Once again we note that (5) is a *universal* relation valid for any sequence of skew vectors.

EXAMPLE 3.

Expectation of L_n . (Spitzer and Widom [3])³. It is easy to see that

(7)
$$n!E\{L_n\} = E\{\sum_{(\sigma)} L_n(\sigma)\}.$$

By an argument similar to that leading to (5), we find

(8)
$$\sum_{(\sigma)} L_n(\sigma) = \sum_{A} 2(m-1)!(n-m)! |\vec{Z}_A|.$$

Thus,

$$\begin{split} E\{L_n\} &= \sum_{A} 2(m-1)!(n-m)!E\{|\vec{Z}_A|\}/n! \\ &= \sum_{m=1}^{n} 2(m-1)!(n-m)! \binom{n}{m} E\{|S_m|\}/n! \\ &= \sum_{m=1}^{n} E\{|S_m|\}/m. \end{split}$$

REFERENCES

- [1] Erik Sparre Andersen, "On the fluctuations of sums of random variables," Math-Scand., Vol. 1 (1953), pp. 263-285.
- [2] Frank Spitzer, "A combinatorial lemma and its application to probability theory,"

 Trans. Amer. Math. Soc., Vol. 82 (1956), pp. 323-339.
- [3] F. SPITZER AND H. WIDOM, "The circumference of a convex polygon," Proc. Amer. Math. Soc., Vol. 12 (1961), pp. 506-509.

A COMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STATISTIC¹

By T. CACOULLOS

Columbia University

Let X_1, \dots, X_n be independently distributed with the Poisson distribution truncated away from zero, i.e.,

(1)
$$P(x) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!}, \qquad x = 1, 2, \dots$$

Tate and Goen showed [2] that $T = \sum_{i=1}^{n} X_i$ has the distribution

³ By a limiting argument which we could also employ in this example Spitzer and Widom remove the condition that $Z_k = X_k + iY_k$ have a density.

Received January 9, 1961; revised February 17, 1961.

¹ This work was sponsored by an Office of Naval Research contract at Columbia University.

(2)
$$h(t) = \Pr[T = t] = \frac{\lambda^t n!}{(e^{\lambda} - 1)^n t!} \mathfrak{S}_t^n,$$

where \mathfrak{S}_t^n denotes the Stirling number of the second kind defined by

(3)
$$\mathfrak{S}_{t}^{n} = \frac{1}{n!} \sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} k^{t}, \quad t = n, n+1, \cdots,$$

$$\mathfrak{S}_{t}^{n} = 0, \quad t < n.$$

Their proof was based on characteristic functions, but a much simpler approach is available as follows:

We have

$$h(t) = \Pr\left[\sum_{i=1}^{n} X_i = t\right] = \sum_{(x_1, \dots, x_n)} \Pr[X_1 = x_1, \dots, X_n = x_n],$$

where the summation is over all ordered *n*-tuples (x_1, \dots, x_n) of integers such that $x_i \ge 1$ and $\sum_{i=1}^n x_i = t$. Hence, by (1), we get

$$(4) h(t) = \sum_{(x_1, \dots, x_n)} \frac{e^{-n\lambda} \lambda^t}{(1 - e^{-\lambda})^n} \frac{1}{\prod_{i=1}^n x_i!} = \frac{e^{-n\lambda} \lambda^t}{(1 - e^{-\lambda})^n t!} \sum_{(x_1, \dots, x_n)} \frac{t!}{\prod_{i=1}^n x_i!},$$

where the summation must be explained as above. We observe however, that

$$t!/\prod_{i=1}^n x_i!$$

is the number of partitions of a population of t elements into an ordered n-tuple of subpopulations of size x_1, \dots, x_n , respectively. Therefore, we conclude that

(5)
$$\sum_{(x_1,\dots,x_n)} t! / \prod_{i=1}^n x_i!$$

equals the number of possible ways in which t (distinguishable) balls can be placed in n cells (x_i being the number of balls in the i-th cell) so that no cell remains empty. Hence, we find that (5) (see, for example, p. 92 of [1]) is equal to

$$\sum_{k=1}^{n} \left(-1\right)^{n-k} \binom{n}{k} k^{t}.$$

Therefore, and by virtue of (4) and (3), (2) follows.

REFERENCES

- WILLIAM FELLER, An Introduction to Probability and Its Applications, Vol. 1, 2nd ed., John Wiley and Sons, New York, 1957.
- [2] R. F. TATE AND R. L. GOEN, "Minimum variance unbiased estimation for the truncated Poisson distribution," Ann. Math. Stat., Vol. 29 (1958), pp. 755-765.