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TABLE 1
lim P[H/nt< f*

n—co

.0 .1 .2 .3 4 .5 .6 7 .8 .9

0 .00000 | .00000 | .00000 | .00000 | .00000 | .00000 | .00008 | .00090 | .00452
.01438 | .03387 | .06497 | .10785 | .16120 | .22280 | .29008 | .36046 | .43156 | .50132
.56807 | .63054 | .68782 | .73939 | .78501 | .82472 | .85874 | .88745 | .91135 | .93095
.94682 | .95949 | .96948 | .97726 | .98324 | .98778 | .99119 | .99371 | .99556 | .99690
.99786 | .99854 | .99901 | .99934 | .99956 | .99971 | .99981 | .99988 | .99992 | .99995

WO I -

* computed on the McGill I.B.M. 650
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NOTE ON MULTIVARIATE GOODNESS-OF-FIT TESTS'

Jupar ROSENBLATT

University of New Mezico and Sandia Corporation

1. Introduction and summary. Let X1, X;, --+, X. be m-dimensional
statistically independent random vectors with common distribution function 7.
It is frequently desirable to test the hypothesis that F is a member of some class
of distribution functions 3¢, . For the scalar case, (m = 1), much research has
been done; see for example [1], [2], [3]. For m > 1 comparatively little has been
accomplished, and a useful extension of the techniques used for m = 1 awaits
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the solution of certain problems in stochastic processes with a vector parameter;
see, for example, [4].

In this paper consistent tests are developed for any given class 3C,. These
tests can be constructed to have size a and prescribed power 1 — B against
alternatives whose probability assignment to at least one of a certain given class
of sets {B(v)} differs from that of each member of 3¢, by at least a prescribed
value K. The range of such alternatives is seen in Section 3 to be rather wide, so
that at least in theory, the suggested tests would seem to be rather useful. The
tests are constructed by mapping the set of all m-dimensional distribution func-
tions in a one to one measurable manner into a subset of the set of one-dimen-
sional distribution functions. Such mappings are, of course, reasonably well
known; see Halmos [7], p. 153. The purpose of this note is to show how such
mappings offer sufficient flexibility for the construction of a class of tests which
are useful for most ordinary purposes. Simpson [6] suggested tests based on
mapping bivariate distributions into univariate distributions. However no men-.
tion was made there of consistency, or of power in terms of the type of alterna-
tive here mentioned.

2. Preliminary theory. Let {B(v): —o < v < o} be a collection of Borel
measurable sets in R™ such that for A > 0,

B(—h) = 0, B(v) € B(v 4+ &), and lim,,., B(v) = R™

TuaroreM 2.1. For any class 3C, of distribution functions on R™ and each K, «, 8
i (0, 1), there is a test of 3C, of stze a satisfying

Pr{rejdc} =1 — 8
for all F satisfying
(2.1) infr,ee, Supy [Pr, {B(v)} — Pr{B(v)}| > K.

Proor. For each m-dimensional distribution function F*, define the function
Gp* by

(2.2) Gp*(v) = Pp*{B(v)}.
Clearly Gr is a univariate distribution function. Let G.(v) = P.{B(v)} =
proportion of observed values of X, -+, X, in B(v). It is seen that when the

X have distribution function ¥, defining the random variables Y; by
Yi(w) = inf{v: X;(w)eB(v)},

that the Y; are independent with common distribution function Gy, and that
G.. is the empirical (one dimensional) distribution function formed from the Y .
The condition infe, ., sup, |Pr,{B(v)} — Pe{B(v)}| > K is equivalent to the
condition infr g, sup, |Gr,(v) — Gr(v)| = infr g, di(Gr, , Gr) > K, (di being
the uniform metric). Then we can use the modified Kolmogorov-Smirnov tests
(5], “reject 30¥:Gre{Gr,:Foe3ey) if and only if infr,eqe, 7° di(Gro, Gu) > Fram
where h1,q,,» is chosen so that for all Fe3C,, Pr{infr, g, n! di(Gr, , Go) > hi,am}
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< a, and n is chosen so that if infr,c, di(Gr, , Gr) > K, then
Py{infpoggc, n% dl(GPo ) Gn) > hl.a,n} =1- B,”

as a test of 3C, of size « satisfying the assertion of this theorem.

TuroREM 2.2. If the sets B(v) generate (by means of the operations of comple-
mentation and countable union) the Borel sets in R™, then the mapping Mp:F* — Gps
defined by (2.2), vs one to one. In such a case the tests of the previous theorem are
consistent.

ProoF. Any probability distributions which agree on the sets B(v) must
agree on the sets of the form B(v 4+ k) — B(v), since the B(v) are non-decreas-
ing. Hence they must agree on the algebra of finite disjoint unions and comple-
ments of finite disjoint unions of such sets. By the well known extension theorem
they must therefore agree on the o-algebra generated by this algebra, which by
hypothesis is the collection of Borel sets in R™.

It follows that if F; # F,, there exists v such that

Gr(v) = Pr{B(v)} # Pr{B(v)} = Gr,(v).

Hence F; # F. implies G, # G, , and the first assertion follows. The second
assertion follows from the consistency of the modified Kolmogorov-Smirnov
tests.

3. Construction of the B(v). In this section we give a flexible method of
constructing non-decreasing collections of sets B(v) which generate the Borel
sets in B™.

Divide R™ into a disjoint union of Borel measurable sets 4o, , 4, , - -+, the
integer to the left of the comma written to the base s 4 1. Recursively define
Ay ig,oonvigiz (0 =0,1,2, -+ ,4; =0,1, ---, sforj > 1, written to base
s + 1), by subdividing 4, 4,...5; into a disjoint union of Borel sets, making sure
that the collection of all sets A, , A4, , + -+ generates the m-dimensional
Borel sets. (For example this can be done by letting 4, , be unit m-cubes and
Ay, i, be m-cubes of volume gD

Let the subscript 45 , 72 - - - % be identified with the interval

[iada -+« G, G082 -~ G + (s + 1)7,

whose end points are rational numbers written to base s + 1.

Let R(u) be the right end point of the interval identified with the subscript
u, and it is clear that the collection of sets B(v) = Ugrg)<, 4, generates the
Borel sets, since any one of the sets 4, is the difference of two sets from

{B(v) :v rational, terminating when its decimal part is written to base s + 1}.

It is seen, for example, that if 4;, is the spherical shell with inner radius kj,
outer radius k(7 4 1), center at some point (, y), then the sets B(v) include all
spheres about (z, y) of radius a multiple of k. It is clear, therefore, that from
various choices of the 4 ; , one can generate a wide variety of tests.
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THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN
POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE
OF THE FITTED VALUES

By CHARLES E. ANTLE
Oklahoma State University

1. Introduction. A spacing of n(p + 1) observations in the interval [—1, 1]
in order to minimize the maximum variance of 4(x), a pth degree polynomial
fitted by least squares, in the interval [—1, 1] has been given by P. G. Guest [1].
The spacing places n observations at —1, 1, and each of the p — 1 zeros of
P, (z), where P,(x) is the Legendre polynomial of degree p. The purpose of this
note is to establish the uniqueness of P. G. Guest’s solution when the observa-
tions are made at p + 1 distinct points.

2. Statement of problem. Guest defines
D
(1) Fz) = [T (@ = =)

where the z;are the distinct points in the interval [—1, 1} at which the observa-
tions are to-be made. The minimax variance condition requires

(2) Zo = _1; Tp = 1
and
3) F'(z) =0, for j=1,2-,p—L

After defining ¢(x) by the equation

(4) F(z) = a(z® — 1)¢(x),
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