SEQUENTIAL INFERENCE PROCEDURES OF STEIN’S TYPE FOR A
CLASS OF MULTIVARIATE REGRESSION PROBLEMS

By SmourirR KisHORE CHATTERJEE

Unaversity of Calcutta

Summary. In this paper the case of multivariate regression with stochastic
predictors is considered, the joint distribution of the predictors being unknown,
and the conditional distribution of the predictand given the predictors being
normal with an unknown standard deviation. Sequential procedures of Stein’s
[13] type, terminating with probability one, are developed to obtain tests,
confidence regions, and point estimates for the regression parameters. For the
tests, the power function does not depend on the unknown distribution of the
predictors or any nuisance parameters; for the confidence regions, the “‘span”
is fixed and known; and for the point estimates, the expected loss, for a particular
type of loss function, is a known constant. The procedure is subsequently modi-
fied to get more useful and “‘efficient” tests and estimates. Some study of the
distribution and expectation of the sample size is also made for the sequential
procedures developed.

1. Introduction. In many cases of testing parametric hypotheses, the power
functions of the usual tests, based on a fixed number of observations, involve
certain nuisance parameters and are thus not completely known. In such cases,
the question naturally arises, whether tests with completely known power! exist
at all. For testing the normal mean, when the standard deviation is unknown, a
partial answer to this question was given by Dantzig [8], who showed that for
the normal mean no non-trivial tests, based on a fixed number of observations
and with power completely known, exist. Thereafter, Stein [13] proposed a two-
sample (i.e., two-step sequential) test with completely known power for the
same problem and extended these results to the case of the linear regression
set-up with non-stochastic predictors, the predicted variables corresponding to
the different predictor levels being independent, homoscedastic, and normal. This
two-sample procedure of Stein was found to yield a confidence region with known
“span’, for the parameters concerned. Lehmann [10] considered the more
general problem of estimation of the location parameter of a distribution in-
volving an unknown scale parameter, and proved that, in case of a fixed number
of observations, there are no interval estimates of bounded length, and point
estimates of bounded expected loss for a loss function of the form

(1-1) ﬁa(lé_o‘):
where 6 is the location parameter, 6 its estimate, and ¢(2) is increasing in (0,

Received March 27, 1961; revised January 19, 1962.
1 Hereafter a test with completely known power will imply a test whose power function
does not involve any nuisance parameters. )
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« ). He also showed that for the normal mean Stein’s procedure yields a point
estimate with known expected loss, when the loss is of the form (1.1).

There are two important types of general linear regression set-up to which
Stein’s two-step procedure cannot be easily extended. In the first of these,
the predicted variables are assumed to be correlated, having an unknown
dispersion matrix. A particular case of this type is the inference problem con-
cerning the mean vector of a multinormal population with unknown dispersion
matrix, and in this case, a two-step procedure yielding tests and estimates of
the above types has been developed in [2], [3] and [4]. The other type of regression
set up relates to the situation where the predictors are stochastic, and we are
sampling from a population in which the predictors and the predictand are
jointly distributed. This case arises in practice, where predictors cannot be easily
or exactly controlled and we have to sample direct from the population, without
any prior division of the population into subpopulations giving rise to so-called
arrays. Here we propose to construct tests, confidence regions, and point esti-
mates of the above types in the latter case. For point estimation, we take the
loss in estimating a multiple parameter 8 (a column vector) by 8 as

(1.2) o{ (6 — 0)’A(D'— o)}

where A is a positive definite matrix, and ¢(z) is nondecreasing in (0, «).
Obviously, (1.2) is a generalization of the form (1.1) to the multiparametric case.

We start with a (p 4+ 1)-variate population represented by the joint density
function

(L3) flar, -+, ) (2ma”) P exp[— (1/26°)(y — @ — Biws — - -+ — By2p)7,

where f is any p-variate density function (not involving «, 81, -+« , 8, or o),
and the range of y for every fixed (x;, ---, x,) is (— o, ). This form of
density function obviously implies that, for conditionally fixed z;, -+ - , z, (the
predictors), y (the predictand) is normally distributed with a linear regression

(1.4) E(y|a, -+, %) = a+ Bur 4+ -+ + Botyp

and a constant standard deviation (s.d.) . Unless otherwise stated, we shall
always assume that «, 8;, - -+, 8,, o and the density function f are all unknown.

The particular case of a single predictor (p = 1) which is comparatively easy
has been already considered in [6]. Here we take the more complicated case of a
general p. It can be seen that, for the present set up, due to our lack of knowledge
regarding o and the distribution of the x’s, the test, confidence region, and point
estimate for any set of regression parameters, usually constructed from a fixed
number of observations, do not satisfy respectively the requirements of known
power, ‘“‘span”’, and expected loss. In fact, as shown in [5], the results of Dantzig
[8], Stein [13], and Lehmann [10] regarding the non-existence of tests and esti-
mates of the desired types, based on a fixed number of observations, can be
extended to the present set-up as well, and therefore, we have to adopt a se-
quential approach to obtain such tests and estimates.
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In this paper we specifically consider two broad types of inference regarding
the regression parameters of (1.4):

(i) inference on some or all of the regression coefficients 8;, --- , 8, , and

(ii) inference on the regression constant a. However, other types of inference,
such as, inference on the linear function o + D_? Bi: of the parameters (the
predicted value), for given zy, - - - , «p , can also be dealt with by methods similar
to that given in the paper (see Section 7). For each of the above two cases, we
first derive a sequential procedure which yields tests and estimates of the desired
types. Subsequently, we improve upon these procedures to derive tests and
estimates which utilize a greater amount of information and are, at the same time,
practically more useful.

Before concluding this section, we explain here a phrase we shall often use in
connection with confidence regions. For a multiple set of parameters, a confidence
region will be said to have a fixed ellipsoidal contour, when its form is that of a
given ellipsoid with its center unspecified.

2. Some preliminaries. In this paper we shall use ¢, , x> and Fy, ., as generic
notations for Student’s ¢ with d.f. (degrees of freedom) », central x* with d.f. r,
and Fisher’s F with d.f. n;, n., respectively. For any quadratic form or sym-
metric matrix, we shall abbreviate the terms “positive definite’”” and ‘‘positive
semidefinite” by p.d. and p.s.d. respectively. A vector will be denoted by a
boldface, lower case, and a matrix, by a boldface, capital letter. Where necessary,
the order of a matrix will be indicated at the top right-hand corner of the matrix

symbol.
I'*" will as usual denote the r X r identity matrix. For » < s, we shall write

Ir)(s — (Ir)(rorx(s—r))

and I’ for its transpose. For any r, s, 1"%° will denote the » X s matrix all whose

elements are unity.
We shall write

xl=(x1)"')x?)’ @’-——(ﬁl,“',Bz)),
where z,, ---, z, are the predictors, and B;, - -+, B, are the regression coef-
ficients. For any [ observations on x: xx, k = 1, 2, - -+, [, we shall write
I ! ) _
X; =—l;Xk, Sfxp=;(xk—xz)(xk—xz)l

(21) l
= Zxkx,'c - lizi;
k=1

l Do x
1
l l
;xk ;xk Xk

For any set of I(>p) observations, we shall always take S; and §; as p.d. This

l
(22) %= (1,x), SO = k;l % & =
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will be so with probability one because of the continuity of the distribution of x.

If, corresponding to x; , the y-observation isy, ,k = 1,2, --- , we shall denote
l l
(2.3) o= (1/1)12 Y, o= 21: Yi(Xe — X7).

For all the sequential procedures to be considered, to start with, we shall take
an initial sample of a fixed size ny = p + 2:

(2.4) e, Yo, b =1,2,--+,m0.
We shall write
(2.5) (X1, %, -, Xny) = X5

Let ., , Sz, , Jno and @, be defined by (2.1) and (2.3). Alsolet ay, , b, , and &
be respectively the usual estimates of «, 3, and ¢°, based on (2.4). Then as is well
known

(2.6) Snbuy = on , Ony = Yoy — b,"oi"o ’

and for fixed X,, , by, is distributed as N(8, Sy;0°), independently of 7., . Also,
for fixed X,, , (no — p — 1)é*/d" is distributed as x%,—p—1, independently of

g”o ) b”o M
Let T2X? be defined by
(2.7) TnSuiT,, =1, ie, TuTn, = S .
We shall write
(2.8) gny = T:lob"o

Then, for fixed X, , g, will be distributed as N(T+,8, Is*), independently of Fa,
and &°.
Before concluding this section we put forth two results, which will be useful

afterwards.
_ (An Asp
A= (A21 An)

Lemma 2.1. If
18 a partitioned square matriz, where Ay is square, Ag is symmetric and non-
singular, and A, = Ay, and if B is the non-singular matriz of the same order

defined by
’ (1 —AupAy
B= (o I )

then

BAR' = (Au — A A% Agn 0)

o An/’
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The result is given in [1], p. 343, where A is p.d. But it can be proved in the
same way, under the conditions stated here.

Lemma 2.2. Given two p.d. matrices A% and B, if A — Bisp.d.,thenz' Az >
z' B z for any q-vector z # o, and the ellipsodial region z' A z < f* lies completely
within the ellipsodial region 2’ B z < f* for any f* > 0.

The first assertion is evident. The second assertion follows from the first, since,
if zZBz < z'Az for any g-vector z # o, then z'Az < f* implies ZBz < f~

3. Sequential procedure for inferring on some or all of the regression coeffi-
cients 81, B2, -+, Bp » We first derive some results that will be necessary.

LemMa 3.1. For a sequence {Xi} of real p-vectors, let S; be as defined by (2.1).
Then, if for a given symmetric matrix T™%" and some I, S; — T s p.d., so would be
St — T

Proor. It is easily seen that S;; = §; + {1{2 R where®

{l(l + 1) Z Xr — lXH_l

Hence, as the sum of a p.d. and a p.s.d. matrix is p.d., the lemma follows.

LemMA 3.2. Let, for a sequence of independent observations {xi} on a random
p-vector X, S; be defined as in (2.1), and let T™%* be a fized p.d. or p.s.d. matriz and
lo > p a given integer. Then S; — T is p.d. for some | = 1y with probability one, if
and only if

(3.1) lim;,,P{p; = 1} = 0,
where p; is the largest root of the equation in p
(3.2) [T — 0S4 = 0.
Proor. The lemma will be proved, if we can show
(3.3) P{S; — T beingnot p.d.forall I =1} =0

if and only if (3.1) holds.
Now, by Lemma 3.1 the sets

[{Xk} :S; — I'not pd], l=1 , lo + ]., ey

form a non-decreasing sequence, and, as for such a sequence the measure of the
limit is the limit of the measure, we can write (3.3) equivalently as

(3.4) lim,»P{S; — I being not p.d.} =

But, from a well known result of matrix algebra (see, e.g., [9], Theorem 48,
p. 151), it follows that S; — I'is not p.d., i.e., I' — S, is not negative definite, if
and only if p;, the largest root of (3.2), satisfies p; = 1. Therefore (3.3) and
(3.1) are equivalent.

2 In a different context, Robbins [11] applies the same transformation on the observations
of a single variate.
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Note. The least integer [ = [y, for which S; — TI'is p.d., is a random variable
depending on Iy, T, and {x}.

In this and the following section, we shall make the following assumption.

AssumprioN. The distribution of the set of predictors x is such that the condi-
tion (3.1) holds for any p.d. or p.s.d. matrix I".

This will ensure termination with probability 1 of the sequential procedures
for inferring about the regression coefficients. It is, however, not very restrictive,
as may be seen from the following lemma.

LemMa 3.3. Under the set-up of Lemma 3.2, a sufficient condition for (3.1) to
hold for any T is the existence of the dispersion matriz of X.

Proor. Let the dispersion matrix of x exist and be = and the mean vector
(which then necessarily exists) be m. By a straightforward multivariate
generalization of the Weak Law of Large Numbers, as I — o

1 1
(1/1) > x —£ . m, ) 2 xxk — 5%+ mm'

the sign £, denoting convergence in probability of a random matrix.
Hence, by a well-known result (see Cramér [7], Section 20.6) on the stochastic
convergence of rational functions of stochastically convergent sequences,
from (2.1), as | — =,

/s, —L— =,

and hence 1S7" —£ 5 Therefore, denoting trace by tr, as I — o

(3.5) tr °S7T —2— 0.
But, as I' is, at worst, p.s.d., from (3.2),
(3.6) 0<p StrTS; "
From (3.5) and (3.6), we get p: —2 ,0asl— = and this implies (3.1)
The sampling rule. We now come to the sequential procedure for inferring on

any ¢ (1 < ¢ < p) of the regression coefficients and we take these, without any
loss of generality, to be 81, - -+, B, . In what follows, we shall write

(3.7) B = (B, -+, Bd),

8y reducing to § or B, when ¢ = por 1.
We start with an integer no = p + 2, a constant z > 0, and a p.d. matrix
A% = (N\;), all at our choice, and define

A oqx(p—q) >
?

> = <o(p-—q)><q o(p—q)x(p—-q) if ¢ < p;

= A, if ¢ = p.
Then I is p.d. or p.s.d. according as ¢ < p or ¢ = p.
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Next, taking an initial sample of size n, denoted by (2.4), we determine the
quantities mentioned in Section 2. We then make n — no further observations
according to the following rule.

We go on making random selection of units (numbered ny 4+ 1, 7o + 2, -+ +)
from the population and observing the x-values xx,k = no+ 1,n0 + 2, --- .
For each I = ny + ¢, we calculate S; given by (2.1) and see if S; — &2 'I'is p.d.
(As S;is p.d., and I' is of the above form, in practice, to judge the positive-
definiteness of S; — 6% 'T", we need see the positivity of only its determinant
and the ¢ — 1 principal minors obtained by deleting the 1st row and column,
first 2 rows and columns, ---, and the first ¢ — 1 rows and columns respec-
tively). If S; — %2 'T" is p.d., we stop with the lth unit; otherwise, we take the
(I + 1)th unit and proceed likewise. The terminal value of ! being n, we com-
plete the sampling by observing y; corresponding to the kth unit, k = no -+
]_’ <o, N,

The sampling rule being as above, the sample-size n is the least integer subject
to

(3.9) n = ng + g, S, — (ﬁz/z)l" is p.d.

To understand the meaning of (3.9), let us consider the particular case ¢ = p.
Here (3.9) becomes: n = 1o + p, S, — 6’2 'Tis p.d. By Lemma 2.2, S, — &7 A
is p.d., if and only if the ellipsoidal region (8 — b,)'S.( — b,) = pé’F. in the
8 space, lies completely within the ellipsoidal region 3'A3 < pzF. when placed
at the same center, whatever be b, and F. . Now, if F. is the upper 100e % point
of the F, ., pi-distribution, and b, is the estimate of B obtained in the usual
way from the n observations, the first ellipsoidal region will represent a 100
(1 — €) % confidence region for 3. (This will be seen to be rigorously true from
the reasoning of Section 4). As z and A are given, obviously the second ellipsoidal
region is given. Thus, the sampling rule means: “Go on sampling till the sample
size n(=ny + p) is such that the confidence region for 3 (obtained as above)
based on n observations lies completely within a given fixed ellipsoid, when
placed at the same center.” A similar meaning can be attributed to the sampling
rule in the general case 1 < ¢ = p.
In what follows, we shall write X,, for the matrix (2.5) and also,

(3.10) X;’i(,(‘z-"o) = (xn0+1 y Xng+25 "y Xn),
(3.11) X2X® = (X, Xz, ***).

X., represents in matric form the infinite sequence of observations of which only
the first n are actually taken.

We now prove the following.

TureoreM 3.1. Under our assumption regarding the x-distribution, the above
sequential procedure terminates with probability one.

Proor. ¢° is distributed independently of X.,, and hence, independently of
X.. . Therefore, given ¢°, X., still represents a sequence of independent observa-
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tions on x. Hence, by our assumption regarding the x-distribution and Lemma
3.2, for every given ¢, the probability that for some I = no 4+ ¢ S; — 62T is
p.d. is unity. It follows that, unconditionally also, the probability of this event,
which is same as the probability of termination of the above sequential pro-
cedure, is unity.

By the note under Lemma 3.2, here the value of the sample-size n depends on
the particular X., encountered and &*, besides the initial constants ng, z and A.

After completing the sampling, we define

n} n} %,
0 0 *no
(3.12) H(ﬂ—%o+P+1))((P+1) = OPXI T;o .
(n— 1 ’
1 n9) X Xn—no

Then, by the rule of multiplication of partitioned matrices, we get using (2.1)
and (2.7),

no QX
(3.13) H'H n =8..

= n
XX XX
i 1

We next choose a matrix C™ ™% gubject to
(3.14) C'H = (o™, IX9)
(3.15) C'C = (2/6)A™!

according to some predetermined rule depending on ¢*, n, and H. That such a C
can be found under the conditions (3.9) will be shown in the appendix (see
Theorem A.1).

Let a (n — my + p + 1)-vector be defined by

(316) n = (nigno ’ g;o y Yno41 5 *°° s yn)’
where g, is given by (2.8). Also, let

(3.17) 855" = C'n.

Then we have the following theorem.

THEOREM 3.2. Given z > 0 and the p.d. matriz A™?, if B s defined by (3.16)
and (3.17), where C satisfies the conditions (3.14) and (3.15), and n s the least
integer subject to (3.9), the statistic
(3.18) (1/29) (B — Bw0)'A(Bw — Biw)

has the distribution of Fgny—p—1 - In the particular case ¢ = 1, if we take A = M1 =
1, the statistic

(3.19) 7B — By)

has the distribution of tny—p—1 .



SEQUENTIAL PROCEDURES FOR MULTIVARIATE REGRESSION 1047

Proor. If X, and ¢° are fixed, n becomes fixed. Therefore, from (3.16) and
the results of Section 2 it follows that, for fixed X, and ¢°, n is distributed as a
multinormal vector with dispersion matrix oI "0FTPHIX(m=m042+D and mean
vector given by

E(ﬂ, l Xoo ) 6'2) = (0[, B y T BP)H,‘

Hence, as, for fixed X, and ¢°, C also is fixed, from (3.17) we see that, given X,
and 4, § has a multinormal distribution with

(320) E(qu) l X°°’ &2) = (a’ BI; ) BP)H,C = 62!1)
[by (3.14)] and dispersion matrix
(3.21) ’C'C = 2(d*/6") A7,

Hence, it follows that, for fixed X, and ¢
(B — 8)'("/6HATT ' B — Bw) =
(1/2)(6°/0") (B — Bw)'A(Bw — Bw)

is distributed as a x> . So, when X,, only is fixed, (3.22) is distributed as a X
independently of 4*. Therefore remembering the distribution of ¢* for fixed X ,
we see that, for fixed X, , and hence, unconditionally also, the statistic (3.18)
is distributed as Fg, no—p—1 -

In the particular case ¢ = 1, B, reduces to 8; , and B to, say, Bi . There, for
fixed X, and &%,

(3.22)

(6/0) (Ms/2)*(B1 — B1)

is distributed as N (0, 1). If we put Ay = 1, (which, for ¢ = 1, we shall hereafter
always do by incorporating Ay with 1/2) then, reasoning as before, we see that
the statistic (3.19) is distributed as £.,—p—1 unconditionally. This completes the
proof.

Theorem 3.2 can be utilized for testing and estimating 8, -

Test. We first consider the test for the hypothesis H*: 3 = B(s . By Theorem
3.2 under H°

(3.23) F = (1/2¢) (B — 8(n)'A(By — Blo)

is distributed as Fg,uy—p—1 . For any (0 < e < 1), let F. be the point in the
F 4 ,ny—p1-distribution with upper tail probability e. Then, rejecting H * whenever

(3.24) F>F.,

we get a test for H® at level of significance e. That the test should correspond to
the upper tail of the distribution of F is suggested by the inequality

E(F|Bw) > E(F | Bly) for B # Bl

which can be easily proved. We now consider some properties of the test cor-
responding to the rejection rule (3.24).
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We first show that for any alternative hypothesis H specifying 3¢ the power of
the test is completely known. For this, we derive the non-null distribution under
H of the statistic F given by (3.23).

Given X, and ¢°, 8, has a multinormal distribution with mean vector and
dispersion matrix given by (3.20) and (3.21) respectively. Hence, reasoning
just as for Theorem 3.2, it follows that, for fixed X., and ¢°, ¢6°F /4" is distributed
as a non-central x° with d.f. ¢ and non-centrality parameter ¢6°A/q”, where

(3-25) A= 516 (@(q) - @?q)),A(@(q) - @(()q))-

Also, for fixed Xa, (ng — p — 1)6°/4" is distributed as a x%,_p_1 . Combining
these two facts, it directly follows that, given X, , F has the density function

S A’( q )“"“" I'{3(no+ g —p+ 4r — 1)}
T

Hri\ng —p—1 {3(g + 2n)iT{3(n0 — p — 1}
(3.26) pitater—2)
{1 + q(A + F) }%(no+q——p+4r-l)
Ny — P — 1

which evidently must represent the unconditional density of F' as well.

The distribution of ¢F/(ny — p — 1), as easily derived from (3.26), is really
identical with the non-central distribution given by Stein [13] in the case of
testing the general linear hypothesis. However, Stein gives the distribution in an
integral form. In a recent paper [12], Ruben, while arriving at Stein’s test by a
different approach, gives the distribution in the series form as above.

The distribution (3.26) involves the parameter A given by (3.25), without
depending on any nuisance parameter, or, the unknown x-distribution. There-
fore, for any alternative hypothesis H specifying 8, the power of the test cor-
responding to the rejection rule (3.24) is completely known. Integrating the
series (3.26) term by term between the limits (F., © ) we obtain, after a little
reduction, the following form for the power function:

~3tng—p—1) o
_ q ° 1 T{3(mo —p —1) + 1}
! (1 ta—p= 1) 7 T —p = D)

qA r 1 1 >
- I . - S (mo—p—1
(no—p—1+qA> m%ﬂmﬁs<2q+r’2<n° p=b+r),

where I denotes the usual incomplete beta-function ratio.
The power function is monotonic tncreasing in A. This may be seen by writing
the power as the expectation of

(327)  P{F > F.|Xa,d", 8w} = Pla(¢’/d")F > ¢(’/d")F.| X, &*, B0}

over X, and ¢°. Now, from what has been said above, (3.27) would be a function
of the non-centrality parameter ¢é°A/¢” of the non-central x°, ¢g6°F/c”. Then,
from the well-known fact that the upper tail area of the non-central x’-distribu-
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tion beyond a fixed point increases with the non-centrality parameter, it follows
that, for every fixed X, and ¢°, (3.27) would increase with A, and hence, so
would the power. Reasoning in the same way it can also be seen that we can
make the power as close to € or 1 as we please by making A sufficiently small
or large.

In practice, choice of A would determine the form of the ‘distance function’
A, and hence, the shape of equidetectibility contours of the test, which from
(3.25) are seen to be ellipsoids of the same family. After choosing A and 7, in a
particular problem of testing, we can choose z to make A assume any value on a
given ellipsoid

(3.28) (B — B(0)'A(Bw — Btw) =15

and thus make the power on the ellipsoid (3.28) equal to any previously specified
level ¢ > e Thereby, because of the monotonicity property mentioned above,
the power at all points outside (3.28) would be greater than ¢'.

By Theorem 3.2, in the particular case ¢ = 1, to test H*:8; = B} we can al-
ternatively use the statistic

(3.29) t= 2B — Y,

which is distributed as ¢,,—,—1 under H,. Under an alternative hypothesis H
specifying f: , ¢ would be obviously distributed as

tno—p—l + z_%(Bl - Bg)

For formulating the test, we can take either a single tail or both tails of the
tno—p—-distribution, according as alternatives on a single side or both sides of
81 are of interest. The power function can always be expressed as an incomplete
integral of the ¢,,—,s-distribution. Thus, in the two-sided case, the critical region
is: |t| > t., where £, corresponds to the 100e % level of significance of ¢. Denoting
by Pro—p—i(t) the density function of ¢,,—,—1, the power function of this test

would be
tetz"H(B1—610)
- Propa(t) db.
—t —2"3(81—$10)

The power functions of the one-sided tests can similarly be written down. In all
cases, it can be seen that the power is completely known and increases with the
‘distance’ of the alternative value from the null point 8} on the admissible side
(or sides) of it. Control of power, in the same sense as before, is also possible
by the choice of 2.

Confidence region. To derive a confidence region for 3¢, , we see from Theorem
3.2 that, F. being same as before, the fixed-contour confidence region

(3.30) (B — B0)'A(Bw — Bw) = 2qF.

for B, would have confidence coefficient 1 — e. Also, here we can choose before-
hand A and z (for the given n,), so that the region (3.30) has the contour of any
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specified g-dimensional ellipsoid. In the particular case ¢ = 1, we can put the
estimate of 8, in the form of a confidence interval, the fixed length of the interval
being adjustable by the choice of z.

Point estimate. For point estimation of 8¢, given a loss function of the form
(1.2) (wherein 8 now stands for 8¢y and A™? is a p.d. matrix), we can start
with any 2, no and the A nvolved in the loss function, and then adopt the sequential
procedure described above. Then taking ((, given by (3.17) as the point esti-
mate of 3¢y by Theorem 3.2, the expected loss comes out as

(3.31) Fol(Bw — Bw)'ABw — 8w)} = EeleqF,, ne—p-1}.

We assume that for the given ¢(z) the expectation (3.31) exists. Then ¢(x)
being non-decreasing in (0, « ), it may be readily seen that, as z > 0 increases,
the expected loss (3.31) increases continuously from ¢(0) to (). Therefore,
starting with an appropriate z, we can make the expected loss of the proposed
point estimate attain any desired intermediate value.

4. Improved procedure for inferring on the regression coefficients. The sequen-
tial procedure developed in the preceding section is designed to yield a test with
known power, a confidence region with fixed ellipsoidal “contour”, and a point
estimate with known expected loss for the set of regression coeflicients.

As in Stein’s [13] two-step procedure for the parameters of the linear regression
set-up, the above procedure seems to waste some information in the process of
meeting those objectives. With a view to utilizing some more information in his
case, Stein suggested a modified two-step procedure, which cuts down somewhat
on the cost of sampling and provides tests and estimates which are better as
regards performance and, at the same time, are simpler to apply than those
given by his original procedure. But the power of the test and the expected loss
of the point estimate given by the modified procedure involve the unknown scale
parameter; also, the confidence region (with a predetermined confidence co-
efficient) given by it has a random ‘“‘contour”. In this section, we shall develop
in an analogous manner a more economical sequential procedure, which would
yield a test, a confidence region, and a point estimate for 3, superior to those
of Section 3 as regards performance. Also, the tests and estimates of this section
will be much simpler than those of Section 3 from the view point of application.
But the power of the test and the expected loss of the point estimate will not
be completely known, nor will the “contour” of the confidence region be fixed.

We start with the same no, 2, and A as in Section 3 and, after taking a first
sample of size ng as there, take n — n, further observations by a similar sequential
procedure, n here being the least integer subject to

(4.1) n = ng, S. — (8*/2)T is p.d.
Comparing (3.9) and (4.1), we see that in the present sequential procedure

we are allowed to take n = [ even for ny < I < ny + ¢, provided S; — (6’/2)T
is p.d. Termination with probability 1 of the sequential procedure is assured as

before.
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Evidently, the present procedure is more economical than that of the pre-
ceding section in terms of the A.S.N. We now show that it yields tests and
estimates better than those given by the latter. For this we first make a reduction
of the conditions (4.1). Let

(4.2) S;1 = (‘Su'n)i’i=lw~.p s n(q) [(S” n)m—L ]_1

and let us partition
oXp ( Sg>1<q SqX( —Q)
SP = 0> )

(p—a)Xq S(p—q)X(p—q) .
21-n 2.

Then, using the well known result (see Anderson [1], p. 42) S, =
Sin — S1nSmnSen, by Lemma 2.1, we get

Sn qu(p—q)
(4.3) BSnB, = <0(p—(<(11))>(q Suon
where
Iqu —S N n
(44) B = (O(p—q>><q I<p33)><<p2—2q>>
Also, by (3.8) and (4.4),
(4.5) BrB=rT.

From (4.3) and (4.5), it follows that there is a non-singular matrix B, for which
B(S, — 2 '¢'T)B' is

S, qu(p—q) Suiy — A, OqX(p—q)
10 (o8 %, ) = @ = (oS 0
As Ss., is p.d., (4.6) is p.d., if and only if S, — (& ?/2) A is p.d. Therefore,
we can rewrite (4.1) as
(4.7) n = ng Sue — (6*/2)A isp.d.
Now, going back to the inference procedure, let b2<* be defined by

(4.8) S.b, = o,

where n is the sample size for the present procedure, and , is given by (2.3).
Let us consider the distribution of b,, given X, and ¢°. By definition,

(4.9) ©n = @ng + Mg (Zng — &) + Z Yi(Xe — Zn).

In (4.9), for fixed X., and ¢°, @, is distributed as N (S48, & ’S1o) 1ndependently
of §n, , which has the usual normal distribution. Also, for fixed X,, and 6%, n is
fixed, and ¥z, k = no + 1, , n are as usual normally distributed, mdepend-
ently of each other and, of course, Ong » Jng - From these facts, it directly fol-
lows that, for fixed X, and 4°, @, is distributed as N (S,8, ¢ ’S.,.). Hence, by virtue
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of (4.8), we see that the distribution of b., given X, and ¢° is N(8, ¢’S;').
Therefore given X., , b, is distributed as N (8, ¢°S;") independently of &°.

Now, let us write
(4.10) b:l = (bin, ban, =+, bpa), b;(q) = (brn, ban, **+, bgn)

Then clearly, for fixed Xo, , b is distributed as N (8, , °Sn(p) independently
of 4°, where S, is defined by (4.2). From this and the distribution of ¢* given
X, , it follows

THEOREM 4.1. by being defined by (4.8) and (4.10), where n s the least integer
subject to (4.1), and S,y 1s given by (4.2),

(1/46") (P — B(@)Snw(Paio — Bia)
is distributed (unconditionally) as Fyny—p—1. In the particular case ¢ = 1,
(b — 81)/[6(8™ )]

is distributed (unconditionally) as tny—p—1 .

On the basis of this theorem, we can construct a test for H*:3,, = 8¢y and
a confidence region for 8, . We first show that this test would be superior to
that developed in Section 3.

Let

(4.11) F' = (1/6") (bay — B80))" St (bny — Bta),

and let F. denote the point in Fy ., - distribution with upper tail . Then,
at significance level ¢, the test for H®, based on Theorem 4.1, would consist in
rejecting H', whenever

(4.12) F'>F..

For any alternative hypothesis specifying 8¢y , the power of this test would
be the expectation of

(4-13) P{F, > Fe | Xoc ) &2, @(q)} = P{Q(a'z/o'z)pl > Q(&z/az)Fe l Xeo ) 627 6(41)}

over X,, and 6°. The power of the test corresponding to (3.24) was seen in (3.27)
to be the expectation of

(4.14) P{q(6°/d")F > q(6*/0")F.| Xw , &, Bio)}-

Now, from (4.11) and what has been said above, for fixed X., and ¢°, ¢(6°/d*)F’
is distributed as a non-central x* with d.f. ¢ and noncentrality parameter

(4.15) (1/6") (B — B()) Saw (B — B)-

Also, in Section 3 it was seen that, under the same condition, ¢(¢°/c”)F has
a non-central x’-distribution with the same d.f. and noncentrality parameter

(4.16) (6°/26") (B — B))'A(Bwy — Blw)-
From (4.7) and Lemma 2.2, it follows that, for any B8, % Bl , (4.15) is
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greater than (4.16). By a well-known property of the non-central x*-distribution,
this implies that, for any alternative hypothesis, (4.13) exceeds (4.14) for every
fixed X, and ¢°. Hence, the test corresponding to (4.12) is uniformly more
powerful than that corresponding to (3.24).

Here, in the particular case ¢ = 1, we can alternatively base our test for
H:8 = Blont = (b, — BY)/[6(S™™? and the t,,_p_s - distribution. As
in this case, (4.7) implies (8™ ™)™ > 2z7'¢’, considering conditional powers given
X.. and ¢°, it can be seen that any tW0—51ded or one-sided test based on ¢ would
be uniformly more powerful than the corresponding test based on (3.29), on
the admissible side (or sides) of 8} . However, as is easy to see, for the tests of
this section, the power function involves both the nuisance parameter ¢ and the
unknown distribution of x and is thus not evaluable.

Coming to estimation, the 100(1 — ¢) % confidence region based on Theorem

4.1, 1s

(4.18) (B — Pn@) ' Sn@ (B — b)) = 6 Fe ’
and the confidence region (3.30) can be written as
(4.19) (8*/2) (8w — Bw)'ABw — Bw) = ¢é°F..

From (4.7) and Lemma 2.2, it follows that the region (4.18) lies within (4.19)
when placed at the same center and is thus ‘“narrower” than the latter. However,
the “contour” of (4.18) depends on the observations taken and therefore varies
randomly.

For point estimation of 3, , we can adopt the procedure of this section with
the ¢ X ¢ matrix involved in the loss of the form (1.2) as A and take b,
as the estimate of B¢y . As, in (1.2), ¢(z) is nondecreasing in (0, «), by (4.7)
and Lemma 2.2, the resulting expected loss

ESD{(bn(q) - g’(q)),A(bn(q)_@(q))}
< Ee{(2/6") (bu — B@) Snta(bnig — Biw)}-

The equality in (4.20) holds only in the trivial case when ¢(x) is a constant.
Now, by Theorem 4.1, the right-hand side of (4.20) is Ee{z:F g ny—p—1}, Which,
as shown in (3.31), is the expected loss of the point estimate §(, proposed in
Section 3. Thus, b, has smaller expected loss than § as a point estimate
of B¢y . But of course the expected loss of b, (the left-hand side of (4.20))
depends on ¢ and the x-distribution and so is not evaluable.

(4.20)

5. Sequential procedures for inferring on the regression constant a. We
first note some results similar to those considered at the beginning of Section 3.

LemMa 5.1. For a sequence {Xi} of real p-vectors, let ${7™"*P* be defined as in
(2.2). Then, if for a given symmetmc matriz TPOXPY gnd some 1, 8§, — T s
p.d., the same would be true for Sy —T.

PROOF. As, by definition, 8,1, = §; + %,.1%741, the lemma follows directly.

Lemma 5.2. Let, for a sequence of independent observations {Xi} on a random
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p-vector X, S; be defined as in (2.2), and let T WXE po o fized p.d. or p.s.d.
matriz and ly > p a given integer. Then S; — T is p.d. for some I = I, with proba-
bility one, if and only if
(5.1) limy. P{pr = 1} = 0,
where p; is the largest root of the equation in p
T — oSy = 0.

ProoF. The proof using Lemma 5.1 closely follows that of Lemma 3.2.

Note. The least integer I = I, for which §; — T is p.d. is determined by l,, T
and {Xk}

To ensure termination with probability 1 of the sequential procedures to be
developed in this section, we shall assume the following

AssumptioN. The distribution of the set of predictors x is such that, for every
matrix TP X®H for which the element at the upper left-hand corner is posi-
tive and all other elements are zero, condition (5.1) holds.

Lemma 5.3. Under the set-up of Lemma 5.2, a sufficient condition for (5.1)
to hold for any p.d. or p.s.d. T is that the dispersion matrix exists for x.

Proor. If the dispersion matrix of x exists, using the notation for Lemma 3.3
and by a similar argument, it follows that

& P 1 m'
(l/l)Sz—“> (m z).

Hence, we get 5, S 0, which implies condition (5.1). The above assumption
also is realized if the dispersion matrix exists for x.

We now give a sequential procedure for inferring about the regression con-
stant «. As in Section 3, we start with ng = p + 2, and z > 0 and define the
p-s.d. matrix

(52) FHOXGHD 1 o™
. - OPXI Opxp .

Then, as before, after determining the quantities mentioned in Section 2 from
an initial sample (2.4) of size no, we sequentially take n — no further observa-
tions Xx, Y, k = mo + 1, - -+, m, where n is the least integer subject to

(5.3) n = no+ 1, 8§, — (6’/2)T isp.d.

Under our assumption regarding the x-distribution, the termination with
probability 1 of this sequential procedure is assured by Lemma 5.2 and the
sample size n depends on, besides 7, and z, the particular X., (defined by (3.11))
encountered and &

Let H be as defined by (3.10) and (3.12) (where n, of course, is as here).

We next determine a &™ "**PX! subject to

(5.4) ¢H = IXo
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(5.5) e = (2/6)

according to some predetermined rule depending on ¢°, 7, and H. In the appendix,
we shall show (Theorem A.2) that such a & can be determined, if conditions
(5.3) hold. Now consider,

(5.6) &= Tn,

where n is as in (3.16) (n being as here). Then, reasoning as in Section 3 and
remembering (5.4) and (5.5), we see that, for fixed X, and ¢°, & is distributed as
N(a, 20°/6"). Hence we get the following

TuaeoreMm 5.1. For a given z, if & is defined by (5.6), where € satisfies (5.4)
and (5.5), and n is the least integer subject to (5.3), then 2 (& — a) is distributed
(unconditionally) as tny—p— .

On the basis of this, we can construct a test for H’:a = o’ and a confidence
interval for « in the usual manner. The power of the test would be a known
function of 2 ¥(a — a") and would be controllable by the choice of z. The length
of the confidence interval would be a known constant multiple of z* and would
therefore be adjustable by the choice of z. Further, proceeding as above, if we
take @ as a point estimate of «, the expected loss, for a loss function of the type
(1.2), would be known and adjustable by the choice of 2.

We now indicate how an improved procedure of the type given in Section 4
can be developed in this case also. Starting with the same 7, , 2, and T as above
and taking a first sample of size no , here we take sequentially a second sample
of size n — mo, where n is the least integer subject to

(5.7) n=mn S, — (/)T ispd,

termination with probability 1 of the procedure being guaranteed as before.
Comparison of (5.3) and (5.7) reveals that the A.S.N. of the present procedure
would be slightly lesser than that of the preceeding. Before coming to the test

and estimates resulting from it, we note that by Lemma 2.1 the positive-def-

initeness of 8, — 2 '¢°T is equivalent to that of

n Z X 1
s, [ox n wt
(5.8) <11><<p+1> (2/ &2)) = ZI: Xi zl: X x, o -
1 01XP 2

After pre- and post-multiplication by the non-singular matrix

1 oX? 0
< —%, Ip><p 01?)(1)
—(1/n) o> 1

and its transpose respectively, the right-hand side of (5.8) becomes (because of
(2.1))



1056 SHOUTIR KISHORE CHATTERJEE

n  oX? 0
(5.9) o™ s, —X, .

0 —x, (2/6") — (1/n)
As S, is p.d., (5.9) is so, if and only if

Sn —i,,

‘—ii. (/6) — (1/n)| ~ 0

Therefore, (5.7) can be rewritten as
(5.10) n=mn, (1/n) + 2,8.'%, < (2/8%).

After completing the sampling, let us define b, by (4.8) (n being as here),
and write

(5.11) Un = §n — DpX, .

Now writing 7, = (1/n)(nga, + ZZO+1 Yx), and then arguing as in Section 4,
from (5.11) we deduce that, for fixed X, and &°, a, is distributed as
N(a, o*{(1/n) + %,S,'%,}). Hence we get the following

THEOREM 5.2. a, being defined by (5.11) and (4.8), where n is the least integer
subject to (5.7),

1, o !
(an - a)/é {7‘1 + in S;lin}

18 distributed (unconditionally) as tn,—p—1 -

As n satisfies (5.10), we can show that the test based on Theorem 5.2 is
uniformly more powerful than the corresponding test based on Theorem 5.1
(by considering conditional powers given X., and ¢°), and the confidence interval
based on the former is narrower than the corresponding confidence interval
based on the latter. As a point estimate of @, a, can similarly be shown to have
a smaller expected loss than &, for a loss of the type (1.2).

6. Distribution and expectation of sample-size. In this section we show how
rough approximations to the distribution functions of the sample-size n for the
sequential procedures developed above can be obtained. The exact distributions
are derived under the assumption of normality of x, only for the case of inference
regarding a single regression coefficient and inference regarding the regression
constant @, in the former case, close bounds to the expectation of n (A.S.N.)
being also available. For all these studies, we consider only the original procedures
(the procedure of Section 3 and the first procedure of Section 5), corresponding
results for the improved procedures requiring little modifications.

First, consider the procedure of Section 3. As here n is the least integer subject
to (3.9), by Lemma 3.1, we get P{n < ny + ¢} = 0, and for I = n, + ¢,

(61) P{n < 1} = Prob. S; — (6%/2)T being p.d.

Now, remembering that T is defined by (3.8), and carrying out a reduction
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similar to that of Section 4, we get, for I = no + ¢,
(6.2) P{n £ I} = Prob. (1/1)Siy — (6*/21)A being p.d.,
where Sy is defined by
(6.3) St = (8w, Suo = (87 iimtd
Now, let the dispersion matrix of the x-distribution exist and be X, and let
(6.4) 2 = (M)imteens  Ew = [(6Dimeed

Then, as by the multivariate generalization of the weak law of large numbers
I''s, —£— = we have, by a well-known result (see [7] §20.6),

(6.5) (1/D)Sup —£— 20 -

Because of (6.5), for large I, in (6.2) we can replace I 'Sy by E(p as an
approximation. Therefore, for a large I = no + ¢,

(6.6) P{n £ I} ~ Prob. £, — (4°/21)A being p.d.

Writing 7,, for the minimum root of the equation in =
(6.7) 2@ — rA| =0,
from (6.6) we have (see [9], Theorem 48, p. 151), for large Il = no + g,
(6.8) Pin £ I} =~ P{(6*/2l) < tm}.
Now, as (my — p — 1) ¢*/d" is distributed as x%4,—p—1, from (6.1) and (6.8)
we can state

P{n <m+q} =0,

(69) \ "
Pin S 1} >~ Pixaypa <2llmo—p—1) 2, forl=mno+ g,
ag

the approximation in (6.9) being close for large I.

In the particular case ¢ = 1, an exact expression for the distribution function
can be derived if we assume that the distribution of x is normal with dispersion
matrix as before X. Then, as in this case we take A = 1, for I = no + 1, (6.2)
can be written as

(6.10) Pin £ 1} = P{1/8"" > §°/2}.

Now, it is known (see e.g., [1] p. 85) that, under normality of x, ou S s

distributed as a xi_, . Also, (np — p — 1)6*/4” is distributed as a x,.o_,,_l in-
dependently of X, and hence, of /8", From these facts we can express
(6.10) as a double integral, and by reducing through repeated integration,
we get

(6.11)
Pin =l =1—Ief3(l—p),3(ne—p—1)] forlzmne+1,
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where
@ = ey —p — 1) + o,

and I denotes the usual incomplete beta function ratio.

Close bounds, for the A.S.N. of the sequential procedure for inferring about
B, can be obtained by comparing the distribution (6.11) with that of the
sample-size n’ of a sequential procedure for inferring about the bivariate regres-
sion coefficient, (the case p = 1) which has been developed in [6]. Referring to
[6], it can be seen that the distribution of n’ + p — 1 is same as the distribution
of n given by (6.11), provided for the former we take the pilot sample-size and
predictor variance as no — p + 1 and 1/¢" respectively. Therefore, we can
obtain bounds for E(n) from the bounds of E(n’) given in [6], by introducing
these adjustments. (The bounds for E(n’) have been obtained by an indirect
method and that is not extensible here). Thereby we get for E(n),

upper bound = n, + 1 + (°6"/2)Ie2[(n0 — D), ¥(ng — p + 1)]
— (no — p)leolz(mo — p + 2), 3(no — p — 1)},
lower bound = upper bound — Ie2[3(ny — p), 2(ne — p — 1)].

As regards inference about «, for the first procedure of Section 5, n is the
least integer subject to (5.3). Therefore, by Lemma 5.1, the distribution of
n is given by P{n < ny + 1} = 0, and for l = n, + 1,

(6.12) P{n £ I} = Prob. §; — (6*/z)T" being p.d.
Reducing as shown in the same section, for I = n, + 1,
(6.13) Pin = I} = P{[1 + Ix;S7'x]" > (6°/21)}.

Now, let m and X denote the mean vector and dispersion matrix of x. Then,
in (6.13) we can replace IX;S7'%; by its probabilistic limit m’=™'m, as an ap-
proximation, and work out P{n =< I}, for I = n, + 1, from the distribution of &

Otherwise, if we assume normality of x, we have I(I — 1)%;S7'%, distributed
as a non-central Hotelling’s T°, with d.f.p., I — p, and non-centrality parameter
u’ = Im’Em, independently of 4°. Hence, after some reduction the probability
(6.13) can be expressed as the sum of the convergent series

(2Tl — p — DI 3 (1/r) (/20 B — p), 3p + 1T

1 v/d?
. f PP (1 = ) gy f HytoerD gy
0 0

where d® = o*/2(ny — p — 1)L

7. Concluding remarks. So far in this paper, we have considered only sequen-
tial procedures suitable for inferring about (i) some or all of the regression
coefficients B:, B2, -+, Bp, and (ii) the regression constant «. However, it
should be possible to tackle any problem of inference, regarding a set of
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7 (1 =r = p+ 1) independent linear functionsof a, 8; ,8:, - - - , B8, , by methods
similar to those described above. The principle would be to generate r linear
functions of the y-observations, such that their conditional distribution, given
X, and & ), is multinormal, with the given parametric functions as means, and
with (¢”/6")-times a given p.d. matrix as dispersion matrix. The sample size
should be so taken that this may be possible. In particular, many such problems
of inference will be reducible, by a simple transformation of the predictors, to
either of the two types (i) and (ii) mentioned above. There, working with the
transformed predictors, we can directly follow the appropriate precedure as
described in Sections 3-5. Such a case at hand is the problem of inference on the

predicted value Y’/ = o + Bz, + - —|— By , given x1 , « - - x4 . For this, we
can make the transformation u; = &; — 21, - -+ , up = T, — Tpin (1 3). Thereby,
we get the joint density function of uy, -+, u,, y as

(7.1) gQur, -+, up)(2m0") Fexp [—(1/26°) (y — Y — Bys — -+ — Byu,)Y),
where g denotes the joint density function of u;, -« -, u, . Obviously, ¥’ occurs
as the regression constant in (7.1), and therefore, to infer about Y, we can apply
the procedure of Section 5, taking u,, - - , u, as the predictors.

Acknowledgment. The author is deeply grateful to Mr. H. K. Nandi, Depart-
ment of Statistics, Calcutta University, who suggested the problem and also
offered help and guidance throughout the investigation. Also, thanks are due
to the referee for the improved presentation of the paper.

APPENDIX

In this appendix we shall derive certain results regarding the existence of the
coefficient matrix C of Section 3 and the coefficient vector & of Section 5, sub-
ject to the respective sets of conditions.

We first prove the following lemma.

Lemma Al If A™ {s a matriz such that A'A is non-singular, d"™* is a given
vector, and f* > 0 is a given number, then a ¢™, subject to

(A.1) cA =4d,
(A.2) cc =1
can be determined, if and only if, either
AI

(A3) m=r, dé }12 =0,
or

!
(A4) m=r+1, Adf& }12 = 0.

Proor. As A’A is non-singular, A™*" must be of rank r. Therefore m = r,
and the set of r linear equations (A.1) (in the components of ¢) are consistent.
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Now, if m = r, the equations (A.1) have a unique solution for ¢, and a vector
satisfying both (A.1) and (A.2) would be determinable, if and only if this solu-
tion satisfies (A.2). This means

(A5) d (A’A)Hd =74

(A.5) is equivalent to the second relation of (A.3).

Ifm =2 r 4+ 1, (A.1) will have an infinite number of solutions, and ¢’c, sub-
ject to (A.1), will assume all positive values above a minimum. Therefore,
a ¢ satisfying (A.1) and (A.2) would be determinable, if f* is not less than this
minimum. By Lagrange’s method of undetermined multipliers, it can be seen

that the ¢, minimizing ¢’c subject to (A.1), must be of the form
(A.6) ¢ = Ak,
where k™' is determined by (A.1). Eliminating k from (A.1) and (A.6),
Min (4. ¢’c = d'(A’A)7"d
Hence, for m = r 4+ 1, a ¢ satisfying both (A.1) and (A.2) can be found, if
and only if
d’'(A’A)7'd =

This is equivalent to the second relation of (A.4)

We now prove the following theorem regarding the determinability of the
coefficient matrix C of Section 3.

TuEOREM A.1. For any given n, a matriz C™~ satisfying the relations

(3.14) and (3.15) can be determined, if and only if the conditions (3.9) hold.
Proor. For convenience, let us write

no+p+1)xq

(A7) (2/62)A_1 =W = ('wi,-)i,,»=1,...,q.
Forall r,1 < r < g, we shall write
(A8) (wij)i,,-zl,...,, = (wij), .

Also, let C"™*?*™xe — (¢ ¢y, -+, ¢,). Then the conditions (3.14) and
(3.15) can be rewritten as

(A9.1) c¢iH = (0,1,0,0, ---,0)X"™  ¢le; = wy,
(A9.2) ci(H,¢;) = (0,0,1,0, -+ 0, wey)X®™® oo = wne,
(A.9)
(A9.p) co(H,C1, €, -+, Cor)
= (0,0,0, -+ ,0,1, wgy, Wer, -+, Wgoqu1) X2,
c;cq = Wqq -

We first consider the determination of a ¢{" ™ ™**"X! gubject to (A.9.1).
As by (3.13) H'H is non-singular, we can apply Lemma A.1. Thereby, because
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of (3.13), we get that a c; satisfying (A.9.1) can be determined, if and only if
either

b

n i x; 0
(A.10) n = no, zn: xk Z": . x, I’ =0,
10 IIIXP Wu
or
n S:: X 0
(A.11) nzm+ LYy gy P20
T T

1
0 I X Wi

Now, as the distribution of x is continuous, for any n the determinant in (A.10)
and (A.11) can be zero with probability zero, so that we can neglect the pos-
sibility (A.10) and the equality in the second relation of (A.11). Therefore,
a c; satisfying (A.9.1) can be determined, if and only if

n Z X 0
> n n , 3
(A12) n=n + 1, Yx S xmx, I >0
1 1

1
0 I x® Wi

Asthe (p + 1) X (p + 1) matrix S, formed by the first p + 1 rows and columns
of the determinant in (A.12) is p.d., (A.12) can be rewritten as

n > x 0

(A.13) n=n + 1, Z X Z kal/c Ipxl 18 p.d.
1 1

1
0 I xp W11

Now suppose, (A.13) holds, and a ¢; subject to (A.9.1) has been determined.
We next find what further conditions must hold, so that a ¢, satisfying (A.9.2)
(with respect to this ¢;) can be found. By (A.13),

n Z:x,'c 0
H n n
<Ci>(H a) = ;xk ;xkx:'a ) o

1
0 I X W11
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is non-singular. Therefore, by Lemma A.1, as before neglecting cases with proba-
bility zero, we find that a ¢, subject to (A.9.2) can be found, if and only if

n Sxp o
1
(A.14) n=n+ 2| L |
= X XX, I ’
o X2 (w)s

where (w;;); is defined by (A.8).
Combining (A.13) and (A.14) we see that ¢, , ¢ subject to (A.9.1) and (A.9.2)
can be found, if and only if

n >ox, o™X
1
(A.15) n=m+ 2| - = r o aexz | 18 p.d.
X xXr 1
ot T (wy)e

Proceeding step by step exactly in the same manner, it follows that

C1,C, -+, Cqsubject to (A.9) can be determined, if and only if
n >x, o™X
1
> n n :
(A.16) n=n + g Sx D xx, X is p.d.
1 1

OQXI IQXP W
Now, for the non-singular matrix
1 OIXP 01><q
— $ PXP pX4q
D=|-% I o ,
oqxl QX? Iqxq

we have by (2.1),

4 1X4¢
n X, O
Zl: k n lez7 ol><q
(A.17) D T x Zn:XkX' [P D =|o™ s, I}|
1 1 1
OQX IQXP W/

oqxl Iq><p W

Therefore, the positive-definiteness of the matrix in (A.16) is equivalent to
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the positive-definiteness of the matrix on the right-hand side of (A.17), or
similarly, of the (p + ¢) X (p + ¢) matrix

Sn IPXq
(A.18) < >
IQXF W

Now, by Lemma 2.1, (A.7), and (3.8), by pre- and post-multiplying the matrix
(A.18) by a non-singular matrix and its transpose respectively, we get

S, — IPXIW TP P} S. — & r o
(A.19) ( > = 2

axp
0 w o W

Therefore the positive-definiteness of (A.18) and (A.19) is equivalent. Further,
as by definition, W is p.d., (A.19) is p.d., if and only if S, — 2 '6°T is true.
Thus, the conditions (A.16) reduce to the conditions (3.9), so that the theorem
is proved.

We next prove the following theorm regarding the determinability of the
coefficient vector & of Section 5.

TurorEM A.2. For a given n, a vector & ™**™X! satisfying the relations
(5.4) and (5.5) can be determined, if and only if the conditions (5.3) hold.

Proor. As H’'H given by (3.13) is non-singular, applying Lemma A.1 and
neglecting cases with probability zero as in the proof of the preceding theorem,
we see that & subject to (5.4) and (5.5) can be determined, if and only if

g, [eHox1
(A.20) n = n+ 1, X (50 > 0.
As 8§, is p.d., we can write (A.20) equivalently as
8, [PHoxt
(A21) n=mn+1, XD is p.d.

S RN

Now applying Lemma 2.1, (A.21) and (5.3) are seen to be equivalent, so
that the theorem is proved.
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