A RANDOM INTERVAL FILLING PROBLEM!
By P. E. Ny

Cornell University

0. Summary. Consider an initial real interval [0, z], z > 0, and place in it a
random subinterval I(z) defined by a pair of random variables (U,, V.);
the former being the length of I(z) and the latter its lower boundary point.
The set [0, z] — I(x) consists of two intervals of lengths z; and z», in which
there are in turn placed random subintervals I(z;) and I(z.) defined by pairs
of random variables (U,,, V,,) and (U,,, V,,). The process of placing random
subintervals in [0, z] is thus continued. Under the assumptions that the sub-
intervals cannot overlap, and that their lengths are uniformly bounded away
from zero, the procedure must terminate after a finite number of steps.

Let N(b, ) denote the number of subintervals of [0, z] of length at least b,
in the terminal state. The asymptotic behaviour of the moments of N (b, z) is
here studied as x — «. It is shown that under fairly general conditions the
mean approaches a linear function of x at the rate ™ ", for any integer n > 0.
Under the further condition that V, is.a family of uniform distributions the
exact form of the linear relation is determined. In the last section it is indicated
how this result can be extended to some more general distributions. A similar
but less precise result is proved for the higher moments, the convergence rate
2~ " not being established for this case.

1. Background. The setting for the problem to be discussed in this paper
can most easily be introduced in terms of an example. Consider a street of
length z, in which cars of fixed length U are to park. Represent the street by
the interval [0, z], and assume that cars park “at random” in the sense that the
center of the first is uniformly distributed on [$U, x — $U], that of the second
is uniformly distributed on the space remaining available to it, and so on. Cars
continue to arrive until there is no longer any space in which they can park.
Let N(z) be the number of cars which have successfully parked in the street.

The distribution of N(z) has been investigated by A. Rényi [4], by A. Dvor-
etzky and H. Robbins [1], and by the author [3]. Let u(z) be the mean of N(x).
Rényi has shown that if U = 1, then for any integer n

(1.1) w(x) =cx — (1 —¢) +0(1/z") asx — ©,

where the constant ¢ is expressed as an integral which can be evaluated numer-
ically. (It equals approximately 0.75.) The rate of convergence in (1.1) was
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RANDOM INTERVAL FILLING PROBLEM 703

independently demonstrated by Dvoretzky and Robbins, who have furthermore
proved a central limit theorem for N (z). The constant in (1.1) was also derived
by the author in [3].

The problem can obviously be stated in purely geometrical language as the
random filling of an interval by intervals of length U, the latter to be referred to
as I-intervals. This paper treats a generalization of the model to the case where
U is a random variable. It also examines the situation when the location of the
I-intervals in [0, z] is not necessarily uniformly distributed.

The generalization was initially prompted by an equivalent problem in the
theory of binary cascades [3], for which the case when U is of fixed length is of
little interest. An initial particle of energy x suffers a collision, and splits into
particles of energies z; and z; respectively. These in turn collide and split, and
so on. One may equate the cascade and interval filling problems by drawing
correspondences between the following: (i) the initial energy z, and the length
of the interval [0, z], (ii) the energy loss upon collision, and the length of the
initial I-interval, (iii) the energies z; and z, of the resultant particles, and the
lengths of the intervals which remain when the first I-interval is subtracted from
[0, z], (iv) the energy of each particle created in the evolution of the cascade,
and the length of an appropriate corresponding subinterval of [0, z].

It is clear that if the random variable U is bounded away from zero, then the
interval [0, z] can accommodate at most finitely many I-intervals. The actual
number accommodated and their lengths will be random variables. In par-
ticular, the random variable to be studied here is the number of these I-intervals
of length at least b, to be denoted by N (b, z). We shall obtain results of a charac-
ter similar to (1.1) for the mean of N(b, z), and for its higher moments.

2. Definitions and assumptions. The process described in Section 1 will now
be formally defined. Consider an interval J(z), of length x < . Define the
distribution of a random subinterval I(x) of J(z) in terms of a pair of random
variables (U., V.), where U, denotes the length of I(z), and V, is its lower
boundary point. Assume that the essential infimum of U, , say d, is positive.
The set J(x) — I(z) will be composed of two intervals, say J(z:) and J (=),
of lengths x; and x: respectively. Subintervals I(2;) and I(x;) of x, and x, are
then determined by random variables (U,;, Vi), ¢ = 1, 2. The set

J () — (I(x) U I(z1) U I(z2))

is a union of four intervals, in each of which there is in turn chosen a random
subinterval. The process of choosing I-subintervals of J-intervals is thus con-
tinued until there remain only J-intervals of length less than d. It will then be
impossible to extract further I-intervals, and the procedure terminates, having
partitioned J(z) into terminal J-intervals (J1(z), - -+, Jnsa1(x)) of length less
than d, and I-intervals (Ii(z), ---, I.(z)) of length greater than d. Define
N (b, z) to be the number of I;(z),j = 1, - -+, n, of length at least b.

To completely define the process, it is sufficient to specify the distributions of
(Us, Vz). Let P{—} denote the probability of the set in brackets. We assume
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that there exist 0 < d < @ < « such that P{d < U, £ a} = 1. We further
assume that the distribution of U, is independent of z, i.e., that the distribution
of the lengths of parking cars does not depend on the length of the street. This
assumption must clearly be modified when z < @ (it is impossible to park a car
of length greater than z in a street of length x). To be precise, let G(u) and
G.(u) be any distribution functions satisfying G(a) — G(d) = 1 and
G.(z) — G.(d) = 1. We assume that

G (u) when z < a
(2.1) PU, =4} =
G(u) when z = a.
It is no loss of generality to take d = 1, and hence we do so.

It remains only to specify the distribution of V. The latter depends on U. ;
in fact the range of’ V, , given that U, = u, is x — w. It is sufficient to specify
the conditional distribution F,(v | u) of V,, given U, = u,forall1 < u < a.

If we are to expect asymptotic behavior of the kind displayed in (1.1), then
clearly as x — oo, the distributions F,(v | w) will have to become close to each
other in an appropriate sense. Consider a simple illustration. Suppose that
U,=1l,and thatfor2n =z <2n 4+ 1,n =0,1, - --

‘0 for v <0

F,(v[u)=1v/(x—u) for 0Zv<z—u

1 for » =2z — u,

whilefor2n +1 <z < 2n + 2
for v<O0
for » = 0.

Then as £ — «, u(z)/x will alternately be close to 0.75 or to 1.00, depending
on whether z is in [2n, 2n 4 1] or in [2n 4+ 1, 2n 4 2]. Thus the assertion
u(z) ~ cz is false for any c.

The regularity conditions we shall require below are designed to extend the
kind of convergence of (1.1) to the present more general situation. We shall find
it convenient to assume that there is associated with F,(v | u) a density function
fz(v| w). For any real number «, denote the conditional expectation of V;, given
that U, = u, by E(V; | u), and define the truncated expectation

Ex(V:|u) = f_ y v f(v | u) d.

0
ro -

We shall assume that

(2.2) E(VZ |u) = 0(z%),
(2.3) Ey(VE|u) =0z forall0 < 6 < aq,
and

(24) E(V.|u) = 3(z — ).
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We further require that the densities f,(v | %) be uniformly bounded in a neighbor-
hood of z — w, namely that there exist numbers dy > 0 and D < o such that
forallz > 2eandz —u —dy v =2z — u,

(2.5) fe(v|w) = D.

Among the family of distributions satisfying (2.2)—(2.5) will be all those whose
densities f,(v |w) are such that zf.(v|w) is uniformly bounded, and whose
means are the midpoints of their ranges. This condition on the means, (2.4), is
very reasonable for the models discussed in Section 1. In fact, in the cascade
model it would be customary to assume the stronger condition that f,(v | ) is
symmetric about 1(z — u).

Our final condition expresses the requirement that the f.(v | ) become “close”
to each other as x — . We assume that there exist real numbers § > 0,
B < 0,and A < o, such that for all § in [—&y, &), z > 3a,and0 = v =<z — u
we have

Foia(v | ) ’ 5
2.6 2l 2 — 1 = Axh.
(26) 701w g
We now introduce the following notations and definitions:
2.7 pa(b, z) = P{N(b,z) = n},
(2.8) u(b, z) = Z_o npa(b, ),
(2.9) pn(b, ) = 25 (= 1) -+ (G = m + Dp;(b, 2),
(2.10) BU = [ wd@(u) = »,
1
(0 when z < 2a
3 — G(b) — 2G(c — 2a) — 2 f1 Fula | w) d6(w)
z—2a
(211) A(b,z) = + 2/ F.(2a | u) dG(u) when 20 £z < 3a
1

-6 +2 [ “[F(20 | w) — Fala | w)] dG(w)

L when  3a = z.

Let a(b, s) denote the Laplace transform of 4 (b, z), and g(s) be the Laplace-
Stieltjes transform of G(u). Let primes denote derivatives with respect to s,
and define

_ [T9(®) _ [fg®)
(2.12) wi(s) —j; Tdt, wa(s) = A mdt,
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(2.13) w(s) = exp {2wi(s) + wa(s)},
(2.14) k = exp {2w(1) — 2 j;l 1%“” dt},
(2.15) r(b,s) = a(b, ) & ((s)) o (b, 9),
r(b, t)
(2.16) cb) =k [ e

The existence of the moments (2.8)—(2.10) is trivial to verify, as is the existence
of a, g, o and ¢g’. The convergence of the integrals w; and w, can be verified by
substituting the definitions of ¢ and ¢’ in (2.12) and performing a simple calcu-
lation. From the fact that s {1 — g(s)} — » as s — 0, it follows that
Jot7{1 — g(8)} dt converges, and hence that k is finite and well defined. The
only non-trivial question raised by the above definitions is that of the con-
vergence of C(b), and this will be proved below.

3. Results.
LemMA. If the distribution of U, s of the form (2.1), and f.(v | u) is the uniform
density on [0, x — u], then

(3.1) u(b, ) ~ C(b)z as T — o,

where C(b) is a convergent integral defined by (2.16).

Proor. In Section 5.

TueoreM 1. If the distribution of U, is of the form (2.1), and f,(v | w) satisfies
(2.2)-(2.6), then there exists a function of b, say K(b), such that for any integer n

(3.2) wd, ) = (x + v)K(®) — 1+ G(b) + 0(1/z™) as T — .

Proor. In Section 5.

Note that while C(b) is known and explicitly computable, the function K(b)
in the more general setting of Theorem 1, is as yet unknown. In the particular
case when f.(v | w) is the uniform densﬂ;y on [0, z — u], we can easily verify
that (2.2)—(2.6) are satisfied. This implies that for this case u(b, ) satisfies
both (3.1) and (3.2), and hence that K(b) = C(b). Thus we have

TuroREM 2. If the distribution of U, is of the form (2.1), and f.(v | u) s the
uniform density on [0, x — u], then

(3.3) p(b,z) = (z + »)C(b) — 1+ G(b) + O(1/z") as T — ®,
where C(b) 1is the convergent integral defined by (2.16).
We shall also establish

TuEOREM 3. If the distribution of U, is of the form (2.1), and f.(v | w) is the
uniform density on [0, x — u], then

(3.4) pn(b, ) ~ [C(D)]"z,

where C(b) s the same function as in (3.1).
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Proor. In Section 5.

It is clear that relation (3.4) is true not only for the n’th factorial moment,
but also for the ordinary moment. Similar results can also be derived for other
moments, for example the variance of N (b, z) (see [3]).

4. An example. Consider the case when

0 when % <1
G(uw) =
1 when % = 1,
1/(x — 1) when 0Zv=z-—1
fz(v I 1) =
0 elsewhere.

Write p(0, ) = p(z), C(0) = ¢, and A(0, z) = A(z). Clearly when b < 1,
u(b, ) = p(z) and C(b) = ¢, while when b > 1, u(b, ) = C(b) = 0. Using
the definitions of Section 2, we see that g(s) = ¢*, and hence that

r(0,8) = —als) — o'(s) = fow (z — 1)A(x) ¢ da.

By (2.11) we calculate that
0 when z < 2,

3z — 5
= < <

Alz) ={ 3 =1 when 2 < z < 3,
g+l when 3 < z.
z—1

Further calculation shows that
r(0,8) =¢° f zA(x + 1) ¢ ¥ da,
0

and that
—s —s —2s

) g = © 43
foxA(x+l)e dx——s—+382 282.
From (2.12) and (2.13) it follows that w(s) = €*“~°, where €(s) denotes the
exponential integral, i.e.,

0 —t

e(s) = f an

Thus to determine ¢ = &[5 [r(0, t) /w(t)] dt as defined in (2.16), it remains only
to determine % as defined in (2.14). To do so we make use of the well known
series expansion of the exponential integral, namely

2 3

s s

e(8)=—'y—logs+s=:r2!+ﬁ_ e,
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where v is Euler’s constant and the logarithm is to the base e. From this we see
that

" _¢
[P dr =) +,
o t

and hence that

C-) -t
k = exp {wl(l) - 2[ 1 te dt} =™,
o

We thus conclude that
) —t —t -2t
-2 e e € —2¢(t)
0—67£ I:T+3't7_2—t2—']8 dt.
Integrating by parts we see that

"1 s _ 2 e —2¢(t)
A 2—26 dt = 2 .£ —t-2— e dt,

and that

© —t L) —2t —t
f e_t_2_ 2O g = f (2 e7 _ ?t_> 20 gy
o o

With these two formulas we may simplify the expression for ¢ to read

© e—2e(!)
c=¢2 f — dt.
o t

This agrees with the constant obtained directly for this special case in [3] and
[4]. Numerical evaluation of the integral shows that to two decimal places
¢ =2 0.75. Theorem 1 thus takes the form

w(x) =cx — 14+ c+ 0(1/z") for any n,

which checks with (1.1). Theorem 3 says that the m/'th factorial moment (and
hence the m’th ordinary moment) satisfies un,(zx) ~ ¢™zr.

6. Proofs. Let p.(b, z | u, v) be the conditional probability that N(b, z) = n,
given that (U,, V.) = (w, v), and let Q(b, z, 2) = D a=02"pa(b, z). Then
clearly

n—1

2 pi(b, 0)prai(b,z —v —u)  when u2=b
1=0

(51) pn(b’ z ' U, 1)) = » .
Z Pi(b; U)Pn—i(b, r—v— u) when u < b’
1=0

and

(52) palb, z) = fl " 4G (u) fo T b,z | w,0)fu(o | w) do,
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where
Go(u) when z <a
G(u) when z = a.

Substituting (5.1) in (5.2) we obtain

G'o,,(u) = {

T—u n

pas,2) = [ dGu(w) [ 2 pilb,0) puslbyz — v — w0 | w) do

+ ’ dGoz(u) o nz_ p:(b,v) Prii(byz — v — u)fu(v | w) do,
b 0 1=0

and hence, after multiplying thru by 2" and adding over 7,

Q(b, z,2) = flb dGox(u)fx_uQ(b, ,2)Q(b,x — v — u, 2)f-(v | u) dv
(53) a ' T—u
+ 2 j; dGoz(u) fo Q(b,v,2)Q(b,x — v — u,2)f(v | u) dv.

Differentiating (5.3) m times with respect to z and setting z = 1, we get

b z—u m
ity 2) = [ 86 (w) [ 35 (7 s, = v =)o) o
(5.4) »

z—u m—1

o aont) [ 5 <’” " l)ym_l_xb,v)ui(b,x v — W] w) do.

From this expression we proceed to proofs of the lemma and of Theorems 1 and 3.
Proor oF LemMa. When m = 1 and f,(v | ) is the uniform density function
on [0, z — u], then (5.4) reads

(5.5) ub2) = [ dutu) +2 [ 29D [T 4 0,0) an

In order to guarantee the sufficiently rapid convergence of certain Laplace trans-
forms which play a role below, it is expedient to introduce the modified mean
function

0 when z < 2a
M(b, z) =
u(b, x) when z = 2a.

It can be verified by a direct, but moderately lengthy calculation which we omit,
that M (b, x) satisfies the relation

(56) M,2) = A2 +2 [ 29 [T 4,0

Note that the functions Gy, and G no longer play any role in (5.6). Taking the
Laplace transform of both sides (5.6), and using the notation given in (2.12)-
(2.16), we see that

(5.7) m(b, s) = a(b, s) + 2g(s) f:o m(b, y) dgy,
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where m(b, s) denotes the Laplace transform of M (b, ). After some manipula-
tion, (5.7) yields

(58) m'(b, s) + {2[g(s)/s] — [g’(s)/g(s)1}m(b, s) + r(b, s) = 0.
This is a first order linear differential equation, and setting
2lg(s)/s] — lg'(s)/9(9)] = q(s),

we may write the solution in the form

m(b, s) = exp {— [ o) dt} : [m(b, w = [ r(b, £) exp { [ t o(u) du} dt]

for any s, . After noticing that

exp{—fs:q(t) dt} =08

we may rewrite the above solution in the form

b

g
0’/-\
&=

om0 [}
But ‘
m(b, 30) = ‘/:o ¢ " dx = 0(9~2“°) as 8§ — o,

and w(s) = €”**?, Since

_ g _
w2(80) = A g(t) dt = aSo,

we see that w(s)) = ¢ ™, and hence that
m(b, so)
’U)(So)
Furthermore, noting the relations
a(b,s) = 0(e™),  o(b,s) = 0(e ™),
l g'(s0)
g(s0)

and recalling the definition of r in (2.15), we see that r(b, so) = O(e >*). This,
together with the already proved fact that w(sy) = ¢ **°, implies that

(5.10) = 0(e™™") as Sy — .

"0 (b, t)
(5.11) fs w(d) dt converges as S — o,
Thus, letting sy — «, and applying (5.10) and (5.11), we see that (5.9) yields
_ r(d, t)
(5.12) m(b, s) = w(s) f St
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We proceed to look at (5.12) as s — 0. From the fact that ¢ {1 — g(¢)} — »
as t — 0, it clearly follows that

1 1
. 1—g(@) .. [ 1—g() .
lim ./; — dt = _£ _t—dt exists.

8->0

Hence wi(s) + logs = wi(1) — [: [(1 — g(£))/4] dt converges ass — 0,and thus
there is a & > 0 such that wi(s) + log s — % log k. Since furthermore ws(s) — 0
as s — 0, we see that

exp {2wi(s) + 2log s + wa(s)} — k,
or equivalently that
(5.13) w(s) ~ k/s’ as s— 0.
it is also clear that

1
(] t

since each side of this equality is the limit as s — 0 of wi(s) + logs. Hence k&
is as defined in (2.14). )

We turn to the integral in (5.12). Since A (b, z) is bounded, say by K, as can
be seen directly from its definition, we have

la(b, s)| < K/s, and |a'(b,s)| < K/s".
Recalling that |¢'(s) /g(s)| < a, we see that
[r(b, )| < (aK/s) + (K/s).

Together with (3.18), this implies that [5 [r(b, t) /w(t)] d converges as s — 0.
Applying (5.13) again, we may thus conclude that

k [ rb,0)
2l w(t)

m(b, s) ~ dt as s—0,

or, to use the notation given in (2.16),
(5.14) m(b, s) ~ C(b)/s’ as s—0.

By the Karamata Tauberian theorem (see e.g., Widder [5], p. 192), this result
implies that

(5.15) fo M, 1) dt ~ C(b)3a a8 z— o,

From the definition of M it also follows that the same result holds if M is re-
placed by g, ie.,

(5.16) ‘£ u(b, t) dt ~ C(b)ia® as T — o,

Adapting a result of Hardy and Littlewood (see p. 93 of [5]), we see that we can
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differentiate both sides of the asymptotic equality (5.15) if we can show that
(9/9x) u(b, z) is bounded for z > 2qa. But from (5.5) it follows that for z > 2a

‘ f (xdG(u) (b, t) dt

—_ u)2

+ l2fl ZGiui w(b,z — u) du

< fladG(u) +2fladG(u) -3

Gu(b z)

Thus we conclude that u(b, ) ~ C(b)z asx — «, where C'(b) is given by (2.16),
which proves the lemma.

Proor or TaEOREM 1. The proof of this theorem is based on the modification
of a technique developed by Dvoretzky and Robbins [1]. To provide the motiva-
tion for the proof we briefly sketch its main ideas before going on to the details.
We first observe that the function u(b, 2) + 1 — G(b) satisfies an integral
equation which for the present we refer to as I.E. We further observe that linear
functions of the form ¢(x + ») also satisfy I.E. The main step is then to show
that if any two functions satisfy I.E. and are related by a particular inequality,
say I, when their arguments are in an interval (ao , a0 + a) for some sufficiently
large ao , then they are related by I* for all values of their arguments greater
than ao . Using this idea we are able to conclude that u(b, ) 4+ 1 — G(b) lies
between two lines, and thence that

[.L(b, x) + 1 - G(b)
x4+

converges to a constant depending on b only, say K(b).
The remainder of the proof consists of looking at the function

u(b, ) + 1 — Gb) — (z + »K(®),

and using a property of the zeros of this function to show that its order of magni-
tude as x — o is not greater than z®. We then observe that this function of
u(b, z) itself satisfies I.E., and by substituting it successively into L.E. it follows
that the order of magnitude of this function is less than 2™ " for any n. This will
then imply the theorem. We proceed now to the details.

It follows from (5.4) that for m = 1 and z > a, u(b, z) satisfies

(617)  u(b,2) =1 = G®) +2 [ a6 [ wlb, 5lt]w)
Let (b, z) = w(b,z) + 1 — G(b). Then

(5.18) 0(b, z) = 2 f * 46 () [ o, Of. (¢ w) dt



RANDOM INTERVAL FILLING PROBLEM 713

Consider two functions fi(z) and f»(z) satisfying (5.18), and such that
[fi(z)| < Bz for some 0°< B < . Suppose also that for some y > 3a and for
y —a < z < y, wehave fi(z) 2 fa(z). Then we shall show that thereisa ¢ < o
such that

(5.19) filz) = folz) — ca®™ forall z =y,

where 8 is the constants specified in (2.6).

Let ¢ = min (do, (4D)™, 70, 1), where do , D, and o are the constants specified
in (2.5) and (2.6). Suppose that (5.19) holdsfory —a =z = y. It is sufficient
to show that this implies the truth of the statement for y < z < y + ¢, since
we may then extend the result by steps of length e to any z. Suppose that z isin
ly,y + ¢. Theny — a = z — u = y, and hence by hypothesis

e =2 [ao [+ [ pontl v a

G z2[ aew) [ a@iGlwa+2 [ 6w [ Ho0nelw @

2 [(aat) [ ehitlw
Using (2.5) and the fact that 0 < 2 — y < ¢ < min (do, (4D)™") we note that
(521) 2 [[a6) [ et el w) de S dea
Furthermore .
[0 — a0l @ = [ 10 — SO S G W @
which, by (2.6)
2[R0 — OG0 d = 42 [ IR0 ~ KOG 0 &

and by the assumption that f:(z) < Bz, and (2.4),

> [T 1A - AW ) @ — AB
Thus
[ [ 150 - ol @

2 [[aetw [ 10 — £ ) @t — 4B
1 0
= 3fiy) — 3fu(y) — 3ABS 2 —ABxﬂ“,
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since fi(y) = fa(y) by hypothesis. Substituting this result in (5.20) and using
(5.21) then yields

@) z2 | * d6(w) | WL w) dt — 24 B

iy fl " 46 () [ AL ) dt — et

Thus if we take ¢ > 44 B, we may conclude that
fi(@) 2 folx) — (24B + 30)a™ 2 fu(z) — ™.

This establishes (5.19).
Now define

0o(b, z) = [6(b, 2)]/(z + ),
h(b,y) = inf {6u(b,2):y — a = = < ¢},
H(b,y) = sup {6o(b,2):y —a <z < y}.
Sincefory ~a <z =y
h(b, )z + v] < 0(b, z) < H(b,y)[x + 4],

and since c¢(x + ») satisfies (5.18) for any ¢, (5.19) implies that
B+1 B+1

cx cx
x+1’ §00(b7$) éH(b,y) +x+1/

Now since h and H are bounded, and since from (5.18) one can see that the
variation of 6(b, z) over intervals of fixed length is bounded, it follows that there
isa K <  such thatfory — a < 2 < y, we have

[H(b, y) (z + ») — h(b,y)(z + »)| < K.

Dividing through by x + », and letting y — « (and hence a fortiori z — ©),
it follows that

I

(5.22) h(b,y) — for allz = y > 3a.

|H (b, y) — h(b,y)| > O.

This together with the fact that (5.22) holds for all z = y implies that 6,(b, z)
converges to a function of b, say K(b), which satisfies

(5.23) h(b,y) = K(b) = H(b,y).

Now for z > 3a the continuity of (b, 2) can be proved directly from its
definition, and hence 6,(b, ) is also continuous. Since 6y(b, z) achieves the values
h(b, y) and H(b, y) in each interval y — a < z < y, it must equal K(b) some-
where in [y — a, y] for any y. Thus

(5.24) f(6, 2) = 6(b,z) — (z + »)K(b)

has a zero in every interval [y — a, y], for y > 3a.
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Using (5.18) we see that f(b, x) satisfies the relation
j0,2) =2 [ a6t [ 50, 08 w) d
and hence fory > 3aand y — a < z < y we have

59 =2 [[aat | [ 50,0 2D 11wy a
+ [0, 05000 @) s 2 [ dow) [ 16,0010 @
(5.25) - o ' °
+ 2427 [ a6 [ 170, ) £t | w)

+2 [ aatw [ 15,01 501w

By the property of the zeros of f we may choose z in [y — a, y] so that the first
term on the right side of (5.25) is zero. Thus given any y > 3a, there exists an
zin [y — a, y] such that

50,y) < 2427 [ a0t [ 150, D10 ) &
(5.26) ’ . —
+2 [ a6 [ 15, 0l At ] w)

Since it is clear from its definition that |f(b, )| < 2z, we may apply (2.2)-(2.4)
to (5.26) and obtain

(5.27) 7(b,y) = 0(y).
Resubstituting (5.27) in (5.26) and applying (2.2)~(2.4) again yields f(b, y) =
O0(y™™), and resubstitution in (5.26) m times, we get f(b, y) = O(y™ ™).
Since 8 < 1, we may take m so large that for any givenn,m(8 — 1) + 1 < —n,
and thus that
(5.28) fb,y) =0(@™).
Finally, from the definition of f and 6, (5.28) ‘implies (3.2) and the theorem.

Proor or TuroreMm 3. When f,(v | u) is the uniform density function on
[0, z — u], then (5.4) reads

i, 2) = [0 775 () s, Ot 2 — 1~ )
1 0 ?

T —u 1=0

(5.29) : e
o [ 20D [T (M) s, Ol — 1 = )
Let
1, 2) = [ 29 775 () s, sl — ¢ — )
(5.30)

sz(b, u) z—u n—1 n—1 . o
+n'l; —?v——_—u—‘/; E ( z )l"n—l—z(b7 t)l-‘(b7x ¢ u) dt’

=0
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where it is understood that ue(b, ) = 1, and where
G(u) whenu = b

0 otherwise.

G(b, u) = ;

Let ma(b, s) and m,(b, s) be the Laplace transforms of pa(b, x) and @.(b, z)
respectively, and g(b, s) be the Laplace-Sieltjes transform of G(b, w). Finally,
let .

3a

3a
M, (b, s) = fo ¢ “un(b, x) dz; M,(b,s) = [ ¢ g, (b, z) da.
0

Since un(b, 2 + 3a) = #n(b, z + 3q) forall z = 0, we have m.(b,s) — Ma(D,s)
= (b, s) — Ma(b, s). Furthermore

b, 8) = o) [ > (") ins(b, yma(b, 1) de

s o= ’L

(5.31)

T+, [ 5 (" - 1) Mari(b, Yma(b, 1) b,

s =0

and hence, setting ,

_ng(b,s) [7 =
(532)  Aub,5) = "o f 3 maanilb, O, 1)

(533)  Ba(b,s) = ;—: (") f " (b, yma(b, 8) di,

7
and
/! i
(534)  ru(b,8) = =My + M, + g— M, — g— M, — gA' — gB.,

where primes denote derivatives with respect to s, we may write

(5.35) ma(b, s) + {2 “@ - %ési))} m(b, 8) + ra(b,s) = 0.

The solution of (5.35) is

(5.36) ma(b, ) = w(s) {m—(”i) + f “0%_1%%) dt},

w(so)
where w is as defined in (2.12) and (2.13).
We shall show that ass — 0
(5.37) Ma(b, 8) ~ [C(D)]"n!/s"™"]

and the theorem will then follow directly from the Karameta and Hardy-Little-
wood theorems quoted in Section 5. The proof of (5.37) is by induction. It has
been proved for n = 1. Assume it true forn = 1, ---, N — 1. Fix s, . By direct
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calculation and use of the appropriate deﬁmtlons we can show that for n <
N — 1, M., M., (¢'/9)M., (¢'/g) M, and gA,, are all 0(1/s"*™) as s — 0. Fur-
thermore
, (N -1 (N — 1)N!
=Bty 0) = 5 (V7 ) meei, 9mas, 90 ~ =DV oy

=1

and, as was shown before, w(s) ~ k/s’, where k& is given by (2.14).
An elementary analysis therefore yields

* ra(b, t) % (N — 1)N! .
(5.38) fs w(?) dt Nfs B T [C(®)]" dt as s—0,
- MO 1 k6,50,

where K (b, s,) is a constant depending on b and s, . Finally (5.37), and hence
the theorem, follow from (5.36), (5.38), and the already established behavior
of w(s) near zero.

Using the same techniques it can be shown that the non-central moments
exhibit similar behavior. For example, if ¢°(b, z) denotes the variance of N'(b, z),
then it can be shown (see [3]) that o*(b, ) ~ D(b)x as & — .

6. Unsolved problems. An obvious shortcoming of the results discussed
above is that the function K(b) of Theorem 1 has been explicitly solved for
only when f,(v | u) was the uniform density on [0, z — u]. In this case we showed
that K(b) = C(b) as specified in (2.16). It would be desirable to extend such a
result to the case of a general f, . The author has made only spotty progress in
this direction.

Consider for example the case when F is any distribution function on [0, 1],
and suppose that F,(v [ u) has the special form F(v/(z — w)). Thus F,(v | w)
is the function F with its scale stretched from [0, 1] to [0, z — w]. Its associated

density function will be of the form
1 v
(6.1) folv | w) = —uf<x—u)'
The analogue to (5.5) then becomes
a a z—u ) dv
©2) w(to) = [ doutu) +2 [ doutw) [ uo,07 (1) 72

After defining M (b, x) as before, and constructing an appropriate analogue of
A(b, x), say D(b, x), we will get
> dv
uw/x —u’

(63) M(b,z) = D(b,2) +2 [ d6(w) [ MG, 0 <x 2

Taking the Laplace transform of both sides of (6.3), and letting d(b, s) be the
transform of D(b, x), we get

(6.4) m(b, s) = d(b, s) + 2g(s) /:o ’l’l’l(l;, 2) f(§> de.
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For special cases of f we may, of course, solve (6.4). If for instance, for some
a> —1, f(x) = (e + 1)z® for 0 =z =1 and f(z) = 0 elsewhere, then
(6.4) becomes

m(b, s) — d(b,s) _ * m(b, z)
s%g(s) = 2(a+1) s getl

and we may proceed with our analysis as in the case of the lemma. In general,
however, it is not clear how to solve (6.4) sufficiently explicitly to yield K(b).
Thus, even for the special form of f.(v | u) employed here, it is not clear how to
obtain K(b).

A much deeper class of unsolved problems involves extensions of the present
theory to higher dimensions. The simplest generalization would be a two-
dimensional analog of the case U, =1 and f.(v| %) uniform on [0, z — u].
This would involve the placing of unit squares at random in a square of side
[0, z]. Even for this case there are no known analogues of the theorems of this
paper. The difficulty lies in the fact that after the first unit square has been
placed in the larger square, the remaining set is not a union of separated squares
or rectangles. The fact that such a property did hold in the one-dimensional
problem, was the basis for attacking that case.

There is no doubt that such multi-dimensional problems are extremely diffi-
cult. Their solution, beside being of intrinsic interest in its own right, would be
of considerable interest in a number of problems of physics and chemistry which
involve the filling of a volume by molecules or crystals. One such problem is
that of the idealized gas, which is treated in [2], and whose relation to the prob-
lems of this paper is briefly outlined in [3].
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