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Once again we note that (5) is a universal relation valid for any sequence of
skew vectors.

ExaMPLE 3.

Expectation of L, . (Spitzer and Widom [8])%. It is easy to see that

(7) ME{La} = E{2 ) La(0)}.
By an argument similar to that leading to (5), we find
(8) Y0 Ln(o) = 2a2(m — 1)i(n — m)!|Z4.
Thus,
E{L.}

;2(171 — 1)I(n — m)E{|Z4]}/n!

32 2m — 1n — my1 (%) BUUS/m1

n

2 E{|Sal}/m.

m=1
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3 By a limiting argument which we could also employ in this example Spitzer and Widom
remove the condition that Z, = X + ¢Y have a density.
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Let Xy, -+, X, be independently distributed with the Poisson distribution
truncated away from zero, i.e.,

—\ z
(1) P(x)=le A x=1’2’ ..... .

— e al’
Tate and Goen showed [2] that T' = > 7, X, has the distribution
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where &;' denotes the Stirling number of the second kind defined by
n 1 " n—
ot =25 ()8 mmnie

s k=1

(3)
&r =0, t < m.
Their proof was based on characteristic functions, but a much simpler ap-

proach is available as follows:
We have

h(t) =Pr[Z;X,.= t]= >, PrXi=a, o, Xn = ),

(21, n)

where the summation is over all ordered n-tuples (x, - - -, x,) of integers such
that 2; = 1 and D~y x; = t. Hence, by (1), we get
—n\y ¢ —n\y ¢
A 1 e A il
h t = ¢ = .
(4) ( ) (zle:-.z,.) (1 bl 6—)\)" i ) (1 - e“")”t! (%1,- ’
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where the summation must be explained as above. We observe however, that
/1] !
=1

is the number of partitions of a population of ¢ elements into an ordered n-tuple

of subpopulations of size x;, - - -, 2., respectively. Therefore, we conclude that
(5) > t!/T] !
[CITRRRR Y] t=1

equals the number of possible ways in which ¢ (distinguishable) balls can be
placed in n cells (z; being the number of balls in the ¢-th cell) so that no cell re-
mains empty. Hence, we find that (5) (see, for example, p. 92 of [1]) is equal to

> (—1)* (Z) R

k=1
Therefore, and by virtue of (4) and (3), (2) follows.
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