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Review 1, by WassiLy HorrrpinG

Unaversity of North Carolina

The general nature of this book is well described in the following quotation
from the author’s preface: ¢...I have made a selection of basic material in
mathematical statistics in accordance with my own preferences and prejudices,
with inclinations toward trying to make a unified and systematic presentation of
classical results of mathematical statistics, together with some of the more im-
portant contemporary results in a framework of modern probability theory,
without going into too many ramifications.” An early version of some of the
material was issued under the same title in 1943 in lithoprinted form by the
Princeton University Press. The book is intended for readers with good under-
graduate backgrounds in mathematics. It starts out with a brief account of the
foundations of modern probability theory, followed by chapters on distribution
functions, mean values and moments, sequences of random variables, character-
istic and generating functions, and special distributions. The statistical part
begins with sampling theory and asymptotic sampling theory, followed by three
chapters on statistical estimation (linear, nonparametric, and parametric) and
two on hypothesis testing (parametric and nonparametric). The final chapters
deal with sequential analysis, statistical decision functions, time series, and
multivariate statistical theory. There are over 400 problems most of which are
very helpful to the student and a good bibliography of 19 pages (which serves
also as an author index).

As the quotation from the preface indicates, the emphasis is on “classical”
rather than on more recent results. It is, of course, debatable which results are
important enough to be included in a book which covers so vast an area. I think
it would have been better if more attention had been given to those developments
which have yielded fairly general and systematic methods for constructing sta-
tistical procedures with desirable properties and which bring out connections
between seemingly unrelated topics. Books and papers containing important
results of this kind are mentioned but often without enough indication of the con-
tent to arouse the reader’s interest. These remarks apply especially to the treat-
ment of estimation and hypothesis testing. The chapter on parametric statistical
estimation deals mainly with the Cramér-Rao inequality, maximum likelihood

1467

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&

£2

The Annals of Mathematical Statistics. RIKORS ®

Www.jstor.org



1468 WASSILY HOEFFDING

estimators (defined as unique roots of the maximum likelihood equations which
maximize the likelihood), and confidence sets. Sufficient statistics are treated in
a way which does not fully bring out the fruitfulness of the concept. The terms
sufficient statistic and sufficient estimator are used interchangeably. By implica-
tion, if the parameter vector has r components, a sufficient statistic (or *“set of
sufficient statistics”) is a random vector with r components (see, e.g., p. 356).
One consequence is that it is difficult for the reader to grasp the full force of the
Blackwell-Rao theorem (Theorem 12.2.3). As the theorem is stated, one has to
know a sufficient estimator of 6 in order to improve on an arbitrary unbiased
estimator. The reader does not get a real idea of the powerful method of obtaining
optimal unbiased estimators which involves the notion of a complete class of dis-
tributions. (An unsuccessful attempt to define the notion is made on p. 393.)
Bayes and minimax estimators are not considered. The close relation between
confidence sets and tests of hypotheses and Neyman’s optimality criterion for a
confidence set are not mentioned. The chapter on testing parametric statistical
hypotheses contains a version of the Neyman-Pearson lemma (with an irrelevant
restriction and incorrectly stated), Wald’s extension to the case of a composite
null hypothesis, and a discussion of uniformly most powerful tests; the rest of the
chapter is devoted to the likelihood ratio test. No mention is made of methods
for constructing most powerful unbiased tests, of tests of Neyman structure and
of invariant tests. The chapters dealing with nonparametric estimation and
hypothesis testing present mainly examples of particular tests and confidence
sets and the reader may easily get the impression that no useful general methods
for obtaining optimal nonparametric procedures exist. On pp. 462-3 the notion of
a most powerful randomization test is briefly (and not very clearly) discussed.
Then it is stated (p. 463) that “in order to make progress those who have utilized
the method of component randomization in constructing nonparametric tests . . .
have borrowed test functions . . .from parametric testing theory.” This is ac-
curate only insofar as the early history of these tests is concerned. It is not men-
tioned that many of the test functions borrowed from parametric theory, includ-
ing those which are offered as examples, later have been shown (by Lehmann and
Stein [4]) to have optimal properties similar to that which the author just dis-
cussed. Similarly out of date is the assertion on p. 466 that “it has been found
necessary’’ to use rank tests suggested by analogous parametric testing problems.
On p. 429 and again on p. 430 the author warns the reader not to confuse a non-
parametric statistical hypothesis with a parametric statistical hypothesis. It
would have been more instructive to emphasize that general methods for con-
structing good statistical procedures exist which have been successfully applied to
both parametric and nonparametric problems (see, e.g., the books by Lehmann
[3] and Fraser [2]). In the brief chapter on decision functions the author misses
the opportunity to relate the Bayes and minimax solutions of a two-decision
problem with the closely connected results on hypothesis testing in Section 13.2.

One special feature of the book is the attention that is given to sampling from
finite populations. Results in this field, some of which appear to be new or have
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not appeared in textbooks, are scattered throughout the book. Worth noting is
the concept of a reproductive c.d.f., or rather a parametrized family of c.d.f.’s
F (x; 0). The family is reproductive with respect to 6 if the sum of two independ-
ent random variables having the respective c.d.f.’s F(- ; 6;) and F(- ; 6.) has
the c.d.f. F(- ; 6, + 6:). (But it is ambiguous to say, as is done on p. 158, that
the normal distributions N (u, o) are reproductive with respect to both u and
o’; they are reproductive with respect to (u, ¢°).) Some new nomenclature is
introduced. The name Dirichlet distribution (of which the beta distribution is a
special case) may well find general acceptance. New notations are used for some
classical distributions such as Bi (n, p) for binomial, Be (a, b) for beta, Po (u) for
Poisson.

Unfortunately the first printing of the book contains an unusually large num-
ber of errors, ranging from false theorems and inadequate proofs to a variety of
minor inaccuracies.! In addition, some topics are presented in a needlessly difficult
or awkward form which detracts the reader’s attention from the essentials. While
most chapters are free of major defects, those on parametric estimation and para-
metric hypothesis testing contain so many that extensive corrections are needed
before they can be used. I will list the more important errors and shortcomings
that I have noticed or that have been brought to my attention and only a few of
the lesser ones.

Theorem 4.3.8 is false.? It is stated as follows. “Let (x1, 22, - - -) be a stochastic
process such that (fi (1, 6), fa (21, 22, 0), - - -) is a stochastic process which con-
verges in probability uniformly with respect to ¢ in (6, ") to a finite number
g (6), where g (8) is continuous at § = 6, in (6, 0”). Let (6F (1), 05 (1, 2), -+ +)
be a stochastic process which converges in probability of 6, . Then f; (z; , 0y (x1)),
fo(@1, 2, 0% (21, 22)), - - +) converges in probability to g(6).” Counterexample:
Let x; be uniform on (0, 1) ; the other z; do not enter. Let fu(z1, -+, Zn, 6) =
0 + exp [—n(x; — n6)’) and 6% (x1, -+, ) = x1/n. The assumptions of 4.3.8
are satisfied with g(6) = 6, 6 = 0, but fo (1, *+* , Za, 63) = (x1/n) + 1 con-
verges to 1 = g(6,). The theorem is repeatedly used in Chapters 12 and 13, in
particular on pp. 362, 374, 384 and 410. Theorem 4.3.4 states (correctly) that
convergence in probability implies convergence in distribution. Theorem 4.3.5
says (again correctly) that if z, converges in probability to the random variable
z and g is a continuous function then g (z.) converges in probability to g ().
On p. 105 it is said that “in view of 4.3.4” versions of 4.3.5 (and of some related
theorems) can be obtained by requiring only convergence in distribution rather
than convergence in probability. Indeed such versions (with ‘“‘converges in
probability” replaced by “converges in distribution” both in the hypothesis and
in the conclusion) are later used, e.g., in the proof of Theorem 9.3.2, but it is
hardly obvious that they can be obtained “in view of 4.3.47% In derivations of

1 Professor Wilks has informed the reviewer that errors and inaccuracies will be cor-
rected in the next printing.

2 This was pointed out to me by J. F. Hannan.

3 Tt is true that if z, — z in distribution and g is continuous then g(z.) — g(z) in distri-
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certain asymptotic distributions (e.g., Theorems 9.3.1, 12.3.3, 13.4.3) almost
certain convergence is used where only convergence in probability is needed.
Similarly, on p. 96 the study of “random variables having infinitely many com-
ponents” is inadequately motivated by the need to determine limiting distribu-
tions of functions of n-dimensional random variables as n — . It may be judged
convenient to talk of limit distributions in the framework of an infinite-dimen-
sional sample space but it is certainly not necessary. Problem 5.14 is wrong,.

The Edgeworth expansion of the distribution function of a sample sum
(Theorem 9.4.1) is formally obtained under the sole assumption that certain
moments are finite, but the claimed order of the remainder term is incorrect for
lattice distributions. Corollary 9.4.1a and the related Problem 9.9 (which in-
volves a lattice distribution) are also in error.

The proof of Theorem 10.2.2 (a minimum variance result of Halmos) is quite
inaccurate. (In (10.2.6) delete the expectation signs to avoid confusion; in the
condition for equality C is not a constant but a symmetric function of the sample
point.) In section 10.9 linear estimators for means of stratified finite populations
are considered. The strata sizes are N, = Np,, the strata means u, and the
strata variances oy, g = 1, - -- , m. It is then stated (p. 318) that the results

“can be extended in an obv1ous manner to stratified sampling from an infinite
population prov1ded p, and ¢, converge to positive values and u, to finite values

-as Ny, --+, N, — «. These extensions are left as exercises to the reader.”
The only reference to infinite populations seems to be on pp. 214-5, where simple
random sampling from an infinite population is said to refer to » independent,
identically distributed random variables. To regard random sampling from an
infinite population as a limiting case of random sampling from a finite population
may be intuitively appealing but the relation is not quite obvious. The meaning
of the limits of the p, is not clear to me.

After deriving the confidence interval for a quantile z, in terms of order sta-
tistics, the author treats the case of large samples (p. 331) in a strange way. It
would have been natural to observe that 24, < z, < T4, is equivalent to
ki = mi < b + k2, where n, is binomially distributed, and to apply the normal
approximation. Instead, a detour is made via confidence limits for the parameter
P (which is known here) and the resulting confidence bounds for z, are order
statistics whose ranks are random variables. On p. 334 Robbins’ result on toler-
ance limits is misstated. The results attributed on pp. 336 and 339 to Birnbaum
and Tingey and to Dempster have been published by Smirnov [5] in 1944.

Chapters 12 and 13 (parametric statistical estimation and testing parametric
statistical hypotheses) are the weakest part of the book. The beginning of Chap-

bution. L. J. Savage has pointed out to me that for real-valued random variables this can
be deduced from Theorems 4.3.5 and 4.3.4 by using the following device. For any distribution
function F (continuous on the right) define F~1(u) as inf {y I Fly) 2 u},0<u < 1. Let
%, T1, T2, - - be random variables with respective distribution functions F, F; , Fy, --- .
Let U be umformly distributed on (0, 1). Then the random variables z' = F-1(U) and
zn = F;, I(U) have the respectlve distribution functions F and F, . Moreover, if 2, — z in
distribution, then zy — z’ in probability. This easily implies the stated result.
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ter 12 is rough going for the reader. In the reviewer’s opinion the proper setting
for the treatment of these topics would be to assume a family of distributions
absolutely continuous with respect to a fixed measure. Instead, the distribution
function F (z; §) (with x and 6 real) is first left arbitrary and by formal differen-
tiation such equations as [, [(3/36) log dF (z; 6)] dF (z; 6) = 0 (eq. (12.1.2))
are obtained. It is then stated that, under specified regularity conditions (essen-
tially, 9F /30 exists), “it is evident” that (9/80) log dF (z; 8) (denoted by S(x,
0)) is defined as

2 [F(a';0) — F(z; )]
S(z',8) = lim %
’ s F(2';60) — F(x;0)

where z < z’, provided the indicated limit exists. The interchange of the limit
operations involved in this definition is not discussed. In the same context an
integral H (6, 8') = [*. log dF (z; 6') dF (x; 6) is first introduced in a formal way
(eq. (12.1.6)) and then defined as the limit of certain approximating sums. It is
not noticed that this limit equals — o if, for instance, F (z; 6') is a continuous
distribution function. The quantity H (6, 6') plays a prominent role in the treat-
ment of the asymptotic distribution of the likelihood ratio (Sections 13.4 to 13.6),
where also an analogous sum, n*>_r_; log dF (z; , 6), is repeatedly used. What is
really needed here is the integral which, in the case dF (z; 8) = f(z; 6) du(x), is
equal to [ log (f(z; 0)/f(z; 6'))f(z; 6) du(z) and which only under restrictive
conditions can be written as H (9, 6) — H (6, §').

The treatment of point estimation suffers from several serious defects. On p.
351 an unbiased estimator for 6, (where 6, denotes the true value of ) having
finite variance is called an efficient estimator for 6, if no other unbiased estimator
has a smaller variance. On p. 352 an unbiased estimator is said to be efficient if
its variance equals the Cramér-Rao lower bound. This would be consistent with
the definition on p. 351 if understood as a sufficient condition. But actually the
latter statement is treated as another definition, e.g., in (12.2.15). Sometimes
the reader does not know which of the two non-equivalent definitions is used, for
instance in the definition of efficiency in (12.2.8). The statement of Problem 12.16
is not true with either definition. In Problem 12.10 the word exceeds should be
replaced by equals. The distinction between local and uniform minimum variance
unbiased estimators is not mentioned.

In Theorem 12.2.1 it is claimed that the Cramér-Rao inequality holds under
the sole assumption that the distribution function of the sample is regular in its
first 6-derivative in a neighborhood of the true 6 value; the latter means that an
equation analogous to the above-mentioned (12.1.2) is satisfied. At least the
proof of this assertion is incorrect since conclusion (12.2.3) is not justified. (With
this type of proof one needs regularity assumptions on the estimator aswell ason
the distribution function F. A result of Chapman and Robbins ([1], p. 584) im-
plies that the inequality holds for any unbiased estimator if F satisfies a certain
regularity condition). In the treatment of unbiased estimation of a vector param-
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eter a lower bound, (12.6.5), for the variance of a linear combination of the com-
ponents of the estimator, ) c38, , is obtained which depends on arbitrary con-
stants ¢, ¢, - -+ . Strangely enough the bound is not maximized with respect to
these constants. (It is called a greatest lower bound for the variance of ) cy0, ,
which is not true in general even with the maximizing ¢, .) Thus the covariance
matrix of the estimator (if there is one) for which the (optimal) lower bound is
attained is not derived explicitly.

Theorem 12.3.3 asserts the asymptotic normality of a maximum likelihood
estimator under weak assumptions, but the proof depends on the false Theorem
4.3.8. On p. 362 the incorrect statement is made that the bias of a consistent
estimator converges to zero. In the discussion of limiting asymptotic efficiency on
pp. 363—4 the variance of the asymptotic distribution and the asymptotic value
of the variance are confused.

Theorem 13.2.1, a version of the Neyman-Pearson lemma, is incorrect as stated.
(The condition P (W .| 6) = a cannot in general be satisfied for any « ¢ (0, 1)
with the stated definition of W, .) Sections 13.4-13.7 deal with the asymptotic
distribution of the likelihood ratio for testing the hypothesis § = 6, under the
assumption 0 ¢ Q, where Q is first taken to be a real interval. Immediately (p. 408)
the assumption 0 ¢ Q is substituted by 8 ¢ Q, where Q; is “some (open) interval
containing 6, .” It is said that ‘““we shall see that the only part of @ which plays
an essential role - - - is @, but this is not shown. As mentioned above, in these
sections illegitimate use is made of the quantity H (6, , 6) and the false Theorem
4.3.8 is applied. The treatment of the asymptotic power of the likelihood ratio
test (Section 13.6) is unsatisfactory. Two tests of size « are compared whose
critical regions are written as u, + nv, > x5 and uj + nv¥ > x% and which are
consistent against the alternative 6, = 6, as n — «. To overcome the difficulty
of comparing the power functions of two consistent tests, the original critical
regions are substituted by u, + cv, > x% and uk + vk > x% , where ¢ is a posi-
tive constant. The powers of the latter tests against the (fixed) alternative 6, are
shown to tend to limits less than 1 asn — . It is not explained why the behavior
of the substitute tests should have a bearing on the performance of the tests being
studied. (A more intuitive approach would be to leave the tests unchanged and
to let 6, approach 6, at a suitable rate as n — «.)

The definition of ranks on p. 466 is not clear. Theorem 15.2.1 (the Wald-
Blackwell equation for the expected sample size of a sequential test) is false.
(An additional assumption such as & |z;| bounded is needed.) The related Prob-
lem 15.1 is also incorrect. In the first lines of the proof of Theorem 15.6.1 (Stein’s
two-stage confidence interval) the crucial fact of the independence of two ran-
dom variables is not adequately demonstrated. (There is also a minor slip in the
statement of the theorem.) In the chapter on statistical decision functions the
false statement is made on p. 507 that the set of all minimax solutions is a com-
plete set of admissible decision functions. The last sentence in the example on
p. 511 is not true. In Problems 16.2 and 16.4 the reader is asked to find the de-
cision function which provides a Bayes solution against all possible a prior: dis-
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tributions; there is no such decision function. The proof of Theorem 17.3.1 on the
spectral distribution of a stationary time series is incomplete. It is not shown
that the approximating distributions Fy have a unique limit.

To sum up, although the material selected by the author is not always up-to-
date, it acquaints the reader with the probabilistic background, the main branches
and the basic problems of mathematical statistics. The presentation of the ma-
terial in the first printing suffers from many errors and some other shortcomings
which are mainly concentrated in the chapters on parametric estimation and
hypothesis testing.
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Review 2, by D. R. Cox
Birkbeck College, London

Professor Wilks’s new book in an important addition to the text-books on the
mathematical aspects of the theory of statistics, giving an original and coherent
account of a wide range of topics. The book is intended primarily as an introduc-
tion to the subject for those with a first degree in mathematics and the mathe-
matical style, clear and unfussy, is nicely judged for this. In addition to the main
group of readers for whom the book was written, it should be useful as a reference
book on theory for applied statisticians with a good mathematical training.

The general plan of the book is as follows. The first 190 pages deal with proba-
bility, random variables and the special distributions of statistics. The next 90
pages cover sampling theory, both small sample and asymptotic. Then there are
200 pages on estimation and testing, in a way the core of the book. The final 130
pages are concerned with sequential analysis, decision theory, time series and
multivariate analysis. Each of the 18 chapters has exercises, over 400 in all. These
range from fairly simple problems based directly on material in the book to much
more difficult exercises introducing important results not covered in the main
text. The exercises are a very valuable part of the book.

This is a book on mathematical theory, not on statistical methodology and, in
his Preface, Professor Wilks vigorously defends separating the two. Now it would
be most unfair to criticize Professor Wilks for not producing a comprehensive
treatise on all aspects of statistics. Nevertheless, the book would, I think, have
been much strengthened by the inclusion both of more extended motivation of



