ON THE RANGE OF THE DIFFERENCE BETWEEN HYPOTHETICAL
DISTRIBUTION FUNCTION AND PYKE’S MODIFIED EMPIRICAL
DISTRIBUTION FUNCTION'

By H. D. BRUNK®
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0. Summary. The statistic described in the title may be used to provide a
test of the hypothesis that a population has a prescribed continuous distribution
function. It differs from that proposed by Kuiper for use with distributions on
a circle only in that the usual empirical distribution function is replaced by
Pyke’s modification. This change and a theorem of Sparre Andersen make pos-
sible a computation of the exact distribution for finite sample size along the
lines of the computation of the distribution of Kolmogorov’s statistic. A brief
comparison is made in Section 1 of this statistic, Kolmogorov’s, and a statistic
studied by Sherman, as distances between hypothetical and empirical distribu-
tion functions. The asymptotic distribution, due to Darling and Kuiper, appears
in Section 3. Tables are included of the distribution for sample sizes 1 through
20.

1. Introduction. In [9], Lischner et al discuss an “outbreak” of deaths among
term infants: of 20 deaths among about 3000 term (i.e., not premature) births,
9 occurred between about the 1900-th birth and the 2100-th birth. In considering
tests of the hypothesis that the number, N(¢), of deaths up to “time” ¢ (measured
by births) is a Poisson process, Dr. Lischner and the author were led to a statistic
which had already been introduced by Kuiper [8] in connection with distribu-
tions on a circle.

Let n be a positive integer, let 7'; denote the time of occurrence of the ¢th event
in a Poisson process, ¢ = 1,2, - -+ , n, and let T denote a fixed time. Given that
n events occur in the time interval [0, T, the conditional joint distribution of
the ratios T:;/T,< = 1,2, - - - , n, is known to be that of the order statistics of n
numbers chosen independently and at random from the interval [0, 1]. Let
Y., Y., .-+, Y, denote the order statistics of a random sample of size n from
a population with continuous distribution function F, and set U; = F(Y,),
i=1,2---,n Uy =0, Upys = 1. Then the joint distribution of the random
variables U;,¢ = 1, 2, -+ , m, is also that of n numbers chosen independently
and at random from [0, 1], and Pyke’s suggestion [10] that the plotted points
(U:,i/(n + 1)) in the Cartesian plane replace the empirical distribution func-
tion may be motivated by consideration of the random variables T'; as partial
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sums of exponential random variables. Certain desirable “small sample” proper-
ties of the modified empirical distribution function are mentioned in [10].
Let F,.(z) denote the empirical distribution function. Set

D-rl; = SUP-—w<z<® [Fn(x) - F(.’IZ)],

D, = SuUP_w<i<wo [F(x) - Fn(x)L C;I; = IMaXi<ign (z/(n + 1) — Ui)y
Cn = maxi<i<a (Ui — i/(n + 1)). Kolmogorov’s statistic is

D, = max(D",r, D;) = SUP-—w<z<0 |Fn(x) - F(x)l .

Pyke’s modification is €, = max(CH, C7) = maxi<i<a |i/(n + 1) — Uj.
Kuiper’s statistic is V,, = D} + D7, the range of the difference F — F, , and the
one studied in this paper is K, = C% + (.

Each of the statistics D, , V., and K, , as well as a related one, L, , studied
by Sherman [11], can be interpreted as a distance between distribution functions.
Let & denote a class of Borel subsets of the real line. Let ur denote the measure
on the class of Borel subsets of the real line determined by a distribution func-
tion F. Then dg(G, H) = supuec |ue(4) — ur(A)| defines a distance on the class
of distribution functions, provided the class & is large enough that the specifica-
tion of the measures of all sets in & determines uniquely the associated distribu-
tion function. If @ is the class of semi-infinite intervals (— «, z], then D, =
do(F,Fo).For Y.y =x =Yi,i=1,2,---,n+ 1, set

P.(z) = {[F(z) — F(Yix)l[/IF(Y:) — F(Yi)] + 4 — 1}/(n + 1),

if F(Y:) > F(Yia), Pa(z) = {[zx — Yo /IYs = Yiul + 4 — 1}/(n + 1), if
F(Y;) = F(Y.) (note F(Y,) = F(Y,,) with probability 0, in sampling from
a population with distribution function F). Then C, = do(F, P,). If ® denotes
the class of all intervals, then V, = dg(F, F,), and K, = dg(F, P,). Let €
denote the class of all Borel subsets of the line. One verifies that de(F, P,) =
(3) 2y |F(Y) — F(Yia) — 1/(n + 1)], the statistic studied by Sherman
[11], denoted here by Ly, .

It is convenient to compare K, and L, with C, rather than with D, ; but C,
will be referred to as Kolmogorov’s statistic, and K, as Kuiper’s.

Let H, denote the hypothesis that F is the population distribution function.
For a random variable Z and for fixed n, define az(2) = Pr{Z > z}. From the
inequalities (3)K, < C. £ K, £ L, it follows that

ag(22) £ ac(z) = ag(z) = ar(?).

If the observed points (Y., i/(n + 1)) were found all to lie on the same side
of (above or below) the graph of F, we should have C = K = L so that the
observed result would appear of greatest significance in testing Ho using C, of
next greatest significance using K; but if K = 2C the observed result would ap-
pear of greater significance in testing Ho using K than using C. This leads to the
general suggestion that one may perhaps expect Kolmogorov’s statistic to be
more powerful than either Kuiper’s or Sherman’s against alternatives specifying
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distribution functions lying wholly above or wholly below F, such as, for example,
a different location parameter; and Kuiper’s to be the most powerful of the three
against an alternative specifying a distribution function whose graph rises about
as high above as it descends below the graph of F. However, the author is unable
to prove theorems stating even asymptotic properties of this kind.

2. Exact distribution of K, . The statistic K, is a function of the statistics
U;=F(Y;),7=1,2,---,n, which are jointly distributed as the order sta-
tistics of a sample of n numbers chosen independently and at random from the
unit interval. We shall therefore in this section assume, for convenience and
without loss of generality, that F(z) = Oforz < 0, F(z) = xzfor0 £ 2 = 1,
F(z) = 1forz > 1l,and U; = Y;,7 = 1,2, ---, n. It will be seen that the
application of a theorem of E. Sparre Andersen [1] reduces the problem of finding
Pr{K, < 2} to that of finding the probability that all of the points
(U;:, i/(n + 1)) will lie between the lines y = z and y = 2 + 2. (A similar
use of Andersen’s theorem is made by Pyke [10], p. 575; cf., [5], p. 189.) After
this reduction, any of a number of approaches that have been used to determine
the distribution of D, may be used successfully here also.

Let E" denote Euclidean N-space. For z = (21,2, -+ - , zx) in EY, define the

cyclic shift transformation C by Cz = (22, 23, --*, 2v, 21). Random variables
Zy, 2y, -+, Zywill be termed cyclically permutable if for every Borel set A  EY
one has

(2.1) Pr{Z e A} = Pr{CZ ¢ A},

where Z denotes the random vector (Z;, Z;, --- , Zx). The only events to be
considered will be of the form {Z ¢ A} for A a Borel subset of E¥, and the same
symbol A will be used for the event {Z ¢ A}. Thus (2.1) can be rewritten as
P(4) = P(C'4). An event B will be termed cyclically symmetric if B = CB
(or equivalently B = C'B). Set W.(Z) = > i1 Z/r. The following lemma,
for interchangeable random variables, is due to E. Sparre Andersen [1]; it is
especially clear from Spitzer’s short proof [12] that it holds also for cyclically
permutable random variables.

Lemma (Andersen). Let the random variables Zy, Zs, -+, Zy be cyclically
permutable, and suppose Pr{W (Z) = Wi(Z)} = 0, for< # j,4,5,= 1,2, --- | N.
Let B be a cyclically symmetric event. Then

P(B) = NPBN{Wx(Z) < W(Z) forr =1,2,---, N — 1}].

Set p.(¢) = Pr{U; < i/(n+1) 2 Ui+ ¢t/ (n+1)fori=1,2,---,n};
this is the probability that all the points (U, , 7/(n + 1)) will lie between the
linesy = randy = =z + ¢/(n + 1). Also

K, = maXo<i<j<n+l |[’L/(’n + 1) - U] - [J/(n + 1) - UJ']|~

Set Zi=[g/(n+ 1) — Ul = [¢—1/(n+1) = Ua,i=1,2,--- ,n+1,
and W, = (1/”') Z:=1Z'i = (l/r)[r/(n + 1) - Uf]; r = 1) 2, e, M + 1;
then Wn+1 = 0, and K,, = INaXo<i<j<n+l ,]W, - ZW,I
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TureorREM. For t > 0, Pr{K, = t/(n + 1)} = (n 4+ 1)p.(¢).

Proor. The random variables Z,, Z,, --- , Z,4; are known to be cyclically
permutable (indeed, interchangeable). Since also W,41 = 0, a cyclic permutation
does not affect the value of K, . Thus the event B = {K, < t/(n + 1)} is cycli-
cally symmetric. The event {W,4 < W, forr = 1,2, --- | n} may be written
{r/(in+1) —U,>0 for r=1,2,---,n}, so that B N {W,4 < W, for
r=1,2,--,n = N {U, <r/(n+ 1) £ U, + t/(n + 1)}. From the
lemma it follows that

P(B) = (n+ HPIN{U, < r/(n + 1) = U, + ¢/(n + 1},

or P(B) = (n + 1)p.(t). This completes the proof of the theorem.

Methods which have been used to discuss the distributions of D, and D}
(cf. in particular [7], [6], and [2]) apply also to the problem of determining
pn(t), and are applied here to the more general problem: if » points are chosen
independently and at random on [0, 1], and if U,, U., -+, U, are the order
statistics, determine the probability that all the points (U;, ¢/(n + 1)), 7 =
1, 2, .-+, n, will lie between a prescribed pair of parallel lines of which the
lower passes through or below (0, 0) and through or above (1, 1). Let the lines

be
Li.cy=[14v/(n+ 1z —a/(n+1)

and
Lyniy =11 +v/(n+ Dz +b/(n+1),
0. For A > 0 we introduce events:
AU: + h}, Bu(a, b; v)
im{n+14+0)U;—a<i=2(n+14+0v)U; + b}

and C.(a, b;v) = A.(b;n + 1 4+ v) — Ba(a, b; v). The event B,(a, b; v) is
the event of primary interest here, that all points (U;, ¢/(n + 1)) will lie be-
tween the lines L, and Ly, . Set P,(h; \) = P[A.(h; N)], Po(h; X)) = 1,
pu(a,b;0) = P[B.(a,b;v)], p0(a,b;0) = 1,¢.(a,b;v) = P[Cr(a,b;v)], gola, b; v) =
0; then p.(a, b; v) + g¢.(a, bjv) = Pu(bjn + 1 +v). Forv=0,1,2, ---,
n — 1, set fn = P[D3], where D%(a, b;0) = N/oifr < (n + 1 +0)U, + b
NiLiG>mn+14+0)U;—aN{i+1=(n+ 1+ v)Uips — a}. One finds

v

where 0 = a = v, b

An(; D) = N fd

IIA

fi = @ (a+i+1D/(n+1+0 - (@a+i+1)/(n+1+0)]"

pi(a, b;a)Pos(a + b+ 1, n — i+ v — a), ¢gu(a, b;v) = Zofi,

The changes of variable p,(a, b;v) = (n 4+ 1 + v)"p.(a, b; v) /n!, Qu(h; k) =
(n + k)"P.(h + 1;n + k)/n! then yield p.(a, b; v) = Qu(b — 1;v + 1) —
> 1% pila, b; @)Qu_i(a + b; v — a). The Q; are known, so that these formulas
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give the probabilities p,(a, b; v) in terms of the probabilities p.(a, b; a). Hence-
forth we set p.(a, b) = pa(a, b; a), pa(a, b) = pa(a, b;a), and Q.(h) = Q.(h;0).
Then

n—1

(2'2) Pn(a7 b) = Qn(b —1l;a+ 1) - ’z_% Pi(a7 b)Qn—i(a + b)
Set a(z; a, h) = Yeope(a, b)2, B(x; k) = Dm0 @.(h)7’, and v(z; a, b) =

70Q.(b— 1;a + 1)z". Then a(z; a, b)B(z;a + b) = v(z; a, b). The known
formula for P,(h; \)(cf., [10]:

th] X ) ,
Pa(h ) = [h + % = A 3 (=1 () (b = b+ 2 = ™5,
ifn —N=Zh £n,Py(h,\) =0if h + X < n, Pus(h,\) = 1if h = nyields

.. _ e b —1(ntat+b+1-—5)""

fb=nQb—1la+1) =n+a+1)"/nlifdb=n,

[a+b41] . Y
Qatd) =@+b+1) 3, (-1 eFiEl=d)
J= .
m+a+bdb+1—5)"""
(n — 9!

ifa+b+1=n,Qa+bd =n"nlifa+ b+ 1= n Equation (2.2) now
furnishes the basis for an iterative method of determining the probabilities
pn(a, ), hence p.(a, b; v). Alternatively, pa(a, b) is the product of n!/
(n + a + 1) by the coefficient of z" in the expansion of y(z; a, b) /8(z; a, b) . By
the theorem above we then have

(23) Pr{K, < t/(n + 1)} = (n + 1)pa(0, ).

We turn now to the case in which a, b, and v are integers. First, p,(0,1) = 1
satisfies (2.2) with @ = 0, b = 1. Therefore p,(0, 1) = n!/(n + 1)", so that
Pr{K, < 1/(n + 1)} = nl/(n + 1)™. More generally, for integers a, b, and
pwith0 < a < v, b = 0, we define

NNi{(n+o+1DU; —a<ji=<(n+1+4+2)U;+ b,

0,1,2 --,n—1,k=1,2--,n;pa = P(Aa), po = 1, po = 0 for
1,2, -+ ,n. Then p.(a, b; v) = Pan ; in particular, p.(0, ) = puif a =
0, b = ¢. One finds that p;x41 = 0if 2 > k + b,

pian=In4+v—k)/(n+v+1—k]""pix
if 1 < k — a, and

. S,

-~
|
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i n — i
Dikr1 = 2. DPa ( _ J)
j=max(0,k—a) 1 ,7

[/ (4o +1 =BT (n+o—k)/(n+v+ 1= 8]
if kK — a <7 = k + b. The change of variable
pi = [(n + v+ DY+ v+ 1= k"7n —0)Ynlpa,
poo = 1, pio = 0 for ¢ > 0 yields p;pn = 0if ¢ > k + b,

Pik+1 = Z pie/ (1 — J)!
j=max(0,k—a)
fk—a<t1=k+Db pirsn = psx if © = &k — a. We note again that the p;
depend on a and b but not on v. Thus once the matrix p; is computed for par-
ticular @ and b, the probabilities p,(a, b; v) can be obtained for arbitrary v = a
from the formulas for the change of variable.

The probabilities Pr{K, < t/(n + 1)} were computed® for integers ¢ and
forn = 1,2, ---, 20 using (2.3), and are presented in Table 2.1. They were
recomputed, as a check, from formulas developed after the change of variable
Uir = (Z‘.'/kt)Pik .

3. The asymptotic distribution of K, . Doob ([4], cf., [3]) gives asymptotic
formulas for the joint distribution function of #!D} and n *D> , from which the
asymptotic dlstrlbutlon of n'V, may readily be determined. The asymptotic
distribution of n’K, clearly coincides with that of n }V.. . Darling and Kuiper
[8] give the asymptotic distribution with a higher order term:

Prin'V, £ ¢} = 1 — 2 2(45°%" — 1) exp (—25°¢°
j=1

(3.1) .
+ [(8¢)/3(n)*] ;j2<4j2c2 — 3) exp (—25°¢") + O(1/n).

In considering the difference V,, — K, , suppose that C% = max; [¢/(n + 1) — U]
occurs at 7 = k; we have (k/n) — k/(n + 1) = 1/n(n + 1), suggesting that
on the average D} — C7 isapproximately 1/2(n+1),and V,, = K, + 1/(n + 1)
(“=""is to be read: “is approximated by”’). For estimating Pr{K, < t/(n+ 1)}
for large n, the following approximate formula is therefore suggested:

Pr{K, < t/(n + 1)} = Pr{(n + DV, = (¢t + 1)/(n + 1)}

= _ = 2 2 _ _ 2 2
(3.2) 1—2 ];1 (45°¢* — 1) exp (—25°c

0
+ [(8)/3(n + 1)7] 213'2(43'202 — 3) exp (=2,
=
3 The author wishes to thank Mr. C. R. Smith, and the University of Missouri Computer

Research Center, under the direction of Mr. Roy F. Keller, for their assistance in preparing
the tables.
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TABLE 3.1
Pr{K, = t/(n + 1)}, n = 19.
t Darling-Kuiper Formula (3.2) Exact Probability
1 .0000 .0000
2 .004 .006
3 .129 .130
4 .453 .443
5 .753 .743
6 .916 .912
7 .978 977
8 .9956 .9956

where ¢ = (¢ + 1)/(n + 1)%. For n = 19, a comparison is made in Table 3.1
between results using the Darling-Kuiper formula (3.2), and the exact prob-
abilities computed as indicated in Section 2.
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