ON THE DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES
CRITERION!

By T. W. ANDERSON

Columbia University

1. Summary and introduction. The Cramér-von Mises w? criterion for testing
that a sample, z; , - -+ , Zy , has been drawn from a specified continuous distribu-
tion F(x) is

M ot = [ 1Fua) = F@F aF (),

where Fy(z) is the empirical distribution function of the sample; that is, Fy(x) =
k/N if exactly k observations are less than or equal tox(k =0,1, ---,N). If
there is a second sample, ¥1 , - - - , ¥u , & test of the hypothesis that the two sam-
ples come from the same (unspecified) continuous distribution can be based on
the analogue of No’, namely

@) T = INM/N D) [ Fue) — Gu(@)P dHrule),

where Gy(z) is the empirical distribution function of the second sample and
Hyyu(z) is the empirical distribution function of the two samples together [that
is, (N + M)Hyyu(z) = NFy(z) + MG y(z)]. The limiting distribution of No®
as N — o has been tabulated [2], and it has been shown ([3], [4a], and [7]) that
T has the same limiting distribution as N — «, M — «, and N/M — \, where
\ is any finite positive constant. In this note we consider the distribution of T
for small values of N and M and present tables to permit use of the criterion at
some conventional significance levels for small values of N and M. The limiting
distribution seems a surprisingly good approximation to the exact distribution
for moderate sample sizes (corresponding to the same feature for N w” [6]). The
accuracy of approximation is better than in the case of the two-sample Kolmo-
gorov-Smirnov statistic studied by Hodges [4].

2. The procedure. The cumulative distribution function Hyyx(2) gives weight
1/(N 4+ M) at each of the numbers ;, -+, 2y, ¥1, - -, Yu . The (Lesbesgue-
Stieltjes) integral (2) is the sum ‘

(3) T =I[NM/(N+ M)’ {Z [Fu(z:) — Gul2)]’ + ]_X_; Fy(y;) — GM(yf)]2}~

3=1
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Let r; and s; be the ranks in the pooled sample of the ordered observations of the

first and second samples, respectively (¢ =1,--- ,Nand j = -+, M). Then
(4) Fy(z) — Gu(z) = (¢/N) — [(ri — 3)/M)

at the 7th z-observation and

(5) Fy(z) — Gu(z) = [(s; — j)/N] — (j/M)

at the jth y-observation. (The probability of any two observations being equal
is 0 under the null hypothesis.) The criterion is
(1, 1\T
-i( )]}

NM [ 1

©) T:(N+M)2{;|:—M (M N>]+,;[
_ 1 Ns( _N4+M N+MYN
“ s () §< i)

If M = N, we can write

(7) T = (4N2)—1{§1 (= 20" + 2 (s — 21‘)”}-

Using the fact that
SRS Zk (N +M)(N + M +1)2N +2M + 1)

(8)

=1 = 6 ’
we can write T as
(9) _ U __4MN -1
NM(N + M) 6(M + N)’

where

N M
(10) U= N_Z1 (ri — )"+ MZ1 (s; — )™

1= J=
To test the null hypothesis that the two samples are drawn from the same distri-
bution, one orders all of the observations, determines the ranks r; < 7, < « -+ < ry
of the N observations from the first sample and the ranks s; < s, < « -+ < sy of

the M observations from the second sample, and computes U. If U is too large,
one rejects the null hypothesis.

When the null hypothesis is true every order of the two sets of observations
is equally likely, and, hence, every set of N integers from 1,2, --- , M + N is
equally likely to be the ranks of the first sample. On this basis the distribution of
U under the null hypothesis has been computed® for all combinations of sample

*1 am indebted to Mrs. Ann Kinney Kretschmer for programming these computations.
A description of the computational procedure and the complete tables of distributions are
given in Mrs. Kretschmer’s Master’s Essay ‘“‘Anderson’s W-Test for Small Samples,’* Stan-
ford University, July, 1955. Photostated copies of the tables can be obtained at cost from
the Department of Statistics, Stanford University.
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sizes N, M = 1, 2, ---, 7. Since the number of values the statistic takes on
increases very rapidly with N and M, it is not feasible to give the full distribu-
tions. For some N and M Table 1 gives the larger values that U can take on
together with the probabilities of U being that value or greater. In each case
at least 10 % of the distribution is included.

For larger values of M and N we give values of u such that the probability
of observing a value of U at least that large is about 10% in Table 2, 5% in
Table 3, 1% in Table 4, and .1 % in Table 5. In each case probabilities are given
which straddle the stated percentage. (Some additional probabilities are given
for the purpose of comparing with the limiting distribution.) If the statistician
wishes to achieve exactly a given significance level, he can randomize appropri-

ately.
The expected value of T (under the null hypothesis) is
(11) &T = (1/6) + {1/[6(M + N)I},

as compared with the mean of 4 of the limiting distribution. The variance of T
is the variance of U divided by N°M*(N + M)?; the variance of U is

Var(U) = (N — M)*Var( > r2) + 4N* Var( D, ir;) + 4M* Var( D js;)
(12) —4N(N — M) Cov(D_ i, > ir;) — 4M(M — N) Cov( D s, D js;)
+ 8NM Cov(2 ir:, 2.jsj),

where (8) has been used to reduce the terms. The necessary variances and co-
variances have been given by Wegner [9] except

. . NMN + M + 1 M M
(13) Cov (X irs, S js) = MW + M + )(813\760+7N+7 +8)

Then the variance of T is

1 M+N+1 4MNWM + N) —3(M* + N*) — 2MN
45 (M + N)? 4MN ’
as compared with the variance of % of the limiting distribution. Some values
of the means and standard deviations are indicated in Table 6. In Tables 2 to 5
are given some values of ¢ corresponding to w and some values of ¢ adjusted so
the resulting quantity has mean % and variance 5 (called “normalized ¢”).

For the moderate sample sizes considered here the probabilities are already
very close to those of the limiting distribution in the upper tail. The last line
of each of Tables 2 to 5 gives the corresponding value of ¢ for which the limiting
probability is the desired significance level. It will be seen that for the larger
values of N and M the probabilities correspond quite closely to those of the
asymptotic distribution.

One way of using the limiting distribution as an approximate distribution for
determining whether an observed value is significant is to adjust an observed T as

(15) (T — &T)/{45 Var (T)}*] + %

(14) Var (T) =




THE CRAMER-VON MISES CRITERION 1151

and compare this value with the desired significance point of the limiting distri-
bution. In Table 7 we give the difference between the actual significance level
and the nominal significance level when using such a procedure. Roughly speak-
ing, at the 5% and 1% significance levels and these values of N and M the
relative error is about 4. While these numerical results are given only for M < 8
and N = 8, they suggest that for larger values of N and M the limiting distribu-
tion could be used to approximate significance levels between 1% and 10 % with
a relative error of generally less than .

It is inevitable that there is some difference between the distribution for a
given N and M and the limiting distribution because the first is discrete and the
second is continuous. The values that T can take on are limited to certain ra-
tional numbers and jumps in its distribution function are limited in value to
certain rational numbers. However, in addition to the differences between distri-
bution functions due to jumps there are more systematic differences. In Table 8
we give bounds on the absolute value of the difference between the limiting
distribution and the distribution of T — 1/[6(M + N)] for several ranges in
the upper tail.

In general the distribution for N ¢ M is smoother than for N = M because
in the latter case the number of values U can take on is more limited. At 10%
the distribution function is increasing so rapidly that in the discrete cases the
jumps are big. Near .1 % errors are relatively large because the limiting distribu-
tion is unbounded while each of the discrete distributions has one last jump.
Continuity corrections do not seem feasible because for a given pair, N and M,
the jumps are not equal in size and the intervals between jumps are not equal.

E. J. Burr? has more recently extended the computations summarized in this
paper to larger values of N and M. On the basis of his further study of the rela-
tionship between the limiting distribution and the distributions computed for
some values of N = M, he has suggested an empirical correction formula for
using the limiting distribution to approximate the exact distribution.

3. Some remarks.

3.1. Other tabulations. Sundrum [8] has tabulated a closely related statistic
suggested by Lehmann for N = M =2,3,4,5and N =2, M = 3, and N = 3,
M = 4,and N = 4, M = 5. The difference between this statistic and T suggested
here is that 3[Fy(2) 4+ Gux(z)] is used in defining the integral (2) instead of
Hyyu(z). As Wegner [9] has indicated, when N = M this statistic is T. For the
cases tabulated by Sundrum, T takes on more values than this statistic when
N ¢ M. At the present time there is no theoretical basis for choosing between
the two statistics for N % M, but the pooled empirical distribution function
Hyyu(x) seems more natural than the unweighted average of the Fy(z) and

G'M(x)

31 am indebted to Mr. Burr for checking some of my calculations against his and for
seeing his results before publication.
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Kurup [5] has tabulated a related statistic suggested earlier by Mood. This
statistic is defined by using Fy(z) or Gx(z) instead of Hyyu(x). When the null
hypothesis is true, all of these statistics have the same limiting distribution. More
references are given in the papers cited.

3.2. Asymptotic power. It is easy to see that this test procedure is consistent
since Fy(z) and G x(y) are consistent estimates of the distributions from which
the samples are drawn. For a more accurate analysis of the asymptotic power of
the test consider two sequences of continuous distributions {Fy(z)} and
{G3 ()} such that

(16) limy,oF5(z) = H(z), limy.Gu(z) = H(z),
(17) limy...N'[F3(2) — H(2)] = fiH(2)),
(18) lim s MG (2) — H(2)] = glH ()],

uniformly, H(z) is continuous, and f(u) and g(u) (0 = u =< 1) are square-
integrable. Then the limiting distribution of T'as N — o, M — o, and N/M —\
is the distribution of

(19) [ v + (07 = b/ + 0P} d

where Y (u) is a Gaussian stochastic process with mean 0 and covariance function
min(u, v) — wv. The characteristic function of (25) is the product of the char-
acteristic function of [3Y*(u)du (that is, the limiting characteristic function of
No® under the null hypothesis) and

(20) exp {it [ (u) du — 1t fol ll Ros(u, v)k(u)k(v) du dv} ,

where

Roit(u,v) = Rau(v, u)
— [(26t)*/sin(26t) Y] sin((26t) *u) sin[(26)*(1 — »)], u < v,
(22) k() = (14 N)74(w) = D/ +Mg(u).

This result is discussed in [1].

3.3. Some modifications. Statistics slightly different from 7' can be derived from
the integral (2) or sum (3) by discarding the usual convention that a cumulative
distribution function is continuous on the right. More precisely, if z; is the kth
2 in order of magnitude (that is, if there are k — 1 «’s less than z;), we could
define Fy(x;) as any number between (kK — 1)/N and k/N; similarly Gx(y;)
could be any number between (k — 1)/M and k/M if y; is the kth y in order of
magnitude. If these are defined as (k — a)/N and (k — a)/M, respectively, T
is changed only by subtraction of a(1 — a)/(M 4+ N). This fact shows inci-
dentally that the statistic is unchanged by replacing the convention of con-
tinuity on the right (¢ = 0) by continuity on the left (¢ = 1). If the values of

(21)
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the empirical cumulative distribution function at the jumps are chosen to mini-
mize the expected value of the statistic (under the null hypothesis), the statistic

18
N 2
NM {1 Z<ri_M+N+1i>

(23) N + Mp\M2 = N +1
1 & M+ N+1 )2}
+ ﬁ ; (S] -_———M + 1 ‘7 >
that is, the quantities squared are the differences between the ranks and their
expected values.
In the definition of Nw® one might replace dF (z) by dFy(z) to obtain

) N
(2) S =N [ [Ful@) = F@)I dFa(e) = 2 Fa(ad) — PO,
where 2} < --- < zy are the ordered observations. If Fy(z¥) is defined as

(i — 3)/N, the statistic is N — 1/(12N). If Fy(z¥) is defined to minimize the
expected value of S (under the null hypothesis), the statistic is

(25) (F(e) — [i/ (N 4+ D)}

iM=

K

here &F(z¥) = ¢/(N + 1).
These modifications do not affect the asymptotic theory; however, there might
be some that have advantages for small samples.
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TABLE 1
Upper Tails of Distributions

N u Pr {U = u} Pr {U = u} t
2 64 2/15 .133 333 472 222
2 100 2/21 .095 238 .500 000
87 2/21 .190 476 .314 286
2 144 2/28 .071 429 .520 833
128 2/28 .142 859 .354 167
2 196 2/36 .055 556 .537 037
177 2/36 J111 111 .386 243
3 81 1/10 .100 000 527 778
3 144 2/35 057 143 595 238
127 2/35 .114 286 .392 857
3 225 2/56 .035 714 .645 833
203 2/56 .071 429 .462 500
191 2/56 .107 143 .362 500
3 324 2/84 .023 810 .685 185
297 2/84 .047 619 .518 519
282 2/84 .071 429 .425 926
279 2/84 .095 238 .407 407
276 2/84 .119 048 .388 889
3 441 2/120 .016 667 .716 667
409 2/120 .033 333 .564 286
391 2/120 .050 000 .478 572
387 2/120 .066 667 .459 524
383 2/120 .083 333 .440 476
365 2/120 .100 000 .354 762
4 256 1/35 .028 571 .687 500
232 1/35 .057 143 .500 000
216 2/35 .114 286 .375 000
4 400 2/126 .015 873 .759 259
369 2/126 .031 746 .587 037
348 2/126 .047 619 .470 370
346 2/126 .063 492 .459 259
337 2/126, .079 365 .409 259
336 2/126 .095 238 .403 704
331 2/126 J11 111 .375 926
5 625 1/126 .007 937 .850 000
585 1/126 .015 873 .690 000
555 2/126 .031 746 .570 000
535 2/126 .047 619 .490 000
525 5/126 .087 302 .450 000
505 3/126 J111 111 .370 000




TABLE 2

Significance Levels Near 10%

U Pr {U = u} t Normalized ¢
472 —1§ = .085 714 383 333
210 :
468 —23 = .104 762 366 667
210 :
634 2 = .096 970 376 623
330 :
631 3 103 030 366 883
330 :
718 ﬁ = .099 567 372 727
462 :
710 ﬁ = .103 896 ".348 485
462 :
967 ﬁ = .098 485 371 825
792 ~ :
963 §Q = ,101 010 362 302
792 ~ :
43
1020 162 = .093 074 .375 000 .371 314
59
1008 02 = .127 706 .347 222 .342 078
1374 ﬁ = .096 737 375 458 372 127
1716~ - ’ ’
1373 17—2— = ,100 233 373 626 370 207
1716 ~ ° ’ :
1362 _1&1_ = .113 054 353 480 349 084
1716~ : :
1359 —19—6 = .114 219 347 985 343 324
1716~ T ' '
1855 i@ = .093 240 382 653 379 626
1716 ~ ' ’
1841 ﬁ = .107 809 362 245 358 330
1716~ ° : )
1827 ﬂ = .114 802 341 837 337 034
1716 ° ) )
.10 .347 30 .347 30
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Significance Levels Near 5%

TABLE 3

N M u Pr {U = u} t Normalized ¢
4 6 498 10 _ 047 619 491 667
210 )
12
496 2 = 057 143 .483 333
210
4 7 671 16 04g 485 496 753
330 ’
654 B osa 545 441 558
330 ’
5 6 756 22 _ 047 619 487 879
462 o
755 24 _ 051 048 484 848
462 ’
5 7 1011 38 _ 047 980 476 587
792 )
1009 20 _ 050 505 471 826
792 )
18
6 6 1080 — = .038 961 .513 889 .517 490
462
25
1068 = = 054 113 .486 111 .488 254
462
31
1044 2= = 067 100 .430 556 .429 784
462
6 7 1423 B4 s 051 465 202 466 216
1716 ’ )
86
1419 —— = .050 117 .457 876 .458 535
1716 ,
7 7 1925 B s 951 484 694 486 106
1716 ) ’
1911 6 _ 055 9a4 464 286 464 809
1716 ) )
1897 17 68 182 443 878 443 514
1716 ) )
® w .05 .461 36 .461 36

1156



Significance Levels Near 19,

TABLE 4

u Pr {U = u} t Normalized ¢
576 —2— = .009 524 816 667
210 :
538 A 019 048 658 333
210 '
784 —2— = .006 061 863 636
330 '
739 -é— = .012 121 717 532
330 = - .
851 -4—— = .008 658 775 758
462 )
814 ~6—- = .012 987 663 636
462 '
1123 S5 _ 007 576 743 254
795 = - .
1119 -8—— = .010 101 733 730
792 ’
1188 2 008 658 763 889 780 607
i . .
1152 5 = .012 987 .680 556 .692 902
462
1577 —E— = .008 159 747 253 761 924
1716~ ° ) ’
1564 16 009 324 723 443 736 962
1716~ ' '
2 18 010 490 701 465 713 91
155 1716 — - . . 919
2121 4 008 159 770 408 784 247
1716~ ° ' ’

2107 18 010 490 750 000 762 952
1716~ : :

2079 —2i = .011 655 709 184 720 360
1716~ ’ ’

3472 6 _ 009 790 734 375 744 648
6435 - ’ )

3456 69 010 723 718 750 728 443
6435 - ' '

.01 .743 46 .743 46
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TABLE 5
Significance Levels Near 1%

M u Pr {U = u} t Normalized ¢
6 1296 Z:s_z = .002 165 1.013 889 1.043 725
2
4 = = . .
7 176 g = 001 166 1.089 744 1.120 999
1
7 2401 Tiig = ‘000 583 1.178 571 1.210 166
2317 2 _ o; 166 1.056 122 1.082 390
1716~ ‘ '
1
8 4096 G135 = <000 156 1.343 750 1.376 647
3984 2 _ 000 311 1.234 375 1.263 211
6435 ’ ’
3888 4 _ 000 622 1.140 625 1.165 981
6435 ) ’
6
3808 Gaz5 = 000 933 1.062 500 1.084 955
7
3792 Ga35 = ‘001 088 1.046 875 1.068 750
w .001 1.167 86 1.167 86
TABLE 6

Mean and Variance of T Related to the Limiting Mean and Variance

M Mean — } v/Variance X 45

6 712 = .013 889 3—2 = 1—.@;770
7 % _ o012 821 Z—;—E = iﬂ;—‘lﬁ
7 §11 = .011 905 %g = i_()?;ng
8 516 = .010 417 -}1—2 = m

1158



THE CRAMER-VON MISES CRITERION

TABLE 7

1159

Difference Between Actual Significance Level and Nominal Significance Level Using
Limiting Distribution

Difference Relative To

N M Nominal Level Difference Nominal Level

6 6 .10 —.006 926 —.069
.05 .004 113 .082
.01 —.001 342 —.134

6 7 .10 .013 054 .131
.05 —.001 049 —.021
.01 —.001 841 —.184

7 7 .10 .007 809 . .078
.05 .005 944 .119
.01 .000 490 .049
.001 —.000 417 —.417

8 8 .01 —.000 210 —.021
.001 —.000 689 —.689

TABLE 8

Mazimum Absolute Differences Between Distributions and Limiting Distribution

Range of T — [1/(6(M + N))]

N M .34730 — .46136 — 74346 —
5 5 .0282 .0149 .0061
5 6 .0090 .0089 .0083
5 7 .0077 .0063 .0036
6 6 .0112 .0079 .0053
6 7 .0058 .0056 .0042
7 7 .0101 .0058 .0040




