and
means. It will appear that the square of a correlation coeflicient may act as a
measure of dispersion among the possible multivariate normal conditional dis-
tributions.

For convenience of development as well as clarity, we consider separately the
cases (i) k=1,p> 1, (i) k> 1, p =1, (ili) k > 1, p > 1. In connection
with Case (i), it will be shown that pz,,,....s, is closely related to the distance
function of Mahalanobis [7]. Section 4, dealing with the relevant distribution
theory for Case (i), will exhibit the relationship between 7%, ...s,» and the T°
statistic of Hotelling [5], and will contain the exact and asymptotic distributions
for 7,,¢1,---wp - The method of derivation for the asymptotic distribution con-
stitutes something of a departure from the usual approach, since the statistic
involved is a function of sample means, but the classical method of Cramér
([2], Section 27.7) is not used, because it would involve too much calculation.
The resulting distribution is formally identical to that obtained by Tate [13] for
the ordinary correlation coefficient, which is an altogether surprising result.

Section 5 presents the distribution theory related to Case (ii), including deri-
vations for the exact and asymptotic distributions of partial correlation coeffi-
cients, in addition to the main discussion of 7y (s,,....s» . Unfortunately, the
multiple correlation coefficient has a distribution which contains nuisance param-
eters, that is, parameters other than po, p1, * - , p of the z distribution, and
the population multiple correlation coefficient. Moreover, this difficulty does
not disappear in the limit. Cramér’s method, referred to in the last paragraph,
is used to advantage here.

Canonical correlations are introduced in Section 3, and serve to give a unified
approach for our three cases. In the general case k > 1, p > 1, however, it is
difficult to obtain results. An effort is made in Section 6 to indicate the problems
involved. The vector correlation p, between the vectors x and y, which is also
introduced in Section 3, although theoretically inferior to canonical correlations
has the property that more can be accomplished with the sampling theory for
its estimate r, . In Section 6 it is shown that r, is essentially distributed as a
U-statistic of Wilks [15]. A distribution of Rao [10] is important in this con-
nection.

Throughout the paper estimates will be the natural sample counterparts of the
parameters which they estimate. They can all be obtained by the method of
maximum likelihood, and this is shown in Section 7.

Section 8 contains a summary of procedures developed throughout the paper,
together with examples of situations in which they would be appropriate.

Moustafa [8] has made a detailed study of models employing a multivariate
normal conditional distribution with one or more multinomial conditioning vec-
tors. He considers cases more general than ours, and employs the asymptotic
chi-square property of —2 log A to perform his tests; correlation is not mentioned.
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3. Relations between correlation coefficients and means.
3.1. Model and preliminaries. Consider the model®
(yly ;yplxm = l,x,, = 07” #m = 0717 ;k) Nm(ﬂ('n); 2)7

and suppose that the conditional means and covariances are given as follows:

Means Vectors
o 1 Tk
N ‘#10 M1l cc M1k p® = (uo, ", Mpo)
Yp | Bpo Mp1  *°°  Mpk l"(k) = (Flk P »I"pk)
Covariances
yl DY yp xo xl Y xk

Y1 d’ll M d’lp 80 01 - 014

I : H : v A

Yo |¥m1 = VYep O Op1 ccc Gpp = ( A I‘) .

Zo|8w v S Yo Yot Yor

Ti |8k 0 Sk Yie Ym ct Vhk

The unconditional moments are:

k k
(3.1) Ey; = mZ_:OE(yi | Zm = 1)Pm = mz=:oﬂ-impm = pi,
k
Eyy; = 2 EWai| om = )pm = 2 (6ij + Himbbin)Dm
(3.2) m=0 "
= oij + ; Dmbbimphim «
Hence,
(33) ‘pij = 03ij + Zm:pm(l-‘im - I-‘i-)(l-‘jm - ﬂ:i~)7
(34) 8im = Pm(l-‘im - I"i-)y

(35) Ymm = PmQm ; Ymy = —PmP», (m # V), Qm = 1— Pm -

Ifwelet U = (4im) = (im — pi)y,t =12, ,p,m= 0,1,---,k;p =
(Po, D1y " » Px), Dp = diag (Po, p1, -+ , ), then (3.3)-(3.5) can be written
as

(3.6) ¥ =24 UD,U,
(3.7) A =UD,,
(3.8) r=D,—pbp

- Note that Ae’ = Te/ = 0, wheree = (1,1,---,1): 1 X k + 1. Moreover,

3 7 ~ F(z) means that z is distributed according to the d.f. F(z), and z(n) — F(z) means
that vt‘he asymptotic d.f. of z(n) is F(x).
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Tw’ = 0if and only if w is a scalar multiple of e. Finally, Up’ = UD.,e' = A¢’ =
0, and from (3.7) and (3.8) we have

(3.9) A = UT.

3.2. Relations between canonical correlations and means. Consider the matrix

-\ A
n= (2 A
The canonical correlations (introduced by Hotelling [6]) are defined as the num-
bers A to each of which corresponds a non-trivial vector ¢ = (n, &) = (m, 72,
<y Mp s b0, b1, 0, B, with V¢’ = 0. Since Ae’ = Te¢’ = 0, will be trivial if

= 0 and £ is a scalar multiple of e. Thus, if A 5 0, then A is a canonical cor-
relation if there exist vectors # # 0 and £ such that

(3.10) AF = AU/, A'y’ = AT¥.

Note that if 7 = 0, then T'¢’ = 0, in which case £ would be a scalar multiple of e.
LeMma 3.1. The non-zero canonical correlations are precisely the non-zero roots of

(3.11) |UD,U" — 62| = 0, 0 =2N/(1 —2\).

ReMARK. Since ¥ = UD,U’ + 2 is positive definite, § % —1, and \* = 6/
(1 + 6) is well-defined.

Proor. Given |Vi| = 0, with A 5 0, n > 0, and using (3.6), (3.7), (3.9), and
(3.10), we have

AUD, U = N'UAy = UT¢ = A = Ny = NUD,U' + Z)7/,

which implies (3.11).

Conversely, suppose that (3.11) holds with 6 s 0. Then there exists n = 0
such that

(1 — M)UD,U'y' = N'2'.
It now suffices to prove that there exists a vector £ satisfying
r¢ = NA',
for then A = AV¥q' by an argument similar to the above. But such a vector

does exist, and is given by £ = e¢; in which case Te¢’ = 0 and eA’n’ = 0 for all

7|l
TarEoREM 3.2. The canonical correlations are zero if and only if

I -
Proor. Clearly win = ui» for all 4, m, and » holds if and only if U = 0. If
U = 0, then (3.11) implies that 6 = 0. Conversely, if § = 0, then =*UD,U’z™
= 0, so that Z*UD} = 0, which in turn implies that U = 0. ||.
Ifk>1,p=1then U= (mo — m., ***, b — #1.), and there is only one
non-zero root: namely, the multiple correlation coefficient. (The first subscript
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is not needed in this discussion, and we omit it.) Hence,
k

Z (I-"m - I‘)2pm/0'll

(312) Pg = P:(:cl,"-,zk) = m=0k .
1+ };,0 (bm — 1)’Pm/ou
If we define Ap = (pm — u)(on)™?, and & = D ¢ pmAZ then
k k

(3.13) po = ; pmAf,,/(l + ; pmAfn) =38/(1 4+ 9).
Also,

2 — 2 — pm Afn

Pom = Pyzm qm(l + 6) )
so that

k

(314) P(2) = OZ Qmpgm .

The multiple correlation between y and a subset (21, -, ) of (xy, -+, ax)
may also be computed: namely

Puar oeean)
= <$ Popim — w)* + [Z:: Do (. — u):r |:1 - Z:: pm]_l)/'ﬁu-

Now suppose k = 1, p > 1;then U = (pd’, —pod’), where d = (p'© — ).
Hence, UD,U’ = peypyd'd, and (3.11) has one non-zero root, § = pop,d="'d’, so
that \* = 6/(1 + 0) is equal to

(1@ — gDz — LO)
(3.16) Pix(mr"w) - @) - @ —u1 ) £ 31) 7
1+ popi(n® — p®)Z1(u® — p®)

We now find conditions for which the partial correlation coefficient vanishes.
TueoreM 3.3. Letk > 1,p = 1 and paminy. = pﬁzm 1@ ) 3 UNEN pogmry. =0
if and only if

k k
(3.17) mir = D Pobiv/ D D -
m+2 m+2

(3.15)

Proor. From
2 2 2
1 — poqt,eesmominy = [1 — po,eee,ml[l = pocm+1).],

we have that pam4n. = 0 if and only if poa,....m4n = Poct,-.m ; from (3.19) this
condition helds if and only if

o — 1) 4 [2:1 py(;:H— M)T ~ [f:: p»(mm— u)]2 o

'1—;17' l—zp-

0
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Simplification yields
<Mm+1 —u+ [1 - ;pv:l ;pv(ﬂv - I‘)) =

which is equivalent to (3.17). ||

3.3. Vector correlation. If we regard correlation in our model as merely a meas-
ure of dispersion for the various 91(s'™, ) distributions, then we are led quite
naturally to a consideration of vector correlation. This concept is due to Wilks
[15], and is an extension of the correlation ratio to the multivariate case via the
use of generalized variance. In the notation of our model the coefficient of vector
correlation pZ can be expressed as

|Z]
|2z 4+ UD, U'|"
It is easy to see that (3.18) reduces to (3.12) and (3.16) fork > 1,p = 1
and k£ = 1, p > 1, respectively.

4. Distribution theory for thecase £ = 1, p > 1. Let (J1a, * - * , Yra » Toa , T1a),
a =1, -+ n, be n independent random vectors, with conditional distribution
(Yras =+ Ypal@ma = 1) ~ ('™, 2), m = 0, 1. It will be convenient to define
the following statistics:

= D Toa, n1=Zx1a, n = m+ n,
a
¥ = Z Yia/1, -(0) Z ymxﬁa/no ’ -(1) Z YiaZra/T y

O ), 10 =@, 88, 8= (si)ip X p,
1

=23 R - @R - g7/ (e —-2), Gi=1--,p,

m=0 A=

(3.18) pﬁ =1 -

-(0) — (.7/

where {yfi")} is the subsetof (y.1, « -+ , Yi) for which the corresponding elements
of (ZTm1, *** , Tma) are equal to unity.
. 3 2 2
Correspondmg to (3.16) we have as an estimate of p° = pz,¢y,-0) »
2 _ (gn/n(n — 2))(G° — )87 (" — 5°)
@r) e T T (u/nle — 2) GO — 78 GO — g0

T/ (n —2+ T

where
70 — g8 (G — 7Y
= (nom/n)(§ )8 (g )
We can now state the following

TaEOREM 4.1: Q = [(n — p — 1)/p] [/ (1 — +*)] is distributed as a mizture
of noncentral Fp ., 1(7°) distributions, with mizing coefficients

( ) po’pr,
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and parameter

2= nonl( P2 >
npop1 \1 — o2/~

Proor: First note that from (4.1)

( 7 )n—-p—-1= T (n—p—1
1 —1r P n—2 D ’

The conditional distribution of this statistic can be obtained immediately by
applying a method of Bowker’s (see Anderson [1], Theorem 5.2.2): If T* =
YS'Y’, where Y ~ 9(», Z), Z: p X p, and aS = D 3 ZuZ,, where Z, ~

n(0, =), then

T fa —p+1
where ¥ = »='». Now, make the correspondence a = n — 2, ¥ = (nonl/n)*
G° = 7%, v = (ngny/n)}(u® — u®), and use (3.16) to compute 7°. Forming

the mlxture, we have

n o _—ingn1p?/npop1(1—p?)
e n n
@ = 2 ST (Y s (2 i

ng=0 h=0 NPo Pr 1 -

Note that if o> = 0, T” has the T" distribution of Hotelling [5]; and, since the
no and n; sum out, Q has an ordinary F,,,—p—; distribution.
4.1. Asymptotic distribution. Define
2

- _ T P 2
9(7') = 1= r2~n S — 1Fp,n—p—-l(7 ),

h(r) = {g(r)/Il + g(r)}}* = r. Then
dh

(42) ) = (ho), & (&

) lim 2V (g(r)).

We now determine the various factors:

o) = o 9(e) = (L — ), (‘ﬂ‘

il

= [49(p) (1 + g(p))™" = (1 — p")*/4s",

d E7

(44) E[F.o ()] = -2+ 2) E#+2@+2x&%}

@-2d =D [1 T e T )

Es = [’ﬂpo p(l — P2)]-lp2Eno ny = (n — 1)g(p),

= (npo p1) g’ (p) Eniini

= (n — Dg(@[(n — 2)(n — 3)pepr + n — 1]/np p1.
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With ¢ = p,d = n — p — 1, after considerable calculation we obtain

lim 7 (o(r)) = ¢*(p) P—%”—] + 49(p),

which upon substitution in (4.2) yields

THEOREM 4.2:
dpyp1 — p'(6popr — 1) 2)
4.5 r—N ( 1 - .
(45) s (1=
It is rather surprlsmg that the asymptotic variance is 1ndependent of p, the
number of variates in (¥, - - -, ¥»), except insofar as it affects i =0 211 ) +

As a consequence, (4.5) is identical in form with the result of Tate ([13], Th. 1)
for p = 1. Thus, we can apply some of the results of that paper. In particular
Vo(r) has a minimum for each p when po = p1 = 3, in which case V(r) =
(1 — p)*2 -- p*)/2n. By a variance stabilizing transformation we obtain
(when py = %)
tanh'[?(2 — )]} ~ Rftanh 32 — o))}, 2/n}.

In a recent paper, Hooper [4] considered the following model. Let

(Ya s Tray *** » Taa), @ = 1, -+, m, be n independent random vectors, with

=z)\:7r)‘x)\a+ua’ x)\u=£)\a+w)\a, )\=1,”',A; a=1,“’,n,

where £, are real numbers, (wia, * - , wao) areindependent observations from
a A-variate normal distribution with zero mean, independent of p. & = 1, s
n, which are independent normal variates with zero means. If D 8B.=1, then
the asymptotlc variance of the multiple correlation coefficient is (1 — p°)°
(2 — p*)/2n, which is the same as V(r) when po = p1 = 3. Although the results
are the same, the connection, if any, between the two models is obscure.

5. Distribution theory for the Case & > 1, p = 1. Let (4, Zoa, *** » Taa),
o =1, -+ ,n, benindependent random vectors, where the conditional distribu-
tion of (Yafma = 1) ~ N(pm, 0°), m = 0, 1, -+, k. It will be convenient to
define the following statistics:

k
= ;xma, n = Zonm’ g= Z?/a/n’

nm
-<M) E Yolma/Tm = ; y7(\M)/nm ’

where {y5™} is the subset of (y1, - -+ , y») for which the corresponding elements
of (Zmy, -** , ZTmn) are equal to unity.

ém_y = Zyaxm../n, T = mea/n,

k k
= Xo:pmum, Ap = (ﬂm - H)/O’, 6= oz:pmA?n
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5.1. Multiple Correlation Coefficient: Exact distribution. Corresponding to (3.12),
(3.13), (8.14), we have several equivalent forms for the estimator of p; :

k
(5.1) o= Ty = N, S/ NS,

m=0

where & = Do (Wa — 9/ su = (1/0) 26 Wa — §)(Tma — Nm/n)
= na(@™ — §)/n,

k
(5.2) ro= (42 — yz)“; (Tnly = Zn)*/Zm ,

k
20 (1 = &n)lom,
0

S
on
M

(5.3)

where 8, = 75, .
Using (5.1) we obtain

k k
2 ; (™ — §)° ; (™ — §)°

(54)

2 n

1 - =v - - k -(m, - B - - m m, )
To ; (ya _ y)2 _ ;nm(y( ) y)2 m;g); (y)(\ ) g( ))2

In view of the above we have, analogous to Theorem 4.1,
TuroreM 5.1. The statistic

_n—-k—l re
Z‘( R >l—r3

is distributed as a mizture of noncentral Fyn_x(7") distributions, with mixing
coefficients

n! ng, n1 ngk
_ D01t e Dk
’ﬂo!’nl! -'-nk!p P L

and parameter = . NmAL .

Proor. Follow the same type of argument as in the proof of Theorem 4.1.
Note that again for this case we have * = 0 whenever p; = 0, and hence Z ~
Fin—i— , which is a well-known result (see Fisher [3]). ||

5.5.1 Asymptotic Distribution. We now need certain computations for moments.
Using

k
a b ¢ meE(y‘:‘xm = 1), if a=0b= 0,
Expxyy’ = 0

(PnE (Y |2m = 1), m=v or b=0,
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we find that
V(Zn) = pmgm, Cov (zm, 2,) = —pmps(m # ),
V) =148 V@) = D pubs — & + 45 + 2,
Cov (4, 4") = 2 pmbn,  V(@ny) = pu(l + guAh),
Cov (Zm, ZnY) = Pmgmbm,  COV (Tm, TyY) = —pupsBn(m = v),
Cov (zm,y) = PmBm Cov (m , yz) = pm(Afzn —9),
Cov (zny, ) = Pu(l + An),  CoV (Tny, oY) = —PuPrlnl,(m = v),
Cov (Tmly V') = Pmlm(An — & + 2).

If we write 4 as in (5.2), we have a function of sample moments, and we can
expand about the population moments (see Cramér [2], p. 353). This leads to
the following asymptotic result.

THEOREM 5.2.

1D P Am+ 8445
“"m(”"’n L1+ o) )

Alternative forms for the asymptotic variance are

Vw(r)=(—m)[(1 22”’” mgp -3 ]

g
Vao(T) — ( P0)2 [EQmPOm/pm _I_ 1 — 3 ],

42

since pom = PmAL(l — po)/qm. The term qupo,n/pm contains the nuisance
parameters; we can, however, look at some bounds. We find that

0 S P 2 Gmpom < p0( 2 Pm- — 2k — 1).

The right inequality follows from pg. < p and the left inequality follows from
the Cauchy inequality

Z [(qmpﬁm)pll(qmpﬁm)]z Pm = (Z qmpgm)z = pﬁ .
Thus,
(1 - Po) (2 - Po) < Ve < (1 - P(2))2 (2 _ pg)

2n - 2n
[ wetm -]

For fixed p; and k the right-hand side takes on its minimum value of

(1 — py? . 3 — 1)
‘”Errp‘o‘@‘“)[ e o]
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when pm = 1/(k + 1), which in turn of course reduces to the left-hand side, and
the result of Tate [13], when & = 1.
5. 2 Partial correlatwn coefficient: Exact distribution. We first find an expression

for romin. = Tuzm+1~(za. Zm)
THEOREM 5.3.

: (e 35, > m) G - g0
To(m+1)- —
1 _ 2 . k n, y o o _ ’
Toemtn- 3757 () — ) + Z n(g” — 50)’*

ye==l A=1

where o = Zm+2 n,g" )/ Zm+2 Ny .
ProoF. From 1 — 75(msyy. = (1 — o, miny) /11 — 001, ,m), and the sam-
ple estimator of (3.15):

m m -1 m
7%(0.1."-,1") = [; ﬁv(gm - '!7)2 + (1 - Zo: i ; ﬁv(gw - ?7)2:|/82

we obtain
~+ 2 m
2 [Z ﬁv(g(y) - ’.17)] [Z ﬁv(gm - g)]
romsn.  _ 1 [, (™Y — )t 4 B _ L%
1—Tmin. D] W z,
To(m+1) 1 — ; P, 1 — zo: i
m ) k m+1 ®
1 pAm+1 (1 - ; ﬁv) (ﬂ(m - ’!7) ';2 pAv + ; ﬁv(g - g)
= B m+1 m ’
and finally
& 2
2 Dm+1 [Z P> 27(”))]
( 5 5) To(m+1). — 1_ m+2
’ 1 - Tg(m+1)~ D i A i A ’
m+2 pv m+1 pv
using the relation Y o7 p,(5” — §) = — S5, — §). In the above
m+1 m+1 2 k
WD =% - = 3w — 0~ [Z @ -] /5
L 2 » A 2
= ; ; (Z/{") - ?7(”)) + ; ﬂv(:l?" - ?7) Z nv(y - 217)
m+1 2 k
- [Z (5" — ﬂ)] /E ny
0 m+2
Simplifying,
k.  ny
(5.6) nD = Z Z (yiv) -(I’)) + Zn (—(V) . g(o))2.

y=0 A=l
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Substitution of 4, = n,/n and (5.6) into (5.5) leads to the result. ||
In particular, if m + 1 = k — 1, then,

) M1 T i(g(k—l) _ g(k))
(n—k — 1)ryg—. N1 + N
(5.7) 01 _ - k—1 k,

g o) ny , 4
(= o) (}_:g W = 7"/ (n — b — 1))

has a Student’s t-distribution with n — k — 1 degrees of freedom, when p = pyg—1y. =
0, and a mixture of non-central t,—_;-distributions with parameter

T = [( p2 )(pk_1 + pk)( Np—y T )]%
1=\ peam J\ns + ma
and mizing coefficients
( . )p o pe (L — pry — po) T F T
Np—1 M

Note that p = 0 if and only if pr—1 = i .
5.2.1. Asymptotic distribution. The asymptotic distribution of rog—yy. = r will
be obtained by an argument paralleling that of Theorem 4.1. Let

7? 1
g(r) = 1 _ern T — lFl,n-k—ly
h(r) = {g(r)/I1 + g}t = 1,

then the limiting distribution of h(r) is given by (4.2). As before we find
iy nV(g(r)) = limypnd >V (Fy,a(7*)), using (4.3) and (4.4) with ¢ = 1,
d = n — k — 1. However, now the definition of the non-centrality parameter

(58) 7 = g(p)Bru—m/a(m— + m), o= Dp_1Dk , B = Dra+ pr,

is different.
LeEmMmA 5.4.

E7" = g(p)ln — 1/8.
Proor.
Elm—ni/ (ne—1 + me)] = Elnesmu| (e + m) = m]
= Emf 'pra(1 — B7'pum) = of(Em — 1).

Since m ~ b(n, 8), Em = nB. ||
LeMMA 5.5.

Ert = ”":fs”) [(n — Do+ —5a+0 (%)]

Proor. Let 2 = m/n, y = m/n, bz, y) = &4 /(x + ¥)’, then
Er* = n’8a¢’(p)Eb(x, y). Now expand b(z, y) in a Taylor’s series about
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(pr_1, pi) to second degree terms. We have b, = 2x3°/(z + y)°, bee = 24°
(y — 22)/(x + v)*, by = 62/ (z + y)*. After simplification

b(z, y) = B 1"pi(pe — 2pet) + ¥Dia(Prs — 2pi) + 62°2%] + R.

Since Ex* = [(n — 1)pis + pral/n, Bxy = (n — 1)a/n, ER = 0(1/n%), we
obtain

Eb(z,y) = ofaB(n — 1) + g — 5a + O(1/n)]/ng". |
THEOREM 5.6.

22 — 308 —
s =9 (o EZ Y [1 4 (F= 208 = 3e)]),

Proor. Using (4.3), (4.4), Lemmas 1, 2,
V(g(r)) = d*V(Fra) = 3(d — 2) + Er* + 6B — (d — 4)(1 + E)%/
(d — 2)%(d — 4) = [20%"(p) + n(d — 2)g*(p)
(—aB + B — 5a)/aB + 4n(d — 1)g(p) + 2n(d — 4)
g’(p)/B + 0(n))/(d — 2)*(d — 4)
Recall thatd = n — k — 1, so that
HmnV(g(r)) = ¢’(p)(aB + B° — 3a)/aB + 49(p).

The remaining computations follow directly from (4.2). ||
REMARKS. The parameter p may be removed from the variance by the variance
stabilizing transformation ¢(x) which satisfies the equation
¢'(2) = [(1 — YA+ )T, ¢ = (8 — 308 — 3a)/(40).

The desired solution is

1 (e + 1)}
(59) ¢(x) = m tanh ]’.___(1 +——cx2); ’

or, equivalently,

_ 1 426l + DA + ea”))
(5.10) ¢(@) = oo ¥ T r ey e
If pos = i = 3, then ¢ = —3, and ¢(z) = 2! tanh™'z(2 — 2*)} = 2} tanh™
L-qQQ - #*)?], which coincides with the result of [13]. In general, then, we

obtain
THEOREM 5.7.

—1 Toge—p. (1 + c) ( ap(l4e)t 14 c)
tanh (1 + erjo—.)? — % tanh A4+cH’ n )’

with ¢ = (8 — 3a8 — 3a)/4aB, & = Di—1Pr, B = Pe—1 + Di .
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6. Case kb > 1,p > 1.
6.1. Remarks on sample canonical correlations. Define b;n =

B = (bim):p X k + 1, D = diag (no/n, - -+ , nmx/n),

k nag,
sii = 2 2, (& — g™ WR — 35, 8 = (si)ip X p,
m=0pA=1
hi; = D to Mmbimbjm/n, H = (hi;)ip X p. Then H = BDB' is an estimate of
UD,U’, and S/n is an estimate of 2, so that we are interested in the distribution
of the roots of |H — 6S/n| = 0 or equivalently the roots of |S*HS™ — 6/n| = 0.
Even for the simplest model with u® = - = u®, 2 = I, and no, -+, m
fixed, this problem remains unsolved. The reduction of the following paragraph
will serve to focus attention on the difficulties.
Let B ~ 91(0, I), S ~ Wishart (I, p, n), that is

(6.1) p(B, 8) = const |S|*"™*™ exp [—} tr (BB’ + 8)].
Let L = S'BD*. The Jacobian is |S|***”|D|™"", and

p(L, 8) = const. |S|"" "2 exp [—} tr S(LD™'L’ + I)].
Integration over the domain S > 0 yields
(6.2) p(L) = const. |[D["?*|I + LD™'L/|~"**+V72

= const. |Dt(n+k-p+l)l2lD + L'L("+k+l)/2.

Our concern is then to obtain the distribution of the characteristic roots of LL/'.

Except for the cases £ = 1 or p = 1, this problem is untractable, for it involves

the evaluation of integrals of the type [ g(T)|TDiIV — D,|™°dT over the domain

I'T’ = I, where Dy, D, are diagonal matrices, and g(T') is a function of T alone;
it is the determinant in the integral which causes the problem.

6.2. The sample vector correlation. The sample counterpart of (3.18), namely

e _1_ |8/n]
(6.3) r, =1 m’

using the notation of Section 6.1, is called the sample vector correlation coeffi-
cient. For the case p; > 0 nothing is known of the distribution. It would of course
be some kind of mixture, and would in general contain nuisance parameters.

Under the null hypothesis it is known that 1 -— o~ Up.kyn—iat
where U, .1 is a U-statistic of Wilks (see Anderson [1], ch. 9.7). The exact
distribution is available for all p, k values such that at least one of the two quanti-
ties is 1, 2, or 3. For the case p = k = 3 a table is available for small values
of n (Anderson [1], ch. 8.5). For larger sample values the asymptotic distribution
of Rao [10] can be adapted to our situation. Denote by P,(z) the distribution
function of the random variable z evaluated at z. Then

@™ - g9,

(64) Poyyiora—rp(2) = P2, (2) + 75 {Pa, (o) = P, (2)} + 0(n),
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where
vo=n—%®+k+3), 1= (pk/48)(0"+ K —5).

7. Estimation of parameters. It has been tacitly assumed throughout the paper
that the parameters u;, and o;; may be estimated by their corresponding sample
means, and the parameters p. by their corresponding relative frequencies, re-
gardless of any dependence which might exist between the random vectors y.
and z, . The purpose of this section is to show that the assumption is valid if
the method of maximum likelihood is used.

Let h(ya, o) be the density of the random vector (Yi«, ¥2a, *** ) Ypa;
Zoa, Tla, ***  Tka), and f(x,) the density of (Zoa, Z1a, *** , Tka). Also, denote
by ém(ya) the density of a 91(x™, Z) random vector; recall that u™ is a column
vector of the matrix (ui»). According to our model

k
(7'1) f(xa) = p:()a cee p:ka’ h(ya|xa) = Zoxma‘ﬁm(ya)'

Therefore, the density of the whole sample is

(7.2) T 5y, ) = I1 (X @nabn(ya))pse -+ o

Now change the a-labels in such a way that they start with the a-values for
which 2o, = 1, then those for which z;, = 1; more precisely, assume

m—1

Tma =1, a=X+2mn, AX=12-,n,, m=01--,Fk
0

Then, let ™ = (y&, -+, y*%) be independent 9 (u™, =) random vectors.
It is now easy to see that (7.2) becomes
k

(7~3) IaI h(ya ) xcx) = p:o e ng} Hd’m(y{m))'

Thus, the joint density is factorable; one factor contains the parameters
Do, D1, *** , i ; the other factors contain the parameters pim and os; .

8. Summary of procedures, with examples.

81Casep > 1,k = 1.

(i) rﬁl(,l,...,,p) may be computed from (4.1).

(ii) The hypothesis H : p3, (y,- .4y = 0 with other parameters arbitrary may be
tested by the Q-statistic of Theorem 4.1: Reject if @ = ¢, where ¢ is obtained
from a table of the F-distribution.

(iii) Examples of all cases are provided by some of the studies described by
Rokeach [11]. In experiments concerning attitudes individuals were classified as
Northerners or Southerners; according to membership in the British political
parties: Liberals, Conservatives, Laborites, or Communists; according to re-
ligious affiliation. The individuals also received scores on Dogmatism and Opin-
ionation scales. Thus, he considers situations in which p = 2. For illustrative
purposes, we have chosen a restricted set of data from one of his studies.
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n Y2 2 o m n Y2 Zo 1
175 148 1 0 133 143 0 1
168 156 1 0 159 135 0 1
158 151 1 0 168 198 0 1
183 136 1 0 192 169 0 1
195 164 1 0 168 117 0 1
106 138 1 0 142 138 0 1

= 1 for a Northerner; z; = 1 for a Southerner.
= dogmatism score; y; = opinionation score.

For this example n = 12, ng = 5, ny = 7. The formula y('") Za Yialma/Mm ,
and the expression for s;;, given at the beginning of Section 4, gives

7#” = 17580, 7¥ = 151.00, @° = 15257, g¥ = 148.29
sy = 553.76, s = 180.87, s = 471.46.

Whence, s = .0020645, s = —.0007920, s® = .0024249, and 7 — 7 =
(—23.23, —2. 71) Then,

= (ng/n) (3" — V)8 ‘('“’ — )" = 3.010,
and
?=T/(10+ T = 2314, r = 481.

Finally, @ = 1.355. Referring to the F-table for 2 and 9 degrees of freedom,
we see that a Q-value of 9.38, and hence an »* value of .6757, is required for
significance. Thus, we accept the hypothesis that there is no particular associa-
tion between Dogmatism and Opinionation (as defined by Rokeach) on the one
hand, and the section of the country in which the individual lives on the other
hand.

(iv) In order to obtain the power of the test in part (ii) for a specified alterna-
tive (po, P1, p) we may consult the tables of Tang [12] or the charts of Pearson
and Hartley [9]. The quantity ° of Theorem 4.1 must be computed for po , p; , p,
and each possible partition n = n¢ 4 n1. The probability of a Type II error is
then obtained as a mixture of various values of Py from the tables or charts. A
calculation of this kind is given by Tate ([14], p. 1083).

(v) When po , p1 are known, we can test the hypothesis H:p’ = constant (not,
necessarily zero) by using the distribution (4.5) of Theorem 4.2. An alternative
to this is to make a variance stabilizing transformation ¢ (this is discussed in
Section 5.2.1 in connection with partial correlation), and then test H:¢(p?) =
¢(constant). For the case at hand we have

o(r) = (4pp)}(1 — 2pp)~F tanh'r(1 — 2pop) ' dpapr + (1 — 2popy)r*1 7}

and, of course, ¢(r) — N (¢(p), 1/7n).

(vi) Confidence limits for p can be obtained when po and p, are known by first
finding confidence limits for ¢(p) and then obtaining from them the limits for p.
See Tate [13] for an example with p = 1,k = 1, po = p1 = 3.

82.Case p =1,k > 1.
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(i) 70 = r2,....sp May be computed from (5.1), (5.2), or (5.3).

(ii) The hypothesis H:ps = 0 with other parameters arbitrary may be tested
by the Z-statistic of Theorem 5.1.

(iii) The asymptotic distribution of 7o is given by Theorem 5.2. Note that
nuisance parameters are present whatever the values of py, - - -, px (recall that
they must all be positive). To test H:p; = constant (not necessarily zero) we
can use the asymptotic distribution, with estimates for the nuisance parameters
in any form of the asymptotic variance which is convenient to use. The alterna-
tive to this is to use the lower bound (1 — p3)%(2 — ps)/2n and reject too often
when H is true, or use the upper bound (1 — pg)*(2 — po)[1 + 2p5(2 — p3) ™"

Z'S (pn' — 2)]/2n and reject too rarely when H is true.

(iv) The remarks of (iii) apply also to the determination of a confidence
interval for py. The upper bound for the asymptotic variance would lead to a
conservative confidence interval worthy of more confidence than we place on it.

83Casep > 1,k > 1.

(i) 7} is computed from (6.3), using the notation of Section 6.1.

(ii) The hypothesis H:p: = 0 with other parameters arbitrary is tested by
the statistic 1 — 75 which has the Uy 4 .1 distribution under H. See the remarks
in Section 6.2 concerning the availability and scope of tables, and Rao’s form
for the disi;ribution function of the transformed variate —(n — 3(p + & + 3))
log (1 — 7).

9. Acknowledgment. The authors are indebted to Professor Milton Rokeach,
Michigan State University, for making his data available, and to the referee for
the present proofs of Lemma 3.1 and Theorem 3.2.
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