OPTIMUM DECISION PROCEDURES FOR A POISSON PROCESS
PARAMETER!

By J. A. LECENER

Westinghouse Research Laboratories, Pittsburgh

0. Introduction and summary. This paper derives and exhibits the optimum
Bayes solution to the following problem: Given a continuous-time Poisson
process with unknown mean occurrence rate \; to decide whether A > k or
A < k. The prior distribution is taken to be of Gamma, type, with positive mean
and finite variance. The cost of observation is taken proportional to the length
of time the process is observed, and the cost of a wrong decision proportional to
IN — k|. The decision rule derived is optimum (in the sense of minimum ex-
pected cost) among all non-randomized sequential rules. Some of the results
hold true, of course, for other cost functions and/or prior distributions. A method
for treating the same problem with the inclusion of a constant setup cost is also
given.

1. General remarks; relation to other work. The problem here is to decide
between the two compound hypotheses, H;: A < k and H: : N > k, where A
is the mean occurrence rate of a continuous-time Poisson process, and k is a
given positive constant which can and will be adjusted to unity by changing the
time scale. Two types of cost need to be balanced in attacking this problem,
namely the cost of observing the process and the cost of making a wrong de-
cision; in general, a decrease in the expected value of either can be achieved
only with an increase in that of the other. The two types will be considered in
turn.

The cost of observation is usually taken proportional to the observation
time, and will be so taken in what follows (where by adjusting the monetary
unit the constant of proportionality is made to be unity). However, the simple
adjustment necessary when in addition there is a fixed setup cost is also pre-
sented, in Sec. 2.8. Some of the results, of course, hold true for more general
cost functions.

The cost of a wrong decision will presumably be a function of A — 1. We
define c;(\) as the cost of accepting H; when A is the true value, and c.()\) as
the cost of accepting H> when M is the true value. Now ¢;(A) = 0 for A < 1,
and c(A) = 0 for A > 1, but much latitude exists in choosing ¢;(A\) for A > 1
and c:(A) for A < 1. The functions used throughout this paper are ¢;(A\) =
max [¢(A — 1), 0] and c;(A) = max [¢(1 — N), 0], where ¢ is a known constant
greater than unity, but again some of the results herein hold true more generally.

The cost of observing the process for time ¢ and then making a decision is
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therefore ¢ + c;(\), where = 1 or 2 according as the decision is to accept Hj or
H, . For any proposed decision rule B, we can define a total expected cost L(A; R)
by

(1.1) L(\; R) = E(t;\) + P(N)a(\) 4+ (1 — P(A))ex(N),

where ¢ is the duration of observation, P()\) is the probability that at the termi-
nation of observation H, is accepted, and E(¢; \) is the expected value of ¢ for
given N and the given decision rule. Figure 1 is an example of L(\; R) when
¢ = 1, R is a fixed-sample-size experiment with ¢ = 1, and H, is accepted if
no event occurs.

cost }
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Fig. 1. L(\), the expected total cost for a fixed-sample-size procedure with t = ¢ = 1
in which H, is accepted if no event occurs. Here L(A\) = 1 + |A — 1|-Pr (wrong decision).
[The dashed curve gives the probability of a wrong decision.]

The general problem is to pick a decision procedure which minimizes L(\; R).
But ) is unknown, and no procedure exists which minimizes L(X\; R) for all \.
At this point, decision theory logically splits into minimax-type and Bayes
procedures. Wald [11] developed the minimax theory, which chooses from a
given class of rules one for which max, L(\; R) is a minimum. (There may
be more than one rule satisfying this criterion.) We pursue the alternative,
which looks for a rule minimizing the so-called “Bayes risk”, Lz(p), i.e., the
expected value of L(\; R) with respect to some assumed ‘“prior” distribution

fl'()‘)y
(12) La(p) = [ LOSRION)

This procedure was used very early by Wald (see [11] and [12]), merely as a
tool for finding minimax solutions. It was mentioned again by Yates as an aside
in a paper [13] concerned with an estimation problem, for which L(\; R) is
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actually independent of A and therefore can be minimized directly. Grundy,
Healy, and Rees [5] followed this suggestion, and produced a method of deter-
mining the optimum fized-sample-size experiment, when the problem is to deter-
mine the sign of the mean of a Normal distribution with known variance, the
cost of experimentation is proportional to the number of observations taken on
this Normal, a wrong decision costs k|u|, and the prior distribution is Normal.
From their results, which are really results concerning the Wiener process, 1
have shown that the optimum sequential boundary for the Wiener process is
unbounded, using essentially the lemma of this paper. This has also been shown
by Chernoff ([2] and [3]), who among others developed the differential equation
and boundary conditions which determine the optimum boundary. The un-
limited extent of the boundary causes considerable computational difficulty,
however, which seems not to have been surmounted as yet. For bounded loss
functions and discrete observations, it was shown by Sobel [10] that the optimum
decision rule must be finite.

Much work has been done on the Poisson process. Representative items are
the formulae for OC and AST, for Wald-type tests, in [6], and the tables in
[7]; the minimax fixed-sample-size and the minimax Wald-type tests in [1], for
Normal as well as Poisson. The minimax tests for the Wiener process with
observation cost bt and error costs clu — wo|, 0 < r < 2, are derived in [4].
Another unique approach is that of Schwarz [9]. Assuming an indifference zone
where neither decision is penalized, and letting the cost ¢ of an observation go
to zero, he proves that the optimal (Bayes) region approaches a limiting shape
if both the - and n- scales are reduced by the factor log (¢™).

The work for the Poisson process analogous to that of Grundy, Healy, and
Rees [5] for the Wiener process has not been carried through. The expected
loss as a function of observation time ¢ is a scalloped curve, which has in general
many local minima. (If the test is terminated as soon as one particular decision
is assured, the loss is decreased of course; but then in addition to the scallops,
the function has a positive jump at each integer value of ¢.)

2. The optimum sequential decision rule. In this section, the optimum rule
is characterized and a method of calculating it is presented.

2.1. The prior distribution and the sample paths. We assume the prior distribu-
tion to be of the Gamma type, i.e., it has density

(2.1) fO) = N/ T(y), t>0,y =1,

which will also be denoted by f;,(\). For convenience of language only, we take
y to be an integer. Then the posterior distribution for A, having observed y’ events
in time ¢, is simply firery40(A). For this reason, we will consider the results
of experimentation as represented by a plot of ¥, + y(¢) against & 4+ ¢ where
y(t) is the number of events that have occurred up to the time ¢ and fi, 4, (M) is
the prior distribution for \. We restrict ourselves to boundaries consisting of
stopping points (f, y¥) with a definite decision attached to each such stopping
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point, since (¢, y) together with (4, %o) determine the likelihood function for A.
The sample path thus starts at the point p = (¢, o), for the prior distribution
Jo(N) = fiy.4s(7), and continues to some point b = (£(b), y(b)) € B, a boundary
set, at which time a decision is made dependent only on #(b) and y(b). Now for
any point g, we write L(g, A) or L(¢, y, A) for the loss incurred by an immediate
decision, being at g¢; i.e., L(g, A) = ci(\), where ¢ = 1 or 2 according as the
decision is to accept H; or H,. Since the posterior distribution for A, having
reached ¢ = (%, y), is fy(\), the expected loss incurred by an immediate decision
is given by

(2.2) La(@) = La(t,y) = [ " L(g Mf(N) dn.

The function of B to be minimized (by choice of B) will be denoted by Lz(p),
the expected loss incurred by starting at p and using B:

La(p) = | " EIL®,N) + 1) — (p) |\ f,(0) d
(2.3) 3
- f L\ B)f,(\) dh,

where E(u | \) is the expectation of u, for fixed A, taken over the boundary B
under consideration.
Having stopped at the point (¢, y), we have from (2.2)

Lt y) = [ aWfea(d) d,

where ¢ = 1 or 2 according as (¢, y) is an acceptance point for H; or H, . For
i=1,Ls(t, y) = ¢ [T (A — 1)fiy(A) d\ and for

1
i=2Lat, ) = [ (1= Nf0)
The difference A of these two expressions is given by

A= T = D) NN AN = o [y — /4

We minimize Ls(¢, y) by accepting H; whenever A < 0, i.e., wherever y < ¢, and
accepting H; when y > ¢. Fory = ¢, A = 0, and the decision is immaterial; but
if H, is accepted, then L(Z, y, \) is continuous from the right in ¢. There is as
yet no assurance that minimizing Ls(¢, y) will in fact minimize Lz(p) for fixed
B; this will however be proved later on. Therefore, we will not specify L(¢, y, \)
at this point, but merely assume that L(¢, y, \) is continuous from the right in
t for each y and .

There is an alternative representation of the sample paths, as points, which
will be useful later on. Consider the sample path which starts at (0, 0), and for
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which the 7th event occurs at ¢;, ¢ = 1, 2, --- . We represent it by the point
(in infinite-dimensional Cartesian space) with coordinates (¢, ¢, - -+ ). This
gives us a representation for every path, and every infinite-dimensional vector
(1,8, -+ ) represents a path f 0 < #; < t, < --- ;i.e., the set of all paths is
mapped onto the wedge 0 < & < &z < -+ . Every path which goes through
the point (¢, n) has ¢, < t < t,41 ; and every vector (¢;,%, -+ ) with0 = #; <
oo £ty £t £ty S -+ - represents a path which goes through (¢, n). We will
be considering correspondences between sets T in this space, which we call
the star-space, and sets T in the (¢, y)-space.

The convenience of this representation lies in the existence of a probability
density on any finite-dimensional subspace {(t, ¢, - -, &)} of the star-space.
Thus there is defined for any Borel set in this k-dimensional space a probability,
which gives the probability of our sample path fulfilling certain conditions
(which can be expressed using only the part of the sample path below the line

y =y + k).
We henceforth restrict our attention to that part of the star-space given as
{(Byot1 s tygaz s = )ito S bygtr = + -+ }; we will denote it by S*.

2.2. The boundary, and its interior. (This section is independent of the particu-
lar cost functions used, given our assumption that L(g, A) is continuous from
the right in ¢(q), which is necessary to permit consideration only of closed
sets B.)

We consider a particular starting point p, and any particular set B in the
(t, y)-plane, where for every point b ¢ B, y(b) is an integer = y(p), and #(b) =
t(p). Let B denote the closure of B. We will show that P(\), and E(¢(b) — t(p))
if it exists, are the same for B as for B. The points of B — B can be separated
into three classes: those points (¢, ¥) for which each interval from (¢ — ¢, y) to
(t, y) contains points of B, but there exists an interval from (2, y) to (¢ + ¢, y)
which does not contain any points of B, which we call left-accumulation points
of B; the correspondingly defined right-accumulation points of B; and the two-
sided accumulation points, i.e., those points such that both intervals of length
¢ having (¢, ¥) as an end point contain points of B, for any ¢ > 0. We consider
these in turn.

For any left-accumulation point, there is an open interval to its right that
does not contain points of B. Since there can be at most a countable number of
non-overlapping open intervals on the real line, the left-accumulation points on
the line y = = are at most countable; there is at most a countable number of
linesy = 1,y = 2, - -+, having left-accumulation points of B; therefore, the set
of left-accumulation points is countable. Similarly, the set of right-accumulation
points is countable.

Consider a particular left-accumulation point (f, n). Any path which reaches
the line y = n at & < ¢ will not reach (¢, n) since there are points of B in the
open interval from (# , n) to (¢, n). Therefore, the only paths which are affected
are those which reach the line ¥ = = at ¢; but the probability of a jump occurring
at the particular point (¢, n — 1) is zero.
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Cons1der a right-accumulation point (¢, n). Any path which reaches (¢, n)
and does not have a jump there will stop before going a distance e, for any e > 0;
so E(t) is not altered by the addition of the point. Also, havmg assumed L(q, )\)
continuous from the right in ¢(g), it follows that Ls(p) is not altered. Thus we
say that the path is not significantly altered by making (t, n) a point of B.
Also, the probability of having a jump precisely at (¢, n) is zero, so the prob-
ablhty of a significant change in Lp(p) resulting from the addltlon to B of a
right-accumulation point in zero. Since the one-sided accumulation points are
countable, we can add them all to B without changing Lx(p).

Consider the two-sided accumulation points of B. The only paths signifi-
cantly changed by the addition of these two-sided accumulation points to B
are those which have a double jump at one of these points, i.e., a jump from
y=mn—1toy = n -+ 1at some value ¢, where (¢, n) is a two-sided accumula-
tion point of B. But the probability of a double jump anywhere is zero. There-
fore the addition to B of the two-sided accumulation points of B does not
change Lz(p).

This shows that for any boundary set B for which Lz(p) is defined, we can
substitute B, the closure of B; and Ls(p) = Lg(p). Henceforth we consider
only closed sets B. Furthermore, we can add to B the points (¢(p), y(p) + k) for
k =1,2, ..., since the probability of reaching any of these is zero. For con-
venience later, we assume these points are in B.

We will now establish the existence of a probability distribution on B for
the stopping point. For this purpose, it is sufficient to show that for any closed
one-dimensional subset B; of BN {y = n}, the set of paths reaching B; is measur-
able. Let Bf represent the set of paths which would reach B, if BN {y < b} were
empty. For n = y(p), Bf is the set of paths having ¢, = inf {¢: (¢, n) € By}, and
thus is Borel. Now suppose n > y(p). Let B = {t:(¢, n) ¢ B} and

B, = {t:(t,n) e By.

Thus B and B, are one-dimensional closed sets. The complement of B, being
open, can be represented as a countable union of disjoint open intervals I,
I, ---. Call the rlght hand end points of these intervals a;, @, --- . Then
a;eB for t=1,2,.--.Let J = {4:a: ¢ By}. Then BT is the set of paths such
that either ¢, ¢ El ort,el;and t,y = a;for some 7 & J. Therefore, Bf is Borel.
But the set of paths which do reach B, is the intersection of Bf with the set of
paths which do not stop with y < m; by the induction hypothesis, treating in
turn B N {y = k} for k = y(p), --+, n — 1, the set of paths which do stop
with y < n is Borel and so the result is proved.

The set of paths which reach a particular point ¢ in the plane is just the inter-
section of the Borel set {¢,y = t(g¢) < tyg+1), the set of paths which do not
stop in the set B N {y < y(g¢)}, and the set of paths which do not stop in the
set BN {y = y(q), t < t(qg)}; since all three are Borel sets, we see that for any
point g, Pr (reach ¢) is defined. In fact, the obvious extension, treating a Borel
set @ (instead of a point ¢) just as we treated B;, we see that for any Borel
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set @, Pr (reach @) is defined. If we take B, = B, we find the probability of
hitting B. If this probability is not unity, then there is a non-zero probability
of never hitting B, so that E(¢) = «, and thus B is a very unwise boundary
indeed.

We now define the notion of interior point of B. (The notion is dependent
on the starting point p.) Given p and B, we say:

DErinrTION 1. ¢ is an interior point if ¢ £ B, and there exists a path to ¢ from
p which does not first meet B.

DErINITION 2. ¢ is an interior point if ¢ # B and for A > 0, Pr (reach ¢ from
plA) > 0.

Denote the set of interior points by Bin; . These two definitions are equivalent:
If Pr (reach ¢ from p |\) > 0, there are paths to ¢ from p which do not first
hit B, so that Bis(def. 1) D Bin: (def. 2). On the other hand, assume there
exists a path to ¢ £ B, from p, which does not first meet B. Consider one such
path, with the jump from y = ¢toy = ¢ + 1 occurring at t;1:(y(p) <7 < y(q)).
Neither (i1, 2) nor (tiy1, ¢ + 1) is a point of B because the path does not
meet B in this region. Since B is closed, there exist open t-intervals I;,, on the
line y = ¢, and I{4; on the line y = ¢ + 1, each containing ¢;,; , which do not
intersect B. Therefore, any path with the jump from y = itoy = 7 + 1 occurring
at a t-value in the non-empty open interval I;; N i,y , for all ¢ with y(p) =
t < y(q), will reach ¢ before it reaches B. The measure of this set of paths is
positive, proving that Biy, (def. 1) C Bing (def. 2).

We now prove that on the line y = n, By is an open (one-dimensional) set,
for any positive integer n. Suppose ¢ € Biny and y(g) = n. Then ¢ £ B, so there
is an open interval containing ¢ which does not intersect B. Also, Pr (reach g
from p|X > 0) > 0. Since Pr (reach ¢ from (¢(q), n — 1)) is zero, there is
an interval having ¢ as right end-point and consisting entirely of points of
B;.: (otherwise, Pr (reach ¢ from p | A\) = 0, since then no path which reaches
the line y = n at ¢ < t(g) will ever reach ¢g). On the other hand, Pr (reach ¢
from p [ A > 0) > 0, and there is an interval I; with ¢ as left end point which
is disjoint from B, so Pr (reach ¢; from p |\ > 0) > 0, for all ¢, ¢ I, . This
demonstrates that q € Bint = ¢&I C Biy, where I is an open interval on the
line y = y(g), and therefore that Bi,, N {y = n} is an open (one-dimensional)
set.

It is easy to see that there exists a probability distribution on B from any
interior point ¢. The probability of reaching B, C B from ¢ is just the measure
of the paths which reach B, by going through ¢, divided by the measure of the
paths which go through ¢. The former set is a Borel set of paths, as we saw
previously, while the latter set has positive probability because g € Bins .

2.3. A lemma. (For a note on generality, see the end of this section.) Let us
review our notation, and add a bit more.

As before, t(g) and y(g) denote the t- and y-coordinates respectively, of the

point g.
(2.4) p denotes a starting point; t(p) > 0, y(p) a positive integer.
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(2.5) . B = {b}, t(b) = t(p), y(b) = y(p); a boundary set, topologically
closed, such that Pr (reach B from p |A > 0) = 1.

(2.6) C = {c}, another closed set, such that C < B U B;,;, and no path
from p hits B before hitting C.

2.7 g, the generic point of the plane.

(2.8) B, a measure on B; we take 8 so that 8(B;) = Pr (reach B; from
p | N = 1), for any Borel subset B; of B. (We have proved that such
a measure exists for any \.)

(2.9) v, a measure on C, chosen so that v(C;) = Pr (first coincidence
with C occurs in the set C;, starting from p |\ = 1), for any Borel
subset C; of C. (v exists, since C is closed, for the same reason that
8 exists.)

(2.10) ho(e, \), a non-negative function of N and ¢ ¢ C, measurable with
respect to v, such that:

Pr (first reach C in C; from p | \) = f hy(c, \) dy,
Cy

for any Borel C; C C and all A.

(Note that if v(C;) = 0, then Pr (first coincidence with C occursinC; | A = A¢) =
0, for any value Ao . Thus the measure for first coincidence with C, for any A,
is y-continuous, and thus by the Radon-Nikodym Theorem ([8] p. 196) such a
function exists.)

(2.11) k,(b, \), a non-negative function of A, b € B, and ¢ € Bi,; , measurable
with respect to 8, such that Pr (reach B; C B from g & Bins | A) =
Jo, ko(b, N) dB, for any Borel B; .

(Note that if Pr (reach B; € B from p |\ = 1) = 0, then Pr (reach B, € B
from p | A = \) = 0, and in fact, Pr (reach B; C B from g & Bins | A = N\o) = 0.
Therefore, by the Radon-Nikodym Theorem, such a function exists for g € Bins -
In general, there does not exist such a function for ¢ € B, since, for ¢ ¢ B, Pr (reach
B, © B from q|\) = 1 or 0 according as ge By or ¢ £ B; .)

(2.12) L(q, \), the loss incurred, being at the point ¢, by taking an im-
mediate decision, if A is the true parameter value. We have assumed
only that L(g, \) is continuous from the right in ¢(¢) and continuous
in A; the acceptance points will be determined later. L(g, A) is non-
negative, since we measure loss from an immediate correct decision.

(2.13) Ls(q), the expected loss, being at g, if we take an immediate decision.
(2.14) Lz(q), the expected loss, being at g, if we use the boundary B.

(2.15) fa(M\), the Bayes density for A at the point ¢ = (¢, y), given by f,(A) =
fea(N) = e NTH/T(y).
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(216)  La(p, \) = E(L(b, \) + t(b) — t(p)| p, \), which is simply L(\)
with the dependence on p and B emphasized.

We will also assume Lz(p) < «. Since Lg(p) < «, we can always do better
than an infinite loss.
We now state the Lemma. With B, C, p, \, hy(c, \), and fp(\) defined as above,

Ly(p) = L‘"’ {j; Lz(e)hy(c,N) d’Y} f»(A) ax
(217) i
+ [T{[ e = oo n) an} 1,00 an
0 [+

This expresses Lgz(p) in terms of Lp(c) and the expected cost of reaching C.
The Proor is as follows. We have Lz(p) = [7 La(p, N)fp(\) d\. Clearly,

Lo(p,N) = [ Lale, V(e N) dy + [ 16) = tp)] By, V) dy.
Hence,

Lo@) = [ [ La(e, Mol ) dy£500)

+ [n fc[t(c) — Up)1 hp(c, M) dvy f(N) dM.

It must be shown that Lz(c, N) can be replaced by Lz(c) in the first iterated
integral. But this integral can be thought of as E(Lx(c, \)), where ¢ and A are
random variables with joint density A,(c, N)f,(A). Hence, since f.(\) is the
conditional density of \ given ¢, we have

E [Ls(c,N)] = E{E [Ls(c, ) | cl}

=E [[’ Ls(e,N)f.(\) d)\] = E [Lz(c)]

- fow ch”(c)hP("’M dv f»(\) d.

This completes the proof.

2.4. The decision; remarks. By this lemma, we see that Lz(p) is minimized,
for given B and p, by minimizing Ls(b) for all b ¢ B. But we have shown that
Ls(q) is minimized if we choose L(q, A) = ¢1(\) whenever

| "0 — a0 dh > 0, and L(gA) = e\

whenever f3° [ea(N) — ce(N)]fo(N) dx > 0; if this integral has the value 0, we
choose L(g, N\) to fulfill the assumption of right-continuity. For our example,
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We thus have
L(g, M) = as(M) if y(g) = t(g);
L(g, M) = (M) if y(g) > t(g).

For a Poisson process, we lose nothing in taking B and C closed and assuming
Lp(p) < «. We have used our particular cost function #(b) — #(p), but the
result obviously holds true as long as the cost of experimentation is a non-de-
creasing linear function of the sample point, i.e., as long as the cost of a sample
path going from p to ¢ to b is equal to the cost of going from p to ¢ plus the
cost of going from ¢ to b, both =0. These are fairly general conditions, but they
do not cover the case where the cost of experimentation is C + k(¢ — &) for
t > t,and O for t = #, where C is a fixed constant, the so-called setup cost
for the experiment. A note covering this case will be found near the end of
Section 2.

In general, for a continuous-time stationary process with independent incre-
ments, if B is a boundary such that Lz(p) is finite and C is a curve such that
Pr (hit B before C) = 0, and B and C are such that v, 8, hy(c, ), and k.(b, \)
exist; if the prior distribution is of the form of the likelihood function; if the
cost of experimentation is linear in the sample point; if the coordinates of the
sample point are sufficient statistics for \; then the lemma is true. This is a long
list of “if’s”, but not altogether unreasonable. For example, the lemma could
be applied to the Wiener process with a normal prior distribution for u, say
with o known, and with cost of observation = kit + ky (where one of the k;
might be zero), and the cost of error proportional to |u* for some &£ > 0. We
pursue the matter no further here.

2.5. Inequalities inwolving Ls(t, y). The purpose of this section is to prove
the following statement needed for succeeding sections: There exists an M > 0
such that if max (¢, y) > M, (y/t)Ls(t, y + 1) < %. As a preliminary result,
it will be shown that Ls(¢, y) < Lg(u, u) where u = max (¢, y).

For 0 <t =y, Le(t, y) = ¢J0 (1 — N)[e ™\""#*/T(y)] d\. Integrating by
parts, we have Ls(t, y) = ¢[o[1 + t(1 — N)]e™N#/T(y + 1)] d\. Now
e ™M) and [1 + (1 — \)] are each nondecreasing in ¢ for A < 1, ¢ < y. Re-
placing ¢ by y above, we see that for 0 < t < y, Ls(t, y) < Ls(y, y). For 0 <
¥y =4 Ls(t, y) = ¢JT (N = 1)[e™™N""¥/T(y)] d\. Since (At)*™Y/T'(y) is mono-
tone increasing in y for y < M, and over the range of integration y < ¢ < M,
we have for 0 < y = ¢, Ls(t, y) < Ls(t, t). These establish the preliminary
result.

Furthermore,

Ls(t,t) = ¢ fo 1 (1 = M\ 7%/T()] da

= ¢e 't'/T(¢t + 1).
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Applying Stirling’s formula to T'(t + 1), we see that Ls(¢, t) is a monotone
decreasing function of ¢, approaching zero as ¢ increases. Choose M so that
Ls(M, M) < (66)™"; M = 6¢* will do. Then for (¢, y) such that y < 3¢t and
max (¢, y) > M, (y/t)Ls(t, y + 1) < (3¢)(6¢)" = 3. But for y > 3¢t, y +
1>y >t and

(y/O)Ls(t, y + 1) = (y/t) f (1 — MW YT(y + 1)] d

< [¢/T@)W f N\ < [¢/T(y + 1)1(y/39) < @) (e/3)" < 4.

We have shown:
(2.18) (y/O)Ls(t,y + 1) < % if max (t,y) > M = 6¢".

2.6. A differential equation for Ls(t, y). Let u denote the derivative of u
with respect to . Then since

Lot,y) = [ Lalt, 55 \es)

Ly(t,y) = fo i L3, 3 Mfey(N) + La(t, y; Mfe.s (M) AN

But Ls(t — h, y;N\) = h + (1 — M)Ls(t, y; N) + MLs(t, y + 1;N) + o(h),
whenever (¢ — h, y) € Bin: for all sufficiently small positive &, so that
Ls(t,y;N) = —1 — MLa(t, y + 15N) — La(t, y; M)];

and fi ,(A) = [(9/t) — Nfea(N)-

Therefore La(t, y) = —1 — (y/t)[Ls(t, y + 1) — Ls(3, y)], which we will
write as
(2.19) (8/8t)Ls(t, y) = —1 — (y/t)ALs(t, y).

This equation of course refers to derivatives from the left, and holds for (¢, y) £
Bins and for (¢, y) the right hand end point of an interval of Biy . The same
equation can be shown to hold for derivatives from the right, except where
(t, y+ 1) e B and (¢, y + 1) is the left end point of an interval of Bin:. For
these points, Lx(t, ¥y + 1) must be replaced by lims.o Ls(¢t + h, y + 1).

2.7. Boundedness of the set of “go” points. Again, let 4 denote du/dt. Divide
the points ¢ into two sets: those g from which there exists a plan B of the type
under consideration with Lz(q) < Ls(g), and those points from which no such
plan exists. They will be referred to as “go” points and ‘“‘stop” points, respec-
tively. Let G denote the set of go points. Then the main result of thissection is a
proof that G is contained in the square given by t(¢) < M, y(¢) = M (which
we call the M-square), for some M.

From Section 2.5 there exists a value M such that (y/¢)Ls(t, y + 1) < 3
outside the M-square. Now Ls(t, y) is continuous in ¢, and has one-sided deriva-
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tives at every point; they are equal except at ¢ = y. Straightforward calculation
shows that, using derivatives from the left and denoting F(t, y + 1) — F(4, y)
by AF(t, y) or simply A,F, L,g(t y) = —(y/t)ALsfort < yandfort >y + 1,
while fory <t <y 4 1, Ls(t, y) = —(y/t)ALs + (¢y/D)[1 — (y + 1)/4] >
—(y/t)ALs — ¢y/t* > —(y/t)A Ls — (¢/t) > —(y/t)ALs — (¢/y). Take

M > 2¢; this gives Lg(t, y) > —(y/t)AyLs — 3 > —1 + (y/t)Ls(t, y) outside
the M-square. We will use this result to prove that @G is contained in the M-
square.

Suppose there is a go-point ¢ outside the M-square. Then there exists a plan
B with Lz(q) < Ls(q). Then either (Case A) there exist one or more points b
of B to the right of ¢ (with y(b) = y(gq)), or (Case B) there does not exist a
point of B to the right of g. We treat the cases in turn.

In Case 4, let b be the first of these points of B. (Such a first point exists
since B is closed.) Lz(q) < Ls(g), and Ls(b) = Ls(b); and both Lz and L are
continuous on the closed interval from ¢ to b. But then there exists at least
one point ¢ with ¢(¢) < (@) = #b), y(@1) = y(b), La(q:) = Ls(q1), and
L,,(ql) = Li(q1), using derivatives from the left. We have just shown that
Ls(q) > —1 + [y(q)/t(q)]Ls(q). It was shown in Section 2.6 that Lz(g) <
—1 + [y(¢9)/H(@)1La(q). At ¢, La(g) = Ls(q); so Ls(q) < Ls(gi), a con-
tradiction. This proves Case A impossible; we turn to Case B.

Either (Case B,) there exists a point ¢; to the right of ¢ with Ls(¢:1) < Ls(qy),
or (Case By)Ls(q1) < Ls(q1) for all ¢ to the right of ¢. In Case B;, add the
point ¢; to B. This of course will not increase Lz(q), but will reduce the situation
to Case A which has already been disposed of. In Case B, , pick a point ¢, with
t(q) > y(q) = y(q); write t for t(q1), and y for y(q:). By assumption, Ls(g;) <
Ls(q1); by Section 2.5, Ls(q1) = Ls(t, y) < t/(y — 1). Now Ls(q1) = expected
cost of observation, so that

B RN e AT
LB(QI)g‘/; {L ue ")\du}e Wd)\

N t
= A [ F(y)d)\-—y_l>Ls(ql).
This contradiction completes the proof.

2.8. Characterization of the optimum boundary. Since Lz(q) is continuous in
t(g) for g in By, we see that G, the set of go points, is open (on each liney = n),
and therefore G N Bi,, is likewise open for any B, hence Borel. We remark that
if a plan B has Bin, — G nonempty, then defining B = B U (Bin, — @), we
see by the lemma with C = B’ that for any point ¢, Ly (g) < Ls(q). Therefore
we need only consider plans wherein escape from G means immediate stoppage,
i.e., plans such that any point not in G may be considered a point of B.

We now restrict ourselves to a given y, ; and for convenience we take yo an
integer. This will give all points on B having integral y-values; to get points
in between, we would need to take yo = n + h for values of h in the interval
(0, 1), instead of yo = n, and repeat the procedure now to be outlined.
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For any p not in G, there is an obvious optimum plan: take an immediate
decision. Let y = n be the maximum integral value of y taken by points of G.
Consider a point (f, n) in G. As pointed out above, we may assume that any
point not in G is in B, and we ask whether there is an optimum among such
plans. But G N {g|y(¢g) = n + 1} is empty. Therefore, any such plan is deter-
mined, as far as the point (¢, n) is concerned, by the infimum ¢, of ¢-values > &
assumed on B N {q:y = n}. But the point (&, n) is in B. Since (#, n) may
be restricted to the set of points in G' (and the end point thereof), it follows that
the continuous function Ls(t, n) of # has a minimum for some ¢ . It is easily
seen (by the lemma) that ¢ cannot be an interior point of G, since then we
could get a plan with loss less than the minimum. Therefore, (¢, n) is the first
point to the right of f which is not in G, i.e., the first stop point to the right
of #,. Thus for any (%, n) in G, the optimum plan is to continue until a stop
point is reached.

We now know the optimum for any point, on the line y = =; and for any
point not in G, on the line y = n — 1. Then for ¢ in G and y(¢q) = n — 1, by
similar reasoning, we need only consider plans where if an event occurs, i.e., if
the line y = n is reached, observation continues until a stop point is reached.
But these plans are again determined by the first stop point to the right of g,
and again its t-coordinate is in the closed interval ¢ = #(q), (f{, n — 1) in G;
and Lz(g) is continuous in this ¢-coordinate, so the optimum from any point
on the line y = n — 1 exists, and consists of observing until a stop point is
reached. Similarly, we can work all the way back to the line y = 1, giving this
main result.

THEOREM.

(1) Assumptions. (a) The cost of observation is proportional to the length of
time the process is observed. (b) The cost of a wrong decision is proportional to
the value |\ — c| for some known ¢, where the decision is either “N < ¢” or “N > ¢”.
(¢) The prior distribution ts given as

e‘“"()\““‘t‘é“/l‘(yo)), Yo = 1,4 > 0.

(2) Restrictions on the decision rule. Consider all decision rules corresponding
to a fixed boundary in the (1, y)-plane, that is, all decision rules which are given
as: “Let y — yo be the number of events that have occurred during the time t — & .
Observe till (t, y) first reaches the set B, and then stop and make a decision (which
is given in terms of the values t, y, to , and yo)”’, subject only to these two restrictions:
(a) The expected loss Ls(ty, yo) is defined. (b) The decision cost, L(t, y, \), is
continuous (t) from the right.

(8) Conclustons. Then replacing the variable t by t'/c, we can, for a given ratio
of cost constants, find one boundary in the (', y)-plane which will give minimum
expected loss for any prior distribution of the type assumed; we simply start the
sample path at (cto, yo). This boundary set B, say, includes all points outside
some square y = M, t < M, and is a closed set in the plane.

As a matter of fact, the boundary could be calculated analytically (in theory
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only, since the equations are hopeless); but a more satisfactory method seems
to be the use of an electronic computer.

A setup cost S can now be taken care of, as follows: We determine an optimum
boundary as above, ignoring the setup cost; and on it, we mark contours of
Ls(q) — Ls(g). The contour Ls(q) — Ls(q) = S then becomes an auxiliary
curve; the given plan is optimum for any starting point p having Ls(p) —
Ly(p) > S, while an immediate decision is optimum for all other points.

If one wishes to avoid a prior distribution, one could try to make the posterior
distribution equal to the (normalized) likelihood function of the observations,
on the grounds that the experiment is all that counts. This corresponds to
starting observation at (0, 1). However, it will be shown in the next paragraph
that there is an interval of nonzero length, with (0, 1) as left end point, which
is not in G; therefore, from (0, 1), the optimum plan is to stop immediately.
This result is not surprising, viewed from the “prior distribution” point of view;
but it does indicate that the attitude “Let the data speak for themselves”
deserves the response, “How?”

Above the main diagonal,

t <y Ls = —(y/t)A,Ls, and Ly = —1 — (y/t)ALs.

Within one unit (vertically) of the upper boundary, i.e., the boundary above
the diagonal,

Ly = —1 — (y/t)[Ls(t, y + 1) — La(t, y)].

Let D(t,y) = Ls(t, y) — Ls(4, y); then D' = —1 + (y/t)D(¢, y) near the
upper boundary. The solution of this equation is D = #(ct*™ 4+ 1)(y — 1)7,
where ¢ is a function of y alone. Hence D(0,y) = 0and D'(0,y) = (y — 1) >
0 (for y > 1). Therefore, since G is bounded, the upper boundary steps down
(as t decreases) at positive values of ¢. Therefore, there exists an interval from
¢t = 0 to some ¢, > 0 wherein Lz(¢,2) = Ls(4,2); but thenfory = 1, D'(¢, 1) =
—14¢7'D(t,1);0r D(t,1) = tlogt — ct,¢ > 0; D(0,1) = 0; D'(0,1) = + 0.
This proves that G does not extend all the way to the point (0, 1).

Finally it bears mentioning that this starting point is (0, 1) and not (0, 0)
simply because f; ,(\) was taken as e *A\*"#/T'(y) and not ¢ “N¢/T(y + 1).
This was done so that the acceptance set would be the “triangle” ¢ = y, instead
oft =y +1.

3. Calculation of the optimum boundary B.

3.1. General appearance. If the point ¢ = (¢, y) is in G, then there must exist
a path from (¢, y) to the “other side” of the diagonal y = ¢, and in fact there
must be a positive probability of reaching or crossing the line. (If not, then
being at g, we have Lz(q) < Lg(g); but the probability of changing the decision
by going on is zero, while the cost of experimentation is positive, so by (1.1)
and (1.2) we see that Lsz(q) > Ls(q).) This means, loosely speaking, that G
has no “bulges” to the right, below the diagonal, and no bulges upward above
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the diagonal. Thus if y = n contains part of G but y = n 4 1 does not, then
if (n —wu,n)isin G, (n — u, n) is in G for all u in (0, u). Also, there does
not exist a point (f, ») in G with ¢ = n + 1, by the previous section. Therefore,
there is a point poin @, po = (k, n), n < & < n + 1, with no points of G to
its right and an interval of G to its immediate left. Let (¢, , #) in G — G represent
the left end point of the largest such interval of G. If {; < =, then there are no
points (f, n) of @ with ¢ < t;. In Sections 2.6 and 2.7, it was shown that for
y<t=y+1,

Ls = —(y/t)Ls(t, y + 1) — Ls(t, y)] + (yo/t)[1 — (y + 1)/1];

otherwise, Ls = — (y/t)[Ls(t, y + 1) — Ls(¢, y)]; while for (¢, y) any interior
point, Ly = —1 — (y/t)[Ls(t, y + 1) — Ly(t, y)]. Now if (¢, y) is in B and
is the right hand end point of an interval of Bi,,, this formula becomes Ly =
—1 — (y/)[Ls(t, y + 1) — Ls(t, y)]. With these results we can show the
following:

(a) If (¢, n)isa pomt of Band a nght hand end point of an interval of B, ,
then Lz(t, n) = Lg(t, n). Proof: If Ly < Ls, then there are pomts in Bm
which should be in B; therefore B is not optimum, a contradiction. If Ly > Lg,
then because the difference is a continuous function of ¢, there is a uo > 0 such
that the inequality holds at (¢ 4+ u, n) for 0 < u < w if (¢, » + 1) is in Bin,
while if (¢, » 4 1) is in B, we note that Lg(t + u,n + 1) < Ls(t + u, n + 1)
ensures the existence of such a u, . If we then let (¢ + u, n) be points of Bi.; and
(t + uo, n) be a point of B, we see that this altered B has Lz(t, n) < Lg(t, n),
and therefore (#, n) should not have been in B. This contradiction completes
the proof.

(b) If (¢, n) is a point of B (i.e., a stop point) and (¢ + u, n) is in Biy for
0 < u = w, for some uy, then L = lim,.o Ls(t + u, n) = Ls(¢, n). Proof:
If L > Ls(t, n), then by continuity of Ls, there exist points (¢ + u, n) in Bin:
for which Ls(t 4+ u, n) < Lg(t + u, n), a contradiction. If L < Lg(¢, n), then
(treating (¢, n) as an interior point) it can easily be shown that Ls(t, n) <
Lg(t, n), and so (¢, n) should not be in B. This completes the proof.

(e) By (a), there exist go points on every line y = n < ¢, and no others;
there exist no go points with ¢-coordinate > ¢ + 1. Proof: The points of G
having maximum y-coordinate have as right end point the point ¢ = (¢, y)
such that Ly = — (y/t)[Ls(t, y + 1) — Ls(t, y)] + (y¢/D1 — (y + 1)/t] =
—(y/t)Ls(t,y + 1) — Ls(t, y)] — 1 = Lp,oryp(t — y — 1) + & = 0; and
y =t < y + 1. The quadratic formula gives

(3.1) 2t = —¢y + [0y + 4y(y + P < 2(y + 1),

so that any solution # will be less than y + 1; it remains to discover under
what conditions there will be a solution #, = y. Rewntmg (31)as 2t = —¢y +
[(¢y)® + 4(sy)y + 4°(¢/y)]}, we discover that &, = y if and only if ¢ = y.
We thus state: Let y be the largest integer value of y appearing in the set G;
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and let to = sup {¢:(t, %) € G}. Then
yo = [¢], the greatest integer < ¢;
2 = —¢yo + [ + 4ovo(yo + 1)I%.

We have derived a formula for the upper right limiting point of G.
Let (¢, ¥o) represent the first stop point to the left of (%, yo). Then by (b),

Ls(t1,y0) = Ls(t1, %)

® to—t1 Yo—
= / {j; [Ls(t + w,y + 1) + ule™ du} PR Lk da.
0

(3.2)

T'(yo)
After the algebra, we have

(3.3) (/)™ = {1 4 [6(y — 1)/8l(t — 30)} ™

Let (f2, yo — 1) be the right limit of G on the line yo — 1. Then the same
sort of method gives

(34) (ta/t0)" " = [8(yo — 1)(& — o) + 261/I6(y0 — 1) (to — o) — o).

These are the first three of the increasingly complicated formulas which specify
the boundary. The first two are useful to determine where the boundary first
becomes accessible, i.e., to determine the maximum value of y that could be
reached from (say) the point (1, 1). For yo = ¢, the boundary overlaps; that
is, ty > t,, which means that the go points on the line y, cannot be reached
from a point (¢, y) with ¢ < &, because the stop points on the line y = y, and
the point (£, yo — 1) form a closed corner. This will happen as long as #(y) >
t:(y). But when this happens, then &(y) = to(yo — 1), and we calculate the
boundary on and below the line yo — 1 by ignoring the points of G on the line y, .

The largest value of y for which this does not happen is given as [y'] where

y' is the solution of the equation
—1

»—y
Der2

CORN [ 22 EE) ol P

(6+ 1y + ¢ <+¢—y)
¢+ 2

which expresses approximately the statement &(y — 1) = #(y), using two
terms of the approximation

_ vy _—w"
(3.6) t(y) = y+¢+2 y(¢+2)3+

where terms go up like (¢ — y)*/[k! (¢ + 2)*7"]. We invert each side of
(3.5) and further approximate, to obtain

y—1\_ (y — Do —y)
8D en(S) =1+

Examples of the limit of accessible boundary are:
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¢ [¥] (approx.)
15 5
45 17
95 35.

3.2. An example. A program was written for the Datatron 205 computer, and
used to produce the example shown in Figure 2, for ¢ = 50, for which 4" = 18.

When 17 < y < 50, the optimum plan is to sample for a fixed time or until
an event occurs, whichever is shorter. The right hand (lower) boundary points
follow essentially a straight line from { = 17.634, y = 17 to ¢ = 50, y = 50,
while the left hand (upper) points have a slight curvature, from (16.599,17)
thru (33.937,34) to (50,50); see Table 1.

TABLE I
Horizontal Distance of Boundary Points from the Diagonal. (X10)

y Upper Boundary Lower Boundary
50 0 0

49 0.002 0.192
48 0.008 0.384
47 0.018 0.577
46 0.033 0.769
45 0.052 0.961
44 0.075 1.154
43 } 0.104 1.346
42 0.138 1.538
41 0.177 1.730
40 0.222 1.923
39 : 0.274 2.115
38 0.331 2.307
37 0.395 2.500
36 0.466 2.692
35 0.545 2.884
34 0.631 3.076
33 0.726 3.269
32 0.829 3.461
31 0.942 3.653
30 , ~1.065 3.845
29 1.198 4.037
28 1.343 4.230
27 1.500 4.422
26 ' 1.670 ' 4.614
25 1.854 4.806
24 2,054 4.998
23 2.269 5.190
22 2.503 5.382
21 2.757 5.574
20 3.031 5.766
19 3.329 5.958
18 3.653 6.150

17 4.008 6.342
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Fig. 2. The optimum boundary for ¢ = 50

Below y = 17, both boundaries look almost straight for a while, slowly curving
away from the diagonal; then each curves more sharply back toward the origin.

The inside (dashed) curve on Figure 2 is the locus of (¢, y) such that Ls —
L = 3. This then is an auxiliary curve when there is a setup cost equal to 3;
for (%, yo) outside this curve, the expected saving from using the optimum
plan instead of making an immediate decision is less than the setup cost, so
that no experimentation should be done, while for (#, ) inside this curve,
the optimum plan should be used.

An illustration of the saving due to experimentation is the following:

Ls(1,1) = 18.4; L(1, 1) = 4.17.
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