ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR
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0. Summary. By definition (X, Y) is a bivariate Poisson vector if(X, ¥) =
(X* 4+ U, Y* 4+ U) where X*, Y* and U are three independent Poisson vari-
ables with, say, respective expectations a, b and d.

Let (X,, Y.)n = 1,2, .-, N be independent observations on a bivariate
Poisson vector (X, Y). It is shown that no test for the independence of X and
Y can be both boundary randomized similar in ¢ and b and also uniformly most
powerful. However, a test of the form

1 N
vo according as Z = Z1X"Y" % ko(N, s, t)
0 , "= '

given 8 = sand T = t, where,

N N
22X.=8, 2Y.=T,
n=1

n=1

(po(Z ‘ $, t)

is boundary randomized similar and locally most powerful. Using a lemma on
the convergence to a Normal probability distribution function of the conditional
probability distribution function of D aey (Xn — sN) (Y. — tN7') given
S = s and T = t, asymptotic formulae for the values of the ko(N, s, t) corre-
sponding to a given level of significance are derived. In addition, it is shown that
the asymptotic power of the test can be obtained from an approximétion to a
Normal probability function and that, in case instead of ko(N, s, t) its value
calculated from the asymptotic formulae is used, the modified test is asymp-
totically locally most powerful in the sense of Definition 2.

To extend the domain of application of this test, we replace U in the definition
of the bivariate Poisson vector by another random variable W also taking non-
negative integral values according to the probability function

(at)”

w!

NOX;

P{W=w|o 20} =f Pl
0
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where f(t) is any continuous probability function satisfying

3 ”e“" (at)® _ f‘” 3 {e_,, (at)®
=0 h 0o w!

8—0'0 w!

c=20,w=0,1,2, ---and [7 () df < . In this way a class of bivariate
probability functions is obtained such that for every member of this class also,
regarded as a probability function of the random vector (X, Y), the locally
most powerful boundary randomized similar test for the independence of the two
random variables X and Y is the same as the one given in the Poisson case.

f(t) dt

o=0

f(¢) dt

1. Introduction. In recent years the application of stochastic processes to
problems in biology, physics, etc., has created a demand for new tests of in-
dependence. The present study is an attempt in this direction.

Under the hypothesis of independence we assume that the random variables
X and Y are Poisson variables. The first problem is to define a bivariate Poisson
vector (X, Y) when the Poisson variables X and Y are not independent. In
Section 2 we give a definition of a bivariate Poisson vector. Equivalent defini-
tions of a bivariate Poisson vector have been given earlier by several authors
following different lines of attack (see Teicher [10], p. 2 and Logve [5], p. 84).
Also, we consider some characteristics of the bivariate Poisson vector. In particu-
lar it is shown that the two Poisson variables X and Y are independent if and
only if they are uncorrelated. In Section 3 a test for the independence of two
Poisson variables is obtained and furthermore, the properties of the test, already
enumerated in the Summary, are proved. Section 4 discusses the extension of
the domain of application of the test of independence for two Poisson variables.
An example is given for which the locally most powerful boundary randomized
similar test of independence is not of the form obtained in the case of a bivariate
Poisson vector.

2. The bivariate Poisson vector. The simplest definition of the bivariate
Poisson vector is
DerINITION 1. A bivariate random vector (X, Y) is a bivariate Poisson vector
if
(X,Y)=(X*4+U,Y*+ U),

where X*, Y* and U are independent Poisson variables.

If the Poisson variables X*, Y* and U have respective expectations a, b and
d, then the probability function of the bivariate Poisson vector (X, Y) is given
by
S (d/ab)"

_ — — —(a+b+d) z 1y
(1) PIX =2,¥ =y} =e b uz-——:o (@ — w)lul(ly —w)!’

where «4* = min(z, y). We shall refer to the system of parameters used in (1)
as the system (a, b, d). A direct consequence of Definition 1 is
Tueorem 1. If (X, Y) s a bivariate Poisson vector, then,
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(1) the marginals X and Y are Poisson variables;

(ii) the correlation between X and Y s nonnegative; and

(iii) the Poisson variables X and Y are independent if and only f the correla-
tton between X and Y 1s zero.

Let (X., Yu)n =1, 2,---, N be independent observations on a bivariate
Poisson vector (X, Y). Henceforth we shall use the notation

N N
x=(X1,Y,Xe, Ve, , X, Ys), S =ZIX T = Z;Y,,.
We also introduce the system (a, b, ¢), where d = abc. With this notation we
have

TaEOREM 2. For the system (a, b, ¢),

(1) the vector statistic (S, T') is a vector sufficient statistic for (a, b) whatever be
c; and

(12) #f ¢ = 0, the vector sufficient statistic (S, T') s also a vector complete suffi-
cient statistic for (a, b).

Proor. The prebability function of the bivariate Poisson vector (X, Y)
corresponding to the system (a, b, ¢) is easily obtained by substituting d = abc
in (1). Accordingly, the joint conditional probability function of (X, , Y)n =
1,2,---,N,given 8 =5, T = ¢, is

o T HnEey =

(4
Smg, Tt W=l uz=0 Xn — w)ul(Y, —uw!’

.

which is independent of a and b. This proves the sufficiency in (i) and (ii).

The proof of the completeness in (ii) depends on the fact that, when ¢ = 0,
the random variables S and T are independent Poisson variables with respective
expectations Na and Nb. Now consider

)

S 38 s, oo () (VD) _

s! t!

s=0

for all nonnegative @ and b. Viewing this series as a convergent power series in
a and b, we see that g(s, t) = 0 almost everywhere. This proves completeness
(see Lehmann and Scheffé [4], p. 311).

3. Test for independence. In this section we shall obtain a locally most power-
ful boundary randomized similar (LMP BRS) test for the independence of two
Poisson variables and prove the nonexistence of the uniformly most powerful
boundary randomized similar (UMP BRS) test. Also, we shall obtain the asymp-
totic distribution theory of the test statistic under the hypothesis and prove
certain asymptotic properties of the test. Finally we shall discuss an application
of this test.
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3.1. LMP BRS test for independence. In the system (a, b, ¢) the test for the
independence of two Poisson variables is equivalent to testing the hypothesis
¢ = 0 against the alternative ¢ > 0, whatever be a and b. Let (X, , Ya)n =
1,2, ---, N be independent observations on a bivariate Poisson vector (X, ¥)
with parameters (a, b, ¢). Finally, let po(x) and p.(x) denote the likelihood
functions respectively under the hypothesis and the alternative.

In order to get rid of the unknown (nuisance) parameters ¢ and b occurring
in po(x) and p.(x) we shall use instead of these the conditional likelihood func-
tions qo(x | s, t) and ¢.(x | s, t) respectively, when S = s, and T = ¢, which are
obtainable from (2). The geometrical picture is of surfaces for each set of values
of (8, T). To obtain the LMP similar test for the independence of X and Y,
the method is to find a test function ¢(x | s, t), 0 < o(x | s, ¢) = 1, defined on
the hypersurface given by S = s, T = ¢, such that whatever be a and b,

Z‘P(Xls)t)qo(x‘&t):a’ 0<a<l1

and
i) .
a—c‘ Z So(X | S, t)Qc(X ‘ S, t) Ic=0

is a maximum, where « is the preassigned size of the test. The summation is
over the sample points on the hypersurface given by S = s, T = t. The mean-
ing of this test function is that when x is observed on the hypersurface defined
by S = s, T = t, the hypothesis of independence is rejected with probability
o(x | s, t). This procedure to obtain the LMP similar test is valid due to the
conclusions obtained in Theorem 2 (also see Lehmann and Scheffé [4], pp. 311,
318). The solution to this problem is given (see Neyman and Pearson [7], p. 10)
by

1 i}

o(x|st) =<y according as 3 log ¢.(x | 8, t)]e=o % ky.
0

Substituting the expression for q.(x | s, t) from (2) and after simplification of
the required differentiation we obtain that the condition
i}

>
ac IOg Qc(x ‘ S, t) Ic=0 2 kl

is equivalent to the condition
¥ >
(3) Z = Z;X,,Y,, < ko = ko(N, s, 1).
In particular we notice that the test ¢(x | s, t) is a function of x through Z only.

Therefore, the test will be denoted by ¢o(Z |'s, t).
Since the sample space of the random variable Z is discrete, to obtain similar
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test it is sufficient to use randomization only on the critical value ko of Z; hence
the name BRS test. We remark also that with this agreement there is a one-to-
one correspondence between the BRS test and the BRS region. Henceforth we
shall use these terms interchangeably. Finally we have,

TueoreM 3. If (X,, Y.)n = 1,2, --- | N are independent observations on a
bivariate Poisson vector (X, Y) with parameters (a, b, ¢), then the LMP BRS
test for the independence of the two Poisson variables X and Y s given by the rule:

1
(4) oo(Z | s, t) = {70 according as Z % ko = ko(N, s, t).
0

The values of ko and v, are determined in such a way that

(5) 2 e(Z|s,)q(Z s, t) = .

3.2. Nonexistence of the UMP BRS test. Let ¢, and ¢ respectively be the
LMP BRS and the UMP BRS tests of size « for testing ¢ = 0 against ¢ > 0.
Let B(¢o ; @, b, ¢) and B(¢; a, b, c) respectively be the power of the tests ¢, and
¢ against the alternative (a, b, ¢). Knowing that (S, T) is a vector sufficient
statistic for (a, b) we can write for the test ¢o,

(6) 6(?0 y @, b7 C) = Zt B(‘PO S C)T(S, t; a, b; C)

where B(¢¥; s, t, ¢) is the conditional power of the test ¢ on the hypersurface
defined by S = s, T = t against the alternative ¢, and r(s, t; a, b, ¢) is the prob-
ability function of the vector statistic (S, T') when the parameters have the value
(@, b, ¢). Similarly for the test ¢ we have

(7) B((P, Qy b) C) = Z:t B(‘P; s, 1, C)T(S, t; a, b) C).

TurorReM 4. There exists no UMP BRS test for testing the independence of two
Poisson variables X and Y based on the independent observations (X, , Ya)n =

1, 2, .-+, N made on the bivarite Poisson vector (X, Y).
Proor. Since a UMP test is also a LMP test
d a
(8) 6—0'3(500 ;a,b,¢) | =0 = 5&3(% a,b, C)lc=o-

But we can rewrite (8) using (6) and (7) as follows:
) Xt: B (058 t) + Beoss, t,0)g(s, t; a, b)lr(s, ¢ a, b, 0)
= Z {Bl(‘P; S, t) + B(‘P; S, ¢ 0)9(8, t; a, b)}r(s) t; a, b) 0)

s,

where

BI(Eb; S, t) = 620 B(Kba 8, 8, c) |c=0 )
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and
3
g(s,t;a,b) = % log r(s, t; @, b, €) Jemo -

Furthermore, since the tests ¢y and ¢ have Neyman structure, we have, for all
possible values of s and ¢,

ﬁ(‘PO O 0) = /3(‘9; s, ¢, 0) = a.
Therefore, we obtain from (9) that

DB (08, t) — Ble;s, ir(s, t; a,b,0) = 0.

8,t

This fact, together with the completeness of the vector sufficient statistic (S, T')
for (@, b) whenever ¢ = 0, proved in Theorem 2(ii), implies that

h(“’o y @58, t) = B,(§00 HE t) - B,(‘P; S, t) =0

almost everywhere. In fact, more is true, viz., ¢y = ¢ almost everywhere. The
proof is by contradiction. Simple calculation shows that

(10)  h(eo, ;8 t) = A7{ 2 @P(ZA — B) — X ¢P(ZA — B)},

where the summation is taken over the sample points on the hypersurface de-
fined by S = s, T = tand

N N
Z=>XY,, P=]II(xXv.)?" A= > P
n=1

ne=l 8=3s, T'=t

and
B= > PZ.

8=8, T=t
Using the form of the test oo given in (4) we obtain from (10) that
h(eo, ¢;8,1) > A (kA — B) (2 P — 2_¢P) =0

which contradicts (8). Hence ¢y = ¢ almost everywhere.

Therefore, to show that there exists no UMP BRS test it is enough to show
that ¢o is not a UMP BRS test. We will show this numerically. For a specific
alternative let b = b, a — 0 and ¢ — « in such a manner that in limit ¢ = 0
and abc = d. Then using Definition 1 we can see that X, and Y, — X, are inde-
pendent Poisson variables with respective expectations d and b. The most
powerful conditional test against the alternative described above when S = s,
T = tis given by

1 N
elx|st) = {7 according as [ Y. 4 (YV. — X)) 4™ % k(N, s, t).
0 n=1
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Let N = 2,s = 3,t = 4and @ = % Then the test po(x | 3, 4) is 1 or 0 according
as x = (X, Y1; X,, Y.) belongs to the set {(3, 4; 0, 0), (0, 0; 3, 4), (3, 3;
0, 1), (0, 1; 3, 3), (2, 4; 1, 0), (1, 0; 2, 4)} or not. Also the test ¢(x | 3, 4) is
such that it is equal to 1 if x belongs to the set {(3, 4; 0, 0), (0, 0; 3, 4)}, it is
equal to v = 1% if x belongs to the set {(3, 3; 0, 1), (0, 1; 3, 3), (2, 3; 1, 1),
(1, 1; 2, 3)} and it is equal to zero for all other points on the hypersurface de-
fined by s = 3, { = 4. We can easily check that the size of both these tests is
%. Finally, simple calculation shows that the power of the tests ¢y and ¢ respec-
tively are 3¢ and £, showing that the test ¢, is not the UMP test. This com-
pletes the proof of the theorem.

3.3. Asymptotic distribution of the test statistic under the hypothesis. Define

N
Sy = N (X — a),
n=1

N
Ty = N‘*Zl(yn —b)
and

Iy = N"*f}l (Xn — a)(Y. — b).

It follows from the central limit theorem for vectors (see Cramér [1], p. 316)
that if N — o then

( 11 ) Ee'iuZN+'i€S1v+'i1;TN — e—%(abu2+a£2+bﬂ2) — ‘Eeiuzm+iis°° +1Iq2'°°,

for all u, & %, where new random variables Z, , S, and T, are so defined that
the equality sign holds. Using the notation,

E(eiuzk l Sy = S, T, = t) = wk(u, S, t)
we obtain by rewriting (11)

(12) fe"e‘ﬁ”'w”(u, s,t) dPy(s,t) — fe“”i”'ww(u, s, 1) dPx(s, 1)

for all u, £ n, where Pi(s, t) is the probability distribution function of the bi-
variate random vector (S;, T:). Furthermore, if we define

@, 4) = [ wlu,s,1) dPus,0),
then clearly Qi(u, A) is a complex measure satisfying
supe,4|Qu(u, A)| = 1 for k= ,1,2,---.
With this notation (12) can be written as
(13) feiaﬁ"t dQy(u, s, t) — fe“’“"t dQw(u, s, t)

for all u, &, 1.
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If f(s, t) is any bounded continuous function (see LeCam [3], p. 28) then
(13) is equivalent to saying that

ff(S, t) dQn(u, s, t) — ff(s, t) dQw(u, s, t)
for all w. Finally, reintroducing wi(u, s, t) we obtain that
(14) ff(s, twy(u, s, t) dPy(u, s, t)—-)ff(s, t) wolu, s, 1) dPo(u, s, t)

for all u. This indicates that wx(u, s, t) might tend pointwise to we(u, s, t).
Such is the case as will follow from Lemmas 1 and 2.

LemMA 1. If the distribution function of the random vector (Zy, Sy, Tx) con-
verges to the distribution function of the random vector (Z , Se y T'wo) when N — oo,
and if the family of the condiitonal characteristic functions {wx(u, s, t)} s uniformly
bounded and is equicontinuous for all u, s, t and uniformly so for u, s, t bounded
then,

wn(u, 8, t) = ws(u, s, t)

as N — o for all u, s, t and uniformly so for u, s, t bounded.
Proor. According to Ascoli’s theorem (see Graves [2], p. 122) we can find a
subsequence wx,(u, s, t) and a continuous w(wu, s, ¢t) such that

(15) ka(uy S, t) - w(ur S t)

for all u, s, t and uniformly so for u, s, { bounded. Replacing N by N in (14) we
obtain

16) [ 15, D, 5,0) APyl 1) = [ 15, 0ty ,1) dPuls, 1)
for all u. Let us consider the equality

[ 75, D, 5,) dPry(s,0) = [ $5, ), 5,8) dPus, 1)
(17) + [ £, 000, 5,0) AP, (5, 8) — Puls, )
+ [ 15,0 om0 — wlu, 5,0} APy, (5,0).

Using (15) and the fact that f(s, t) is bounded, we can see that

[ 75,0 oy, 8,0) = w(u, 5,1} dPxy(s, 1) —0

for all w when N, — . Also due to the Helley-Bray theorem (see Lodve [6],
p. 182), since P, (s, t) — Py(s, t) for all values of s, ¢,
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[ 165, 0w, 1) i P, (s, ) = Puls, )} 0

for all v when Ny — «. The above two conclusions, together with (17) implies
that

(18) [ (s, Dom(u,5,8) dPy(s,0) = [ (5, D, 1) dPuls, 1),
for all u. Comparing (16) and (18) we obtain that
[ 165, 0000, ,1) dPuls, ) = [ (s)anlu, s,8) aPuls, 0

for all values of 4 which implies that
(19) w(U, 8, 1) = we(u, s, t) almost everywhere.

The “almost everywhere”” may be dropped since the functions under considera-
tion are continuous. This proves that every convergent subsequence of
{wn(u, s, t)} has the same limit. But more is true, viz.,

(20) wn(u, 8, t) — w(u, s, t)
for all u, s, ¢t and uniformly so for , s, t bounded. Suppose that
wx(u, s, t) + w(u, s, t).
Then there exists subsequences N;» and N» such that
ony (U, 8, ) — o’ (u, s, t) = lim sup wx(u, s, t)
and
oy (U, 8, 1) — o”(u, s, t) = lim inf wy(u, s, t)

for all u, s, ¢ and uniformly so for u, s, f bounded, where o’(u, s, t) and w”(u, s, t)
are not equal. In the proof given above if we replace the sequence N, by the
sequence N, we obtain corresponding to (19) that

o' (u, s, t) = w(u, s,t)
for all u, s, t and similarly we obtain that
wl,(ul 87 t) = w(“’ s’ t)’

contradicting our assumption that o’'(u, s, t) and w”(u, s, t) are not equal.
Therefore, (20) is true. This completes the proof of Lemma 1.

LeMMA 2. The family {wx(u, s, t)} s uniformly bounded and s equicontinuous
Sfor all u, s, t and uniformly so for u, s, t bounded.

Proor. Since wy(u, s, £) are conditional characteristic functions it follows that

[wN(uy S, t)l é L.
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We remark that if Sy = s, then the X,’s, n = 1,2, ---, N are N-nomially
distributed with probability of falling in any one of the N classes being N
and having parameter k = N's + Na which is equal to the number of trials.
Similarly, if Tx = ¢, thenthe Y,’s,n = 1,2, ---, N are N-nomially distributed
with the same probability of falling in any one of the N classes and with parame-
ter | = N + Nb. If s and ¢ are changed to s’ and ¢ respectively, such that
s’ > sand ¢’ > ¢, then k and [ will change respectively to say k + &k’ and I + I
and correspondingly X, and Y, will change to X, + X% and ¥, + Y. where
X, and Y, are completely independent N-nomials of the above type but with
respective parameters k' and . Let

N
Zn(k, 1) = N‘*Z1 (X, — a)(Ya — b).
It is easy to see that
Qv = Zn(k + K, 1+ V) — Zn(k, 1)

N N
= N‘*ZI(X,, + X, —a)(Ya+ Y. —b) — N“*Z1 (Xn — a)(Yh — b)

= N‘*g(Xn —a)Y, + N”*gIXL(Yn —b) + N'*iX;Y;.
In order to prove the required equicontinuity, we shall first show that for an
arbitrary ¢ > 0, there exists an € (e, s, t, u, a, b) such that if
§f —s<é€ and V' —t<¢
then for all N
|Q¥| < e
where
|Qv| = | E{e™* P [Be™™ — 1] | k, K, 1,1}
< | E{[e™Y — 1] |k, ¥, 1, I}

1
<|E {[z’uQN — 34 Qy f "1 — §) dz]
0

< |ul |E{Qn | K, K, LUY + [ul’ | E{QV | K, K, L, T'}].

kK, l’} |

By direct calculation it can be shown that
E{Qu |k, k', LV} = Nt — st)
and
E(Qx |k, K, 1, 1} = (N — N Hb(s' — s) + a(t' — 1)}
+ (N — 1)N('t — st) + N7'(s't" — st).?
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Therefore, with a suitable choice of ¢ = €(¢, s, ¢, u, a, b)
|Q%| < % e forall N.
Ie., in terms of w(w, s, t) we have shown that if
§ —s<é and ' —1 <€,
then
lwn(u, ', t') — wn(u, s, t)| = 2e for all N.
For any two points (s, t1) and (s, f:) satisfying the conditions
st — 8|l < € and | — b < €
we consider an auxillary point
(s, t) = (min{sy, s}, minft;, ts})
and then using the triangular inequality we obtain that
lon(u, $1, ) — wn(u, s2, )| < |ox(w, s1,4) — wn(u, s, t)|

+ ‘wN(u’ S, t) - wN(u, S2, t2)| é%f -+ '12‘6 = €

819

for all N.

This completes the proof of the equicontinuity of {wx(w, s, t)} for all u, s, t.
It is easy to see that for bounded values of u, s, ¢ the family {wy(u, s, ¢)} is uni-
formly continuous. The above type of reasoning was necessary to prove equi-
continuity because only the sum of the multinomials with the same number of

events is again a multinomial.

Therefore, in view of these lemmas, the needed asymptotic characteristic

function is we(u, s; t). We can easily check that

wolt, 8,t) = exp{—abu’/2},

which is a characteristic function of a Normal variable with mean zero and vari-
ance ab. Finally, denoting the probability law of a random variable W by £(W)

we can summarize the results obtained above as follows:

L{(ab)Zy | Sy = s, Ty = 1}

= ;:{(Nab)"%i (X, —a)(Y. —b) | i (X, —a) = Nis,

Zi)l(yn —b) = N - N(0, 1)

for all values of s, ¢ and uniformly so for s, ¢ bounded.

But to make use of this result we have to know the values of a and b. We recall

that

M=

> X,=NX and Y. = NY.

n=1 n=1
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Using Slutsky’s theorem (see Cramér[1], p. 254) it follows that the sequence

{(NXY)—%EI(X” — X) (Yo —7) | EI(X,, —a) =

i(y,, —b) = N}

also have the same limiting distribution N (0, 1), for all values of s, { and for
s, t bounded the convergence is uniform (see LeCam [3], p. 24) In what follows
we shall use the notation

Iy = (NXT)" i_ X, — X)(Ya — 7).

This gives the following
THEOREM 5. When N — o,

£(Zy|s, t) — N(0, 1)

for all s, t and the convergence is uniform for s, t bounded.

In order to use the test of independence developed in Section 3.1 we must find
first the values of ko and v, satisfying (5). In the absence of the knowledge of
the exact distribution function of Z we propose to use instead the test statistic
Zy and its limiting distribution obtained above. For a given level of significance
a, first we find the value of k such that

k
oyt [ =

and then the modified test is given by the rule:

1
#(Zy|st) = { accordingas Zy 2 k
0

It is important to note that the condition of equicontinuity in the proof of
Theorem 5 is not only sufficient but is also necessary in a certain sense. In
applications, s and ¢ are in fact functions of N say sy, tv, which will tend to s
and ¢ when N — . In the calculation of probabilities, ete., though we propose
to use the asymptotic distribution but instead of s and ¢ we have to use the values
sy and iy respectively. Equicontinuity will ensure us that the values calculated
with this substitution do not differ too much from the true values.

3.4. Asymptotic power function. The power of the modified test against the
alternative (a, b, c) is

8(a, b, ¢) = fP{Z,, > I |s, &, a*, b* d} dPy(s, t | a*, b¥, d)

where
a* = a + d, b* =b 4+ d, = abe.
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It is interesting to note ahead that we can compute the asymptotic power of
the modified test without using the conditional probability distribution func-
tion of Zy given Sy = s, Ty = t. If we define

N

2 (X — a*) (Y — b%) — d},

n=1

1

Zy =N

then it follows from the central limit theorem that under the alternative (a, b, ¢)>
(21) £(Zy) — N(0, o)
where o> = a*b* + d* + d. The decisive step now is to be able to represent
7 in terms of Zy . It is easy to see that
N
NFY (Xu = X)(Ya = V)
n=1
N

(22) =N (X —a*) — (X = aH(Ta = b = (¥ = b))

= Z¥ + dN' — (¥ — b*) 8§ — (X — a*)Ty + N 'SxTx

where

v = N'%i:lo(,, — a*) = Sy — dN* = s — dN?
and similarly,

v o= N‘*i(n — b*) = Ty — dN* = t — dN*.

Under the alternative (a, b, ¢) when N — « we have,
X —a*—0, VY —b*—0
in probability. Furthermore, since s and ¢ are finite constants we have from (22)
that

=
where,
ho= (Y —b*) dN! + (X — a*) dN} — sd — td + d'N.
Also
(XT) = {(a + sNH (b + tNH}E ~ (ab)’.
Finally we obtain
Zy ~ (ab)"H(Z% + dN* + h),

and therefore, asymptotically,
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8(a, b, ¢) ~ f PIZE + AN 4 b > k(ab)} | s, ¢, a*, b*, d] dPx(s, ¢, a*, b*, d)

0

= PIZ3 + dN* + b > k(ab)* | a*, b*, d] = (2r)™} f g

{k(ab) 3—dN}—h}o—1

It is easily seen that 8(a, b, ¢) — 1 as N — o for fixed alternative (a, b, c).
When N — «, our interest is only in the values of ¢ which are in the neighbor-
hood of ¢ = 0. If the convergence in (21) should hold also when ¢ — 0, it is
necessary to have uniform convergence of the law in ¢ for given fixed values of
a and b. A sufficient condition for this uniformity of the convergence is (see
Parzen [9], p. 38)

B{(X. — a*)(YVn — b%) —d}' < M
where M is independent of ¢. The existence of M can be easily verified. If in
particular
NP 5 y(ab)™ as N — o
we obtain that .
{k(ab) ™ — dN? — B} — {k(ab)} — v} (ab)™* = & — y(ab)™*.

We summarized the results proved in this section in
TueorEM 6. Let (X,, Y.)n = 1, 2, -+, N be independent observations on a
bivariate Poisson vector (X, Y). Then if the test

1
(23) ¢ =aZn|st) = { according as Zy 2 k
0

is used for the independence of the Poisson variables X and Y ; where k is chosen
such that

(2#)’*]1; e gy = a

and o 1s the asymptotic size of the test, then the asymptotic power of the test for the
alternative (a, b, ¢) is given by
B(a, b,c) = (2r)7? e du.
v {k(ab) }—dN}—n}o—1
Furthermore, if ¢cN* — y(ab)™ as N — o, the limiting asymptotic power of the
test is given by

)
(2r)7 e du.
k—v (ab) —%

'8.5. Asymptotically LMP BRS test. Since the small sample distribution theory
of the test statistic is not known, in practice we shall use, as suggested earlier,
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the asymptotic theory. If such is the case, we are in fact approximating a LMP
BRS test. It is of interest to know whether this approximation of the LMP
BRS test is also asymptotically LMP BRS test in the sense of definition 2.

The LMP BRS test of preassigned level of significance a was given in (4) in
terms of Z. In terms of the random variable Zy the test is:

1
& =o*Zy| X, 7) = {fy* according as Zy = k*(N, X, V) = k*
0

and whatever be a and b, the constants v* and k* are chosen to satisfy

a = Z go*(Z)p'ZN(Z; a, b: 0)’

where pz,(2; a, b, ¢) is the probability function of Zy for the system (a, b, c).
The power of this test is

Bule*;a, b, ¢} = D2 0*(2)pay(2; a, b, c).

The corresponding asymptotic test is given in (23) and it has the size
Gy = Z @o(Z)p’ZN(Z; a, b, 0)

and for the alternative (a, b, ¢) it has the power
Bx{®; a,b, ¢} = 2 3(2)psn(z; 0, b, c).
DeriNtTiON 2. The test @ is an asymptotically LMP BRS test of size o if
(l) ay — a
and

@) ale,8) = 8 {2 Bulss 0,8, 0]

—0,

- {(—% Bv(e*; a, b, C)}

c=0

C==

when N — o, whatever be a and b.
THEOREM 7. The test & is asymptotically LMP BRS iest of size a.
Proor. To prove (i) consider

oy — o = Ig {#(2) — ¢*(2)}p2x(2; 0, b, 0)]
< 2 Ik, kn)pzy(2; a, b, 0),

where I(k, ky) is the indicator of the closed interval with end points k and ky .
Let the probability distribution function of Zy and Z., be denoted by Fy and
F, respectively where we know already that F. is N(0, 1) and hence is con-
tinuous and differentiable. Therefore, given ¢ there exists by Theorem 5 an
N (e) such that
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IFN'—‘F’ooI < €,

for all N = N(e¢). This implies that there is an # depending on € and k such
that » approaches zero as e approaches zero and

ey — k| < n(e, k).
for N = N (e). Also it is clear that
k — n = ky £ k4 .

Therefore,

]
2

I
2
IIA

Z I(k - k + n)pZN(z; a, b: 0)

Fu(k + 1) — Fu(k — n).
Folbk +n) + e —Fu(k — 1) + ¢
2Fu(k') + 1Fu(k”) + 2¢

where %’ is a suitable point between k and k + 7 and similarly k” is between
k and k — 7. Finally let ¢ — 0, then it follows also that 7 — 0, hence using the
finiteness of Fo(k’) and Fu(k”), (i) is proved.

To prove (ii) let us consider

Al

I

1

Ay(a, b) < N? {Z | @0(2) — soif(z)l%log pin(2; a, b, ¢) lomo py(2; @, b, 0);

=N {Z | @0(2) — @5 (2) | [?N;:l (X, Y, — “b)] pzn(2; g, b’o)}‘

Therefore, using Schwartz’ inequality
Av(a,b) £ (a®d + ab® + ab) {2 1&e(2) — o5 (2)|pzy(2; @, b,0)} — 0

as N — » because of (i) and the boundedness of (a’b + ab® 4+ ab). Hence
(ii) is also satisfied. This completes the proof of the theorem.

3.6. Applications. This testing problem arose in connection with the work on
beetles which is being conducted by Professor Park, etc. (see Neyman, Park,
Scott [8], p. 75) at The University of Chicago.

Suppose that a square tray, in which a thin layer of flour is spread, is divided
into subsquares of the same size by drawing hypothetical lines parallel to the
sides of the square tray. A very large number of beetles were kept in it and
after sufficient time had elapsed, the number of male and female beetles in each
subsquare was noted. The problem was to study if in the tray, the distribution
of male and female beetles was independent of one another.

If we assume that each pair of beetles distributes itself independently of the
other pair and uniformly so in the tray, then the stochastic derivation of the
bivariate Poisson vector (see Lo&ve [5], p. 84) shows that it is applicable to the
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present situation. Several similar situations could be easily conceived where
the bivariate Poisson vector is applicable. '

4, A class of bivariate random vectors and test of independence. In this sec-
tion we describe a class of bivariate probability functions such that for any of
these bivariate probability functions regarded as the joint probability function
of the random variables X and Y, the LMP BRS test for the independence of
X and Y is the same as the one obtained in the case of bivariate Poisson vector.
Also, an example is given for which the LMP BRS test of independence is not
of that form.

4.1. A class of bivariate random vectors. In Definition 1 the random variable
Z is a Poisson Variable with expectation d. Let f(f) be a continuous probability
function and define a random variable W taking nonnegative integral values by
the probability law

PW = wl|oz 0} = owe""-i—th)d(‘z)

g

[ a

w

(24)

where ¢ plays the role of a scale parameter. In particular, if ¢ = 0, the random
variable W is degenerate at zero. This leads to

DerinttioN 3. The bivariate random vector (X, Y) is a bivariate Poisson*
vector with respect to the continuous probability function f(¢) if (X, Y) =
(X* 4+ W, Y* + W) where X* and Y* are two independent Poisson variables
and W is a random variable independent of X* and Y* and having the prob-
ability function (24).

Using the above definition, we can easily verify that the random variables
X and Y are independent if and only if ¢ = 0 and in case they are independent
each is a Poisson variable. If ¢ > 0, the random variables X and Y are dependent
and moreover the marginals X and Y are no longer necessarily distributed as
Poisson variables.

42. Test of independence. Under the hypothesis of independence ¢ = 0 and
the random variables X and Y are independent Poisson variables with respective
expectations a and b. Furthermore, if (X, , Ya)n = 1,2, --- , N are independent
observations on (X, Y), then (S, T), is a vector boundedly complete sufficient
statistic for (a, b) as shown in Theorem 2(i). Therefore, all similar tests for this
problem have Neyman structure. The conditional LMP BRS test for inde-
pendence is given by

1
e(x|s t) = {'y according as
0
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n=1 w=0

i} a—b Xnp¥n Lt (ab)™*
(25) 37{‘%116 KA X, = w)l wi(¥s — W)l
: fo ) e (at)f(t) dt U_o} 2 k(s t, N),

where 8 = 8, T = ¢t and W5 = min (X,, ¥,.). If we assume that f(¢) is such

that
@ L[ ipa| -f %{e 0" M} £0) dt

fore 20,n=0,1,2,--- and

(27) f tf(t) dt < oo
then the condition (25) can be reduced to the equivalent form
N
Z = 3 XoVn =k = ka(s, £).
n=l < !

TaEOREM 9. Let (X, , Yu)n = 1, 2, , N be independent observations on the
bivariate Poisson* vector (X, Y) with respect to the probabzlzty function f(¢) satisfy-
ing the conditions (26) and (27); then the LMP BRS fest for the independence
of X and Y s given by

1
e(Z|s, t) = {'yo according as Z % ko = k(N, s, t).
0

Therefore, the theory developed in Section 3.3 is applicable in these situations
also.

4.3, Test of independence which is not a function of Do XY,
In Definition 3 instead of the probability function f(¢) let us assume that ¢ = 0
and 1/¢ with respective probabilities 1 — p and p. Then the probability function
of (X, Y) is given by

P{X=x,Y=y|a,b,p}

_ —a—p QD ! a"b*(ab)™
= (1 = pe ly'+pz (x — w)!lwl(ly —w)!

Also X and Y are independent if and only if p = 0.
In this case the LMP BRS test for p = 0 against p > 0 is given by the rule:

1 ‘

‘ X, Y,! =

¢(x | s, t) = l'y according as ”ZEI ;;0 X ) oV, = )] < k(N, s, t).
0

Clearly this test of independence is not a function of > X.Y..
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