SOME ASPECTS OF THE EMIGRATION-IMMIGRATION PROCESS™
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1. Introduction and summary. A multivariate emigration-immigration or a
Poisson-Markoff process (Bartlett [2], Ruben and Rothschild [9], Patil [8]; cf.
also Bartlett [3], p. 78) is a vector stochastic process n(t) = (ni(t), na(f), -- -,
nm(t)) in continuous time ¢ which is described by the following proper-
ties: There exists a complex of non-negative time-independent parameters,
Ae(r,8=1,2, -+ ,m,r £ 8),\F and p,(r = 1,2, --- , m) such that the proba-
bility of a change of n(¢) to

(na(t), -+, me(t) — 1, -+, me(t) + 1, Bega(d), - -+, nm(2))
in the time interval (¢, ¢t 4+ k) is Asn.(£)h + o(h), for h sufficiently small; the
probability of a change of n(t) to
(), <« ,me(t) + 1, -, 0,(8) — 1, nia(t), -+ , nm(2))
is Aesms(t)h 4+ o(h) ; the probability of a change of n(¢) to
(m(®), -+, ne() — 1, -+, mm(?))
is A¥n,(t)h + o(h) ; the probability of a change of n(t) to
(ma(t), -+ ,n(t) + 1, -+, nm(t))
is uh + o(h); the probability of no change is
1—{2m+ 20+ 2‘: M) () }h + o(h).

Finally, it is assumed that the above probabilities are independent of the past
realization of the process. It is readily seen that these assumptions imply that
the process is Markovian and strongly stationary.

It will be convenient for our purposes to visualize the Poisson-Markoff process
more concretely in the following manner: Consider a system consisting of m + 1
states {E1, E;, - -+ , Em, E*} such that at any point in time an “individual” is
in one of these m + 1 states. Thus, {E:, - -- , E,} may represent m stages of a
certain disease while E* represents the healthy state.” A population of individuals
is being studied such that the number of individuals in E* at any instant of time
is effectively infinite. Let A,h + o(h) be the probability that an individual in
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120 HAROLD RUBEN

state E, at time ¢ shall be in E, at time ¢ 4+ h, A*h + o(h) the probability that
anindividual in E, at time ¢ shall be in E* at time ¢ + h, while uh 4 o(h) is the
probability that precisely one of the (infinitely many) individuals in E* at time
t shall be in E, at time ¢ + h; further, assume that the probability of more than
one interchange (of an individual from any state to any other state) in.(¢, ¢ + h)
is o(h) and that there is no interaction between the individuals. Let n.(f) be the
number of individuals in E, at time ¢{. Then clearly the various probabilities
enumerated in the first paragraph are precisely the probabilities of the various
transitions of n(¢) in the infinitesimal interval (¢, ¢ 4+ k). In this connexion, it
should be noted that the emigration-immigration process is a natural generaliza-
tion of the time-homogeneous birth and death process, in the sense that when
m = 1, the former process reduces to a birth and death process, with A* and u
representing the death and birth parameters. For m > 1, the \’s and u’s may
be regarded as the instantaneous mean interaction-rates between the states
E,,: - ,En, E*.

Since, as remarked previously, the process {n(¢)} is stationary, the expectation
of n(¢) isindependent of ¢. Let, then,v = (v, -+ - , v») = En(t). Thenthe vector
v together with the interaction parameters ((2.1) and (2.2)) serve to specify the
system completely. (Observe that v is functionally related to the interaction
parameters through (2.2).) From (2.8), v may also be regarded as a limiting
vector (t — ) which represents the “steady state’ configuration of the system
in the specific stochastic equilibrium sense implied by this equation (a configura-
tion is defined by the vector n(¢)), while the parameters determine the approach
of the system, again in a probabilistic sense, from an initial configuration to the
equilibrium configuration.

In Section 2, some basic properties of the Poisson-Markoff process are listed,
including the mean lifetime and recurrence time of any configuration in both
discrete and continuous time. Section 3 contains the main result of this paper,
viz., the joint distribution of a finite set of observations of n(¢) in discrete time
from the point of view of the joint factorial moment generating function
(f.m.gf.)® of this distribution. These results are of intrinsic theoretical interest
‘and will be utilized in a subsequent paper dealing with the estimation of the
fundamental interaction parameter in a singly-infinite class of emigration-
immigration processes.

2. Some basis properties of the emigration-immigration process. Define the
m X m matrix A = ((A.‘j)) by

Aij = =N\, J 1

21 .,
(2.1) )\?'*‘I;Aih J=1

(A may be regarded as a fundamental probability interaction-rate matrix for

$ The f.m.g.f. is here the most convenient transform. Other transforms, such as the
probability generating and characteristic functions, can, of course, be obtained directly
from the f.m.g.f. by simple transformations of the dummy variables.
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the process), and the row-vector v by
(2.2) ¥ = vA.

(It will be shown presently that v as defined by (2.2) is consistent with its pre-
vious definition as the expected value of En(t).)
Then the conditional f.m.g.f. of n(#) for given n(4), & < ta, is

#(aa|20)) = B{IT (1 + e | (1)}
23) = )
= exp [v(I — P(t; — tl))“;]g (1 + pi(ts — t) )™},

where @2 = (an, am, ***, azm), I is the unit m X m matrix, pj(ta — &) is the
Jth row-vector of the m X m matrix P(; — #) = ((Pij(t2 — t))) which is
defined as follows:

(24) P(r) = ®K(7)®.

Here © is the normalizing matrix which reduces A to diagonal, canonical form,

while K(7) is the diagonal matrix with diagonal elements exp(—x7), ---,

exp(—«m7), the k; being the eigenvalues of A ; these m eigenvalues are all real
"and positive.

On letting &, — « in (2.3), the f.m.g.f. of n(#) is obtained as exp(vaz), i.e.
the ni(t,) (¢ = 1,2, -+, m) are independent Poisson variables with means »; .
Hence on multiplying ¢(ez | n(#)) by [[r1(1 + a1:)™“? and taking expecta-
tions with respect to n(¢;) the joint f.m.g.f. of n(¢;) and n(%,) is obtained as

¥(o, @) = E{'I:.I (1 + az)™® :,[1 1+ azj)"i(u)}

= exp [v(ai + oz + APt — ti)es)),

where @y = (au, a1z, -+, a1m) and A, is the m X m diagonal matrix with
diagonal elements ay , a2, - - , A1m -

From (2.5), the expectation and autocovariance function of the process are
obtained as

(2.5)

(2.6) En(t) =
and
(2.7) E{(n(t) — v)(n(t + 7) — )’} = NP(7),

where N is the m X m diagonal matrix with diagonal elements v, vz, -+ , ¥m .
In particular, if the »; are equal (N = »I, where » is the common value of the »;),
the autocorrelation function of the process is P(r).

In view of the physical interpretation of v provided by (2.6) (v was originally
defined quite formally in terms of the fundamental interaction parameters
through (2.2)), (2.2) can in its turn be interpreted as a relation which reflects
the property of statistical equilibrium; specifically, in terms of the example of a
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system of individuals discussed in the introductory section, (2.2) shows
that the instantaneous mean rate of entry of individuals into the state
Ei((i=1,2,---,m) at time ¢ is equal to the instantaneous mean rate of exit of
individuals from E; for all {. Again, from the Markovian nature of the process
and with the aid of (2.3), we have, forf, < s < -+ < &,

E{(n(t:) — v) |n(t), n(t), -+, n(tk)}
= E{(n(t) — v) [n(ti-)} = ((ti-1) — »)P(tx — ),

i.e., the regression of n(#) on n(#-—;) is linear. Equation (2.8) indicates that
P(-) may be interpreted further as a mean subsidence matrix, inasmuch as it
determines the manner in which an arbitrary initial configuration subsides
towards the equilibrium or mean configuration with lapse of time. (Observe that
lim;.., P(¢) = 0.)

The mean lifetimes and recurrence times of the process n(¢) in both discrete
and continuous time may be obtained from known formulae. In fact, (see e.g.,
Bartlett [3], p. 182 and Kac [5], p. 171) the mean lifetime and mean recurrence
time, T,(n) and ®,(n), respectively, of a specified configuration n = n(¢) with

(2.8)

t=-,—27,—10,7, 27, ---, are given by

(29) T.(n) = 7[1 — p.(n|n)]”

and

(2.10) ®.(n) = (1 — p(n))[p(n)(1 — p.(n|n))]7,

where p(n) is the probability of n (the product of m Poisson probabilities with
parameters v, , v2, - , ¥m), while p,(n | n) is the transition probability from n

to n in a time interval of width 7. The latter probability may be expressed as a
complicated series via the conditional probability generating function directly
implied by (2.3) (such a series is a generalization of the series obtained by
Patankar [7] for m = 1; see also Aitken [1], pp. 94-95). However, this will not
be obtained here since the mean lifetime and recurrence time of the process n(¢)
in continuous time (— o < ¢ < ) are of greater interest, these being obtained
by letting + — 0 in (2.9) and (2.10), respectively. Thus

(211) To(m) = lim T(n) = [Z, pe + Z:n,xt + Z#Z Nohre]
and

m —1
(212) @@ = lm6,(n) = Tw) {[I_I e"-'vz"/n.-] - 1}.

We conclude with some additional properties of the matrix P(-). Observe first
that P(-) satisfies the functional relationship

(2.13) Pt + &) = P(t)P(%)
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for all {; and ¢, , whence for any polynomial U( -) with scalar coefficients
(2.14) U(P(7)) = @'U(K(7))®,
(2.15) [U@PE)]™ = 67[UK(r))]®,

and, more generally, for any non-singular rational function V(-) with scalar
coefficients,

(2.16) V(P(r)) = @'V(P(r))®,
while for any non-singular rational functions V(- ), V() with scalar coefficients,
(2.17)  Vi(P(7)) Va(P(7)) = @7 Vy(K (7)) Va(K(7))® = Vy(P(7)) Vo(P(7)).

Finally, the trace of V(P(7)), tr [V(P(7))], and the determinant of V(P(7))
are given by

(2.18) tr [V(P(7))] = é V(e ™),
(2.19) 1 V@) Il = I V(™).

It will be noted that by (2.16) any element of V(P(7)) is obtained by sub-
stituting V(exp(— «ir)), ¢ = 1, 2, --- | m, in the corresponding element of
P(7). From (2.17), a similar rule holds for the general element of the product
matrix Vi(P(7)) Va(P(7)).

3. The joint f.m.g.f. and the moments of a finite set of observations on n(¢).
We shall prove the following

TaeoreM. Let n(f;) = n; be k consecutive observations of n(t) with
<t < --- < t.Then the joint fm.gf. of m; ,mg, - -+ , Mt 18

k
1/((11, Qg, *°°, ak) = exp l:v { Z Z A'n P(t‘vz - t‘n)A’mP(t‘n - t‘Yz)

r=1 7

3.1)
te A'Yr—z P(t‘Yr—-l - t‘Yr—Z)A’Yr—l P(t‘vr - t‘h-_l)“:h-}] ’
where «; = (a1, aiz, *** , Aim), A; 18 the m X m diagonal matriz with diagonal
elements Qily A2, *°° 5y Oim, 1 = 1, 2, ey, ]C, Y1, Y2, ", 'y,isa selection Of .
distinct integers from the set {1, 2, --- | k} and >, denotes summation over all
distinct r-selections.

Proor. The proof is by induction. Let n;1, be a further observed value of n()
at t = tk+1 > i Then

k+1 m
Y(o, @, -, @) = E [H H 1+ a;j.-)"""]

(e+1) Li=1 7;=1

E [fI ﬁ 1+ aij;)"‘j‘¢(“k+1|nk)j|y

(k) Li=1 ji=1

(3.2)
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where Eg) and Eg.4) are expectation operators with respect ton,, -+ -, n; and
n;, .-+, N4, respectively, use having been made of the Markovian property of
{ny}. Also, ¢(ex+1 | ny) is the conditional f.m.g.f. of ng,, for fixed n, and is given
by (2.3). Thus,

k m
41(111, R ¢b+1) {I—Il jI;.Il (1 + au.)"‘j‘ €xp [V(I - P(tb+l - tk)ub+1]
. ;[;Il (1 + pi(ters — ta) €)™ "’}

(33) = exp [v(I — P(tay1 — &) eiyl E

{H ﬁ (1 +au¢)""‘H (1 + axs + Pi(ters — ) @

Sl jgmml
+ i Pi(tea — tk)¢£+1)'“’.}-
Since the second term of the right-hand member of (3.3) is equal to the joint
fm.gf. of ny, « -+, m, except that a; is replaced by

o + Pty — B ors + AP (fes — B) i1,

the following recursion relationship is obtained:
V(o IR @41)

(34) = exp V(I — P(liys — ) ral¥(en, -+, @, @& + @ aP(fens — )
+ . P(lir — B)AL).

Assume now that (3.1) is true for some integral k. Then
Y(a, -, @) = Y(a, - a)

(3.5) exp b1+ 3 AP(h — t) + 2 3 AP(t — 1) AP(t — 1)

+ oo+ APt — H)AP( — &) -+ A aP(te — tha)} e,

where (k — 1) means that the various subscripts 8, v, - - - are positive integers

which are members of the set {1, 2, ---,k — 1} and >, --- > means that all

distinct selections of integers are to be included, it being assumed that the sub-

scripts have, for convenience, been arranged after selection in increasing order of
magnitude. On applying (3.5) in (3.4),

V(a, - -, @q1)

=y(e, -, 0x1) exp [v(I — P(tia — tk))“llt+1]

(36)  exp {+[(1 +<»_Zn APt — tg) + %;_g: AP (t, — ta) AP(t — ty)

4+ -+ AP — 4) o AeP(l — t1))
(et + P(tess — &) aiss + AP (b — &) a4l
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The general term of order » + 1 (containing r A’sand 1 ¢/),r = 1,2, --- ,k — 1,
in the expression within the second square bracket on the right-hand side of
Equation (3.6) is

(g) Aﬁlp(tﬁz - tﬁl)AﬂQP(tﬂ: - tﬁz) e Aﬂrp(tk - tg,)a;;
-I-(k—; Aﬂlp(tﬁ: - tﬁl)AﬁzP(tﬁa - tﬁ:) e

(3.7) AsP(ti — t5,)P(tia — t) eeq1
+ (21)A1‘P(t7’ = b)) APty — byy) -+

Ay P(t — 4,)AP(lis — B) @i
Note that the second component of (3.7) may be simplified by setting
P(ts — t,)P(lia — ) = P(tea — ts,)

with the aid of (2.13).

Now the first component of (3.7) gives the sum of terms, each of which con-
tains 7 A’s, chosen from the set {A;, A, - -, Ay}, a8 well as a; ; the second
component gives the sum of all terms, each of which contains r A’s, chosen from
the set {A;, Az, -+ , Ay}, a8 well 88 41 ; the third component gives the sum of
terms, each of which contains »r — 1 A’s, chosen from the set {A;, Ay, - -, Ap},
as well as A; and az4; . Combining these terms with the terms of order r + 1
from Y¥(e1, @, *-+, @), each of which contains r A’s chosen from the set
{A;, As, -+, Aiy}, as well as one o from the set {e1, @z, -+, a1}, it is seen
that the right-hand member of (3.6) includes all terms of order r 4 1 such that
each of them contains r A’s from the set {A;, Az, --- , Ay} together with one
o from the set {e1, @z, - - - , @rsa}-

There are only two terms of order 1 in the expression within the second square
bracket in Equation (3.6). These are a; and P(fi41 — %) ei41 Which contribute a
portion exp {v(ex + P(fis1 — #)@it1)}. This combined with

exp {(v(I — P(tr41 — &)) thsa}

gives exp {v(e + @r41)}. Combining this term, in its turn, with the terms of
order 1 from ¢ (e, @, - - , &-1), the right-hand member of (3.6) will be seen
to include all terms of order 1 when the set of subscripts from which selection is
permitted is {1, 2, --- , k + 1}.

Finally, the expression within the square bracket contains a single term of
order k + 1, viz.,

AP(ts — t)AP(ts — &) -+ AiaP(6 — te1) AlP(la — tk)‘lllc+l y

while (@, @, - -+ , ax—;) contains no such term.

Combining these results, we deduce that the right-hand member of (3.6) in-
cludes all possible terms of order 1,2, - - - , k + 1, when the set of subscripts from
which selection is permitted is {1, 2, - -+ , k + 1}. Thus (3.1) is true for k + 1
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provided it is true for k, and since (3.1) is valid for k = 2 (see (2.5)), it is valid
for all positive integral k. This completes the proof of the theorem.

We shall now discuss the nature of the joint distribution of n;, ny, -+, n,
and at the same time derive expressions for the moments of the distribution. The
function ¢¥(a;, @z, - -+, @) may in fact be identified as the f.m.gf. of a multi-
variate correlated Poisson distribution of order mk. A distribution of this type
may be regarded as a limiting case of the sampling distribution from a multiple
dichotomy. Consider an h-dimensional random vector § = (&, &, -+, &),
whose components can assume the values 0 and 1 only, and where, for any selec-
tion of r distinct integers {yi, v2, -, ¥}, r = 0, 1,---, h, from the
Set{l,z) e ’h}’

. = 1’ ) = y y "y Yr
(3.8) Pl‘Ob{e’ =0, ‘Z)thethriszz 7} = Parvgeecirn

the latter quantities being the probabilities associated with the 2* possible values
of £ The joint f.m.g.f. for N independent observations on ¥ is

$an,an, - yan) = [ 2 T pmmornnl ) ) - (1 4 a) [
>, indicating summation over all possible distinct r-selections. Thus

d(ar, @z, -+, m) = (go + Z; gias + ;jgii“-'a:‘ + o0+ guseaenon o oan)”,
where for a selection {7, , %2, - - - , 75} from theset {1,2, --- ,A},8=0,1,--- , h,

Girigerip = Dliy,ig,eerip T Zl' Dy ig,eeeig )
1
+ lz:l lz:, PGir,sa,ee 88,0 ,12) + - 4+ Pa.2.3,-- by B = 0) 1) 2’ ctt h’
1 2

the I’s denoting distinct members from the complementary selection
{hy b, -+, hg) and D00, 2o, -+ 200 Plr.igeriplyta,eer1jy being the sum of
probabilities effected over all possible j-combinations from the complementary
selection, j = 1, 2, --- , h — B. Consequently, if the marginal probabilities be
denoted by p@ i

(3.9) ?(il""."'iﬂ) = Prob {E‘il =1, i, = L., Eiﬁ = 1}’

the factorial cumulant generating function for the sample of N observations is
given by

logg(ar, a2, -+, an)
= Nlog (1 + 2 9% + D p“Paia; + - -+ + p**  Mayay -+ )
% <7

= N[(Z pma,- + z(:p("’)a.a,- 4+ 4 pu.z ..... r.)aw[2 )
1 ] 1<)
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If now p't¥2*® = O(N") asN — o, forg = 1,2, --- , h, then

) }VimIOg¢(alya2’ e )ah)
(3.10 i
= Z cia; + ; cijaio; 4 c o 4 Ca..paioe cccoan,
: 1<j

where
Cijigeeeig = lim N[Sl('lq ) iz y "y 'l:g)

N->oo
(3.11) - S2(i17i2y et 77’.5) + 2!S3(i1’i2’ et ’iﬁ)
-+ (—)p‘l(ﬁ — 1)18s(%1, %2, -+, %)],

Si(t1, %, -, i) denoting the sum of all terms, each of which is a product of
p’s with superscripts such that these superscripts form a complete partitioning of
the set {41, %2, - - - , 45} into j distinct subsets,j = 1,2, ---, 8. We have thus
shown that the limiting form of the f.m.g.f., $*(a1, a2, - - , o), 88y, is given by

¢*(a1,a2,--- ’ah)

1
(3.12) = exp { Z cio; + ; cijaia; + 0 + C..honcz v onf,
1 1<)

and this is precisely the form of

‘I’(aly‘h"";ak) = 'p(all’aﬂ)"'yalmy""akl’akﬂy""akm)’

with A = km, in (3.1).

We now derive the moments of the distribution represented by (3.12). De-
noting the random variables of this distribution by z, , 2., - - - , 2», it is seen that
E(z:xi, -+ - :5) is given by the coefficient of a;,as, - - - @i, in (3.12). Hence

P Y.
(3°13) E(xilxiz e x‘a) = ES;(ilyi27 te ’iﬂ)’ B = 1’ 2’ e 7"hv
FE

where Sj(41,%, - - , i) denotes the sum of all terms, each of which is a product
of ¢’s, such that the subscripts in these ¢’s form a complete partitioning of the
set {41, %2, - *+ , 15 into j distinct non-empty subsets.* This result may further
be used to express the ¢’s in terms of simple product moments of the z’s when
the latter are measured from their means. In particular,

(3.14)  ¢o = Ex.,
(3.15)  cap = E(z0zp),
(3.16)  Capy = E(zuzizs),
Capys = E(zozszas) — E(zuzs) E(zhas)
— E(zha') E(zszs) — E(xoxs)E(zsxy),

’
where z; = z; — Ex;.

(3.17)

4 As an example, 85(1, 2, 3, 4) = cs€scs + cracacs + CucsCs + cacics + cacics + cucics .
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Reverting now to (3.1), the coefficient of as, j,ai,j, - * ai,j, in the latter ex-
pression, where {#; , %2, - -+ , %} isasubsetof {1,2, --- ,k} withs; < 2 < --+ <4,
while ji, j2, -+, Jr = 1,2,--+, m, is ”i:Piliz(tt'z - til)Pizia(t"z - t"z) et
P;, ;. (t;, — ti,_,). It then follows from (3.14)—(3.17) that

(3.18) En;'a = Va,
(3.19) E{(Nie — va) (njs — v8)} = vaPas(t; — ), 1<y,
(5.20) E{(Nia — va) (njg — vg) (Niy — vy)}
= vaPap(t; — L) Ppy (b1 — t5), 1 <J <],
E{(nia — va) (njg — vg) (niy — vy) (ns — )}
(3.21) = vaPas(t; — ;) Pay(ti — £;) Pya(ty — 81) + vavyPog(t; — 1) Prs(ty — t1)

+ vavgPay(ti — t) Pas(ty — t;) + vevgPas(tr — ) Pay(ti — tj),
1<j<i<r

fore, 8,v,6 =1,2,---,m. ((3.18) and (3.19) are restatements of (2.6) and
(2.7), respectively.) Equation (3.13) may be used to determine moments
of all order without cumbrous differentiation (or expansion in series) of
¢*(an, 2, +++ , an). For example, E(zx3) or E(x,z;’) may be evaluated by
taking A = 3, 23 = 2, in (3.12) and evaluating E (xlxzza) This means that such
expressions as E(ninig) or E{ (e — va)(nes — vg)*} may be evaluated from
Y(ey, @2, -+, o) for all & = 3 by contraction (i.e., by letting the time inter-
val between the appropriate vector observations approach zero).
Finally, it follows readily from the joint characteristic function of n; , - -+ , ng
implied directly by (3.1) that the limiting distribution, »; — « for j = 1, 2,
, m, of the mk standardized random variables (ns; — »;) /o4 (i = 1,2, - -+ | k;
=1,2, .- ,m) is an mk-dimensional Normal distribution with zero expec-
tation vector and variance-covariance matrix W, where W may be partitioned
into k* submatrices, each of order m X m, such that the (7, j)th submatrix is
P((j — i)7) = [P(1)) " or P((j — 3)7) = [P(7)]", according as to whether
j2tory <i.
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