LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL
SUMS!

By PATRICK BILLINGSLEY
University of Chicago

1. Summary. Let {S,} be the partial sums of a sequence (not necessarily
independent) of random variables {X,}, and let {m.} be a set of integer-valued
random variables depending on an index 4 = 0. Suppose that m./u converges
in probability to a constant as u — « and that S, obeys the central limit theorem
(when it is normed properly, as must also be the other variables below). Ans-
combe [1] has shown that if the S, do not fluctuate too much, in a sense made
precise below, then the random sum S, also obeys the central limit theorem.
Anscombe’s condition is closely related to one introduced by Prohorov [6] in
connection with the Erdés-Kac-Donsker invariance principle. In Section 2 this
relationship is investigated; in particular, it is shown that if the sequence {X,}
satisfies the invariance principle then S,., is asymptotically normal. The in-
variance principle has been proved in [2] for various dependent sequences {X,},
to each of which this result is then applicable. In Section 3 an invariance prin-
ciple is formulated and proved for the random partial sums; this result enables
one to find, for example, the limiting distribution of max;<m, Sk . In Section 4,
these theorems are applied to renewal processes.

2. The central limit theorem for random sums. Let {X,, X, --- } be a
sequence (possibly dependent) of random variables on some probability measure
space (2, ®, P), and put S; = Z._l X,,(So = 0). Then {X,} satisfies the central
limit theorem with norming factors® n's if

(2.1) liMpee P{Sn/nls < o} = &(a),

where ®(a) is the unit normal distribution function.

In some cases, {X,} satisfies a stronger limit theorem. To state this result we
need some auxiliary definitions and theorems. Let C be the space of continuous
functions on [0, 1], with the uniform topology, and let € be the o-field of Borel
sets. If », and v are probability measures on @, then v, is said to converge weakly
to » (written v, = ») if [fdv, — [f dv for any function f on C' which is bounded
and continuous; see [6] or [2]. Prohorov [6] has proved the following theorem.
For z £ C, let w.(8) = sup {|z(s) — z(¢)|: |s — ¢| = 8} be the oscillation func-
tion of z.
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2 Other changes of scale, as well as changes of location are of course possible. We confine
ourselves for simplicity to norming by a multiple of n!.
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TaEOREM 2.1. The following pair of conditions is necessary and sufficient for
va = v. (i) For any integer ¢ and real numbers oy , - -+ , &, , we have

limg,e v{z: 2(3/c) £ s, 1 £ =L ¢} = vz 2(d/c) S i, 1 =7 = ¢},

provided the right-hand member, considered as a function of (a1, : -+ , a.), 18 con-
tinuous there. (ii) For any positive e and v, there exist a positive 6 and an tnleger
no such that if n = ny then

va{T: w:(8) = ¢ < 9.

Condition (i) says that the finite dimensional distributions, i.e., the distribu-
tions of the vector (z(1/c), --- , z(c/c)) induced by », and by », converge in
the proper manner. Condition (ii) has the effect of limiting the measures of sets
of z’s which oscillate violently. We will have occasion below to use Theorem 2.1
with n replaced by a parameter which goes to « through a continuum of values.

An extension of the central limit theorem for {X,} is obtained by constructing
measures on € in the following way. For each w ¢ @, let p(u) = p(u, w) be the
function on [0, «) defined by p(u) = S + (v — ¥]) X (w4 . Forn = 1,
2, -+, define p,(t) = Pa(t, @) for0 =t = 1 by pa(2) = p(tn) /n¥s. Thus pa(-)
is that element of C which is linear on each interval [(k — 1) /n, k/n] and satisfies
pa(k/n) = Si/n*c. It is not difficult to show that the mapping w — p(-, ) is
measurable; hence if P,(4) = P{p,e A} for A €@, then P, is a probability
measure on C. We say that {X,} satisfies the invariance principle with norming
factors nle if P, = W, where W denotes Wiener measure.

One reason the invariance principle is of interest is that it can be used to
find the limiting distributions of functions of the partial sums. If f is any func-
tion on C which is continuous except on a set of »-measure 0, and if v, = v then
lim, va{z: f(x) S o} = v{z: f(x) < o} at continuity points & of the limit func-
tion; see [6] and [2]. Thus, if P, = W and f is continuous except on a set of
W-measure 0, then lim, P{f(p,) < o} = W{z:f(z) = a} at continuity points
a of the limit. For example, if f(z) = sup, z(f) then

limp.o P{maxi<a Si/nte < o} = F(a),
where F(a) = W{z:sup:z(t) < o}; F(a) = 0 for « < 0, while

(2.2) Fla) = @) [ ™ du
0

for @ = 0. Similarly an arc sine law can be derived by taking f(z) to be the
Lebesgue measure of the set of ¢ in [0, 1] such that z(¢) = 0. To see that the
invariance principle actually contains the central limit theorem, take f(z) to
be z(1).

By specializing Theorem 2.1 to the case in which », = P, and » = W, and
using the definitions of P, and W, it can be seen that P, = W if and enly if
the following two conditions are satisfied.
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ConprrioN (F). For any integer ¢ we have

im P{(Spina — Sti-vwa/n's < i, 1 £ = ¢} = Hl‘l’(ai)-
n->0 =

ConvprrioN (P). For any positive € and 7 there exist a positive 6 and an integer
no such that if n = ng then

P{ max [S; — S = en*} <
| ;—kl <nd
jksn
Thus we have the following special case of Prohorov’s result.

THEOREM 2.2. The sequence {X,} satisfies the invariance principle with norming
factors n¥ if and only if Conditions (F) and (P) are satisfied.

The sufficiency of the conditions in Theorem 2.2 is not very useful for estab-
lishing the invariance principle for particular sequences {X,}, especially ones
which are dependent. The original Erdos-Kac-Donsker approach, as extended
in [2] is more widely applicable (see also [4] and [5]). We will not discuss this
approach here; the point is that the invariance principle has been proved for
various interesting sequences { X}, for example for certain Markov, m-dependent,
and moving-average processes. We will apply Theorems 2.1 and 2.2 to these
known results to derive new central limit theorems and invariance principles
involving partial sums with random indices.

For u = 0, let m, be a nonnegative-integer-valued random variable on (2, ®,
P). It is frequently of interest to know whether S,., is approximately normal
for large u. Anscombe [1] has shown that this is true if, among other things,
the partial sums S. do not fluctuate excessively, in the sense of the following
condition.?

ConvprrioN (A). For any positive € and n, there exist a positive § and an integer
no such that if n = no then

P{ma.x]k_.,”éna lSn - Skl = mi} <.

Anscombe has proved the following result.
THEOREM 2.3. Suppose that {X,} satisfies the central limit theorem with norming
factors n'e, i.e., that (2.1) holds, and that Condition (A) 7s satisfied. If

(23) P hmu—»oo mu/u = 0;
where 0 1s a positive constant, then
(2.4) iy P{Sn,/0s < o} = 3(a).

By Slutsky’s theorem (Section 20.6 of [3]), it is possible in (2.4) to replace
S,/ 0" s by S /mic.

If the X, are independent and if the variance of S, — S, is O(n — m), then

3 Anscombe’s condition and theorem are actually more general than the ones given

here; we have specialized his results to the case relevant to this paper. See also Rényi [7]
and [8].



88 PATRICK BILLINGSLEY

it follows easily from Kolmogorov’s inequality that Condition (A) holds, so
that Theorem 2.3 applies. (Condition (P) is difficult to verify directly even in
this case.) If the X, are dependent, however, Kolmogorov’s inequality is in
general no longer available, and Condition (A) may be hard to prove. Suppose,
however, that the invariance principle (with norming factors n’s) is known to
hold for a particular sequence {X,}. It then follows from Theorem 2.2 that
Conditions (F) and (P) hold. But (2.1) is the special case of Condition (F)
with ¢ = 1, and Condition (A) is obviously weaker than Condition (P). Thus
the hypotheses of Theorem 2.3 are fulfilled, and we have the following result.

TaeEorEM 2.4. If {X,} satisfies the tnvariance principle with norming factors
nlo, then (2.3) implies (2.4).

Thus the random sum S,/ 6*'s is asymptotically normal, provided (2.3)
holds, if {X,} is any of those sequences, described above, to which the invariance
principle applies.

We will give an alternate proof of this result, which depends on Theorem 2.1,
but not on Theorems 2.2 and 2.3. Some of the facts established in the course
of the proof will be used in Section 3. Since (ii) of Theorem 2.1 holds, it follows
that for all ¢, 7, there exist §, no such that if n = =, then, with probability ex-
ceeding 1 — 7,

(2.5) sup

lo—w| 58

2wsn

We may suppose that § < 1 and no > 1. If u = ny, let n be the next integer

larger than w 4 du;thenno <= n < u+du+1=<3u.lfv S uand |v — w| < éu
then v, w < =, so that, if (2.5) holds,

lp(v) — p(w)| < e’ < 3eul.
Thus » = ne implies that

Ip() = p(w)| < e’

L5 [p() — p(w)] < 3e
"Su

holds with probability exceeding 1 — 5. Absorbing the 3 into the ¢, we may say

that for all ¢, 5, there exist 8, ug such that if ¥ = uo then

(2.6) P{ sup lp(v) — p(w)|/u* = ¢ < n.

vSu
Given e and #, choose § and uo so that if ¥ = w, then
@7) Suplu—suistu [P(w) — p(ub)| < e

with probability exceeding 1 — 7, which is possible by (2.6). At the same time,
choose uy so large that if 4 = uo then

(2.8) |me — 6u] < du ’
with probability exceeding 1 — 5, which is possible if (2.3) holds. If both (2.7)
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and (2.8) hold then

(2.9) lp(m.) — p(ud)| < e
Thus, if w = o, (2.9) holds with probability exceeding 1 — 24; therefore
(2.10) p limu.a [p(m.) — p(ud)|/u* = 0.

Since, by (i) of Theorem 2.1, the distribution of p(u6)/ otuls converges to ®(a),
and since p(m,) = Sm, , Theorem 2.4 now follows from Slutsky’s theorem.

3. The invariance principle for random sums. If {X,} satisfies the invariance
principle, then still stronger results on the limiting behavior of randomly selected
partial sums can be proved. We will define a function q(u) which is associated
with the random partial sums in a manner analogous to that in which p(u) is
agsociated with the nonrandom ones. Let us assume from now on that m, =
my(w) is, with probability one, a nondecreasing, right-continuous function of
u, which increases by unit jumps. Let £(w) = 0, and let &(w), &H(w), &(w), « -
be the successive discontinuities of m.,(w) as a function of u, so that m, = ¢ if
£ S u < Eipn.Let

(3.1) my =1+ (u — £)/(fin — &) 8 S us b

thus m,, is that function of « which is linear on each interval [¢; , £:,1] and agrees
with m., at its jumps. Finally, take q(u) = p(m.,).* Now, foru = 0,0 < ¢ < 1,
put ¢u(t) = q(ut)/6*us. Then g.(-) is, for each w, an element of C; define a
measure @, on € by Q.(A4) = P{q.c 4} for A e€C.

We inquire after conditions which ensure that @, = W. The following result
stands to Theorem 2.4 as the invariance principle does to the central limit
theorem.

TueoreM 3.1. If {X,} satisfies the invariance principle with norming factors
nte, and if
(32) P limu.o {8Upsgu My — 60]/u} = O,

where 0 is a positive constant, then Q, = W.
ProoF. Since m,, increases by unit jumps, we have |m, — my| < 1; it follows
from (3.2) that

(3.3) P liMy.ow {SUPs<u |ms — 60|/u} =0,

and in particular that p lim, m./u = 9. Now (2.6) holds for the same reasons
as before. Hence by the same argument which we used to prove (2.10), we can
prove .

plimu.s [p(muie) — p(Bui/e)|/ul =0,  i=1,-- ¢
But p(mii.) = qu(3/c); it follows that if Condition (i) of Theorem 2.1 holds

4 It would perhaps be more natural to take ¢(u) = p(m.), but this would lead outside
C to the space D of functions with discontinuities of the first kind. The theory of weak
convergence is much more involved for D than for C; see [6].
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with », = P,, v = W, then it also holds if », is replaced by Q, and » = W.
Therefore we need only show that Condition (ii) of Theorem 2.1 holds (with
v» replaced by @, and v = W). By transforming (2.6) slightly, it is easily seen
that if ¢, n are given then there exist 8, 4y such that if ¥ = uo then

(3.4) [p(v6) — p(ud)| < eu!

|v—wl
vsu(1+8)

with probability exceeding 1 — #. Further, by (3.3), uo can be chosen so that
if w = wuo then, with probability exceeding 1 — #, we have

(3.5) SUPy<u |my — 00| < Su/(2 + 6).

Ifboth (3.4) and (3.5). holdandlfv w s u, Iv — w| S ud, then |m, — my| < du
and m, < u(l + 8), so that |p(m,) — p(m.)| < eu'. Thus
lp(ma) — p(ma)| < e,

Io—MIS )
WS u

with probability exceeding 1 — 2. This implies that for all ¢, 7 there exist §,
uo such that if v = wuo then P{w,,(8) = ¢ < 7. This is Condition (ii) of Theorem
2.1 for Q. , which completes the proof.

Theorem 3.1 can be used to derive the asymptotic distribution of maxxgm, Sk,
for example.

4. Application to renewal processes. Let {Y:, Y,, --- } be a sequence of
positive random variables on (2, ®, P). Suppose that u is a positive constant
such that if X, = Y, — pu, then {X,} satisfies the invariance principle with
norming factors n's. Let

(4.1) m, = max {k:zk: Y: £ u} ,

=]

with m, = 0 if ¥; > wu. Then, as a function of u, m, is nondecreasing, nght-
continuous, and increases by umt jumps. Moreover, by the definitions of m, and
q(w), we have g(u) = v — mop.
In order to apply the results of the preceding section, we must show that (3.2)
holds for some 6; we will prove it with 8 = 1/u:

(4.2) p limu,, {SUpo<u |mo — v/ul/u} = 0.

Since {X,} satisfies the invariance principle, the distribution function of
maxig. |Sil/n'e

converges, namely to G(a) = Wi{z: sup; |x(f)| = «}. Therefore

(4.3) p lim. {maxe<a [Sel/n} = 0.

We will deduce (4.2) from (4.3). By the definition (4.1), m, = k if and only
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if Sy < v — uk. Now
(4.4) SUPo<u (Mo — v/u)/u = €
implies that m, = [eu + v/u] for some » < u, or that

Steutosul v — plew + v/u]
(45) Tut u/dl = Teu F /il

for some » £ u. Now

v—plew +v/ul _ _ pe— pfu
lew +u/w] = e+ 1/p—1/u

for all u, », and the right-hand member of this inequality is less than
—& = —pe/2(e + 1/u) '

for all sufficiently large u. Moreover, if v < u then [ew + v/u] < [ew + u/u] =
7, . Thus there is some up such that if ¥ = uo and if (4.5) holds for some » < u,
then Si/n, = —3é for some k¥ = n, . Therefore, if u = u,, (4.4) implies

(4.6) ming<n, Si/Nu S —8.

Since lim, n, = o, it follows from (4.3) that the probability of (4.6) goes to 0;
hence the probability of (4.4) goes to 0. A symmetric argument shows that the
probability of

infvéu (mv - v/ll) é — €

goes to 0, which completes the proof of (4.2).
Thus Theorem 3.1 applies with 8 = 1/u. Now

gu(t) = q(ut) = —(mu, — ut/u)/uon™,

and if Q.(A) = P{q. ¢ A}, then Q, = W. From the symmetry of the Wiener
distribution, it is clear that the result remains valid if ¢. is replaced by —gq, .
Therefore we have the following theorem.

TaroreMm 4.1. Let {Y,} be a sequence of positive random variables such that
for some u > 0, {Y, — u} satisfies the invariance principle with norming factors
nlo. Define m, by (4.1), my, by (3.1), and put ru(t) = (mu, — ut/u) /uleu™ for
u=20,0=t=1.IfR,(A) = Plr,eA},then R,= W asu — o,

The special case of this theorem in which the Y, are independent, identically
distributed, and integer-valued was proved, by very different methods, in [2].
For the central limit theorem for renewal processes, see [9] and [10].

As an example, consider the random variable sup: r.(t), which equals

(4.7) SUPv<u (m; - v/u)/u}o'u_*.

Under the conditions of Theorem 4.1 the distribution function of this random
variable converges to the F(a) defined by (2.2). Since |m, — m,| < 1, this
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result still holds if m, is replaced by m, in (4.7). Similarly, an arc sine law can
be derived.
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