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1. Introduction. Let X (f) be a separable stationary Gaussian process with
mean zero, EX(t) = 0, and continuous covariance function

p(¢) = EX(r)X (7 +¢)
normalized so that p(0) = 1. Questions relating to the probability
(1) Hx(T) = PIX(t) >0,0=t=T

that X (¢) does not cross zero during some time interval T arise in various appli-
cations [5], [6].

Many of the difficulties that arise in treating such questions are due to the
fact that most of the interesting stationary Gaussian processes are not Marko-
vian. Here we shall obtain bounds on the behavior of Hx(T) particularly for
large T using an interesting inequality of D. Slepian [6] and estimates of Hx(T)
for some simple processes.

Slepian’s inequality states the following: if X (¢) and Y (¢),0 < ¢ < T, are
two separable Gaussian processes with mean zero and covariance functions
p(t, 7) and r(¢, 7) respectively, normalized so that p(¢,¢) = r(¢,t) = 1,0 =t = T,
and if

(2) P(t7 T) = T(ty T)y 0= L, T = T7
then
(3) Hx(T) = Hy(T).

The inequality is true for either continuous or discrete parameter processes.

2. An upper bound.
TarorEM 1. If X (1) is a separable stationary Gaussian process with EX(t) = 0
and p(t) — 0 for t — «, then

(4) Hx(T) = o(T%)

as T — o for every a > 0.
To prove this we first note that

(5) Hx(T) = PIX(jA) >0, =0,1,---,n — 1]
for any A > 0, n = [T/A] where [z] is the greatest integer less than or equal to x.
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We next seek a sequence of random variables Y; which has a larger covariance
sequence than X (jA) and a zero crossing probability that we can easily estimate.
Consider the sequence

(6) Y= (X;+eZ) 1+ =01, ,n—1

with Z and X, independent normal random variables with mean zero and
variance one. The Y; are joint normal with mean zero and covariance

(7 e = EY ;Y = (8ox + @) (1 + )7
If we choose

(8) A/(1+d") 2 Supp(t)
then 7 = p(kA). The probability that ¥; > 0 for j < n exceeds the probability
that X(jA) > 0 for j < n by Slepian’s inequality, and so by ( 5)
Hx(T) £ PlY; >0, =0,1,---,n — 1]
(9) oy [ 2 2
= (2n0) f [1 — &(z)]" exp [—2%/(26%)] da.

To estimate this integral, let zo be the value of x where
(10) g(z) = —nlog [1 — &(x)] + 2°/(20°)

has a minimum. Since both terms of g(x) are convex and twice diﬂerentiable
in z, the second derivative of g(x) is everywhere larger than ¢ °. Therefore
g(z) = —nlog [l — ®(z0)] + 73/(20") + (¢ — ©)*/(24") > xo/(20) +
(x — xo) ?/(2¢%), and from (9)

(11) Hx(T) < exp [—a5/(26")].
To determine z, we set the derivative of g(x) at z, equal to zero, i.e.
(12) onexp [—x5/2] = —[1 — ‘I>(x0)](21r)%x0 .
If for fixed A we let T — «, then n = [T/A] — «; the solution of (12) is
zo = 2o(T) = —[1 4+ 0(1)](2 log T)*; and
(13) Hy(T) < T 0omi/e?,

Since we assume that p(¢t) — 0 as ¢ — «, it follows from (8) that o® can be
made arbitrarily small by choosing A sufficiently large. Hence we may choose
1/¢" larger than any given number « and obtain the result (4).

3. Special bounds. It is also of interest to obtain bounds on Hx(T) if p(¢) — 0
as t — o at some specified rate.

TrroreM 2. If X (t) is a separable Gaussian stationary process with EX(t) = 0
and | p(t) | < CC* for some C > 0 and all ¢ > O, then
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(exp (—KT) if 1<a
(14) Hx(T) <<exp (—KT/logT) if a=1
exp (—KT*) if 0<ax<l1
for some K > 0.
Let
(15) pie = p(|7 — klA)

be the covariance matrix of X (jA) and pjx be its inverse. Since X (jA) are joint
normal, the right side of (5) can be written as an n-dimensional integral,

1 ) @ 1 n—1 1
< - “e —_ N .
(16) H(T) £ sy /o dao fo s exp{ ) p,kx,xk},

in which |pj| is the determinant of the matrix (pjz).

If (p;x) has eigenvalues 0 < A =< --- < \,, then (p;;) has eigenvalues
0 < N\;' £ --- £ AL By the extremal properties of eigenvalues
n—1 n—1
PR Z Na 2 T -
7,k=0 i=0

If we substitute this into (16) and integrate, we obtain
)\§ )\n/2 ()\ >nl2
17 Hx(T) < L = i < (= .
( ) X( ) 2"|p,‘k|* 2"(11{‘)\,‘)’} 4N

The diagonal elements of p;; are all 1 and the eigenvalues of (p;; — 8;;) are
in absolute value less than the maximum row sum of (|p;j| — 8;;). From this
we conclude that

(18) ME142 ; le(jA)]
and
(19) NE =2 5 ()]

If |p(t)| < Ct°, then
n—1 T/A

n—1
2> |p(jA)| < 2047 Zl JT<20a % djj ™
=1 i=

(20) oA for 1 <a
<4C'A log (T/A) for a =1
(o N for 0<ax<l

for some constant ¢’ > 0. For each T we choose A = A(T') so that the right
hand side of (20) is (4 — ¢)/(4 + e). Then (18) gives A\, < 8/(4 + ¢) and
M = 2¢/(4 + e) while (17) gives

(21) Hx(T) < exp (—3[T/A]).
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The theorem now follows because this choice of A(T') implies that
A7'is independent of T for 1 < a
A" > K/log T for a=1
AT = KT} for 0 <a<1

4. Lower bounds. Slepian’s inequality implies that for a stationary Gaussian
process with p(¢) = 0 for all ¢, Hx(¢) can not decrease faster than exponentially,
ie. € "Hx(T) — o as T — = for some K > 0. If p(t) can take negative values,
Hx(T) can decrease faster than exponentially. The following theorem provides
a lower bound for Hx(T) that will enable us to give examples of Gaussian proc-
esses which are mixing and for which Hx(T') decreases slower than an expo-
nential.

TaeorEM 3. If X(t) s a separable stationary Gaussian process with EX(t) = 0
and a covariance function p(t), p(0) = 1, which satisfies the conditions

(i) for some X > 0and all t,0 < t < o, p(t) = e

(ii) for some a, 0 < a < 1, lim inf ¢*p(t) > 0 for t — o, then

(22) Hx(T) > exp {—[K + 0o(1)]T* log T}

for some K > 0as T — .
Our object is to construct a Gaussian process Z(t), with a covariance function
r(t), 7(0) = 1, that is a lower bound for p(t), i.e.,

(23) 0=r(t) =ot), 0=t=T
If we can estimate H;(T), Slepian’s inequality (3) tells us that
(24) Hz(T) = Hx(T).

Let U (t) be the Ornstein-Uhlenbeck process, [8], a Gaussian process with
zero mean and covariance function exp (—ult|). Let

(25) Z(t) = [U@) + oZ](1 + ¢*)7?

where Z is a Gaussian random variable with mean zero and variance one inde-
pendent of the process U(t). The covariance function r(t) of Z(t) is

(26) r(t) = [o" + exp (—ultDI(1 + ")
For sufficiently large T, condition (23) will be satisfied if
(27) (T) = AT® with 0 < A < lim infe.e £%p(¢)

and p is independent of 7" with u > A,
We must estimate

H,(T) = PlU({) > —6Z,0 =t = T]

(28) oy [T° 2 2
= (2m0®)} f _PU®) > 9,0 S ¢ < T)exp [—3/(2")] dy.
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The quantity
(29) G(y, T) = PIU®) > y0 =t = T

is the probability of survival for the Ornstein-Uhlenbeck process with an ab-
sorbing barrier at y or equivalently the probability that the first passage time
for the coordinate y is larger than 7.

The probability density p(z, ¢) of U(t) satisfies the Fokker-Planck equation

62p%6 _1lap
6_3:2+5§(xp) _I_HW

(30)

If we let
Bl p(z,y,t) = (3/9z)P[U(t) <z, U(r) >y for 0= 7 <1,
then p(z, y, t) satisfies (30) for > y subject to the boundary condition
(32) p(y, y, t) = 0.

Since we are concerned with positivity for the stationary process Z(¢) in
(0, T), the initial conditions for (30) must be the stationary solution of (30)

(33) p(z,y,0) = p(z, 0) = (2r) P exp (—2%/2) for z>y
and because of absorption at y,
(34) p(z,y,0) =0 for z = y.
Clearly
(35) Gw,0) = [ plz,y,0) d.

Y

Equations (30) and (32) can be solved by separation of variables and expan-
sion in terms of orthogonal functions. The solution has the form

(36) (@, y, 8) = 2 as(y) exp [—es(y)lgi(z, y)
=

where «;(y), g;(x, y) are the eigenvalues and corresponding eigenfunctions of
the Sturm-Liouville system
dg;  d ai(y)
d_x2—+d_x(xg])+—y_g] =0
with gj(, y) = gi(y, y) = 0, and the a,;(y) are Fourier coefficients to be
taken so that (36) converges to (33), (34) for t — 0.

Equation (37) has the solution

(38) 9i(z,y) = exp (—2"/4) Da;yu()

where D,(z) is the Weber-Hermite function (see [1] p. 116 or [9] p. 347). The
eigenvalues which are ordered so that ay(y) < ae(y) < --- must be determined

(37)
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so that
(39) Daj(y)/#(y) = 0.

The D,(x) are themselves solutions of a singular Sturm-Liouville equation
of the type discussed by Titchmarsh [7]. From Titchmarsh’s work we conclude
that the g;(z, y) are orthogonal and complete in the L, space with inner product

(40) 60 = [ " g(@)h(z) exp (c%/2) d.

Since the function given by (33), (34) is in this space, it follows that the expan-
sion (36) converges in mean square with weight exp (2*/2) if

@) o) = [ ot/ {(21)* [ e @2lastz, 1 dx}.

From (35), (36) and (41) we obtain

(42) Gy, 1) = gbxy) exp [—as(3)1]

with

@) b = | [Cona] /{en [ oo @2l iz
Since b;(y) = 0, (42) implies

(44) bi(y) exp [—au(y)t] = G(y, t)
while (44), (28), and (29) give

oo
H,(T) z (21r02)_’f bi(y) exp [—y"/(26") — aa(y)T) dy
(15)
2 (2m") f bi(y) exp [—y"/(20") — aa(y)T) dy
for any real ¥, .

With condition (27), one can show that for large T the main contribution to
(45) comes from large negative y. In any case, however, if we let 3y —» —
as T'— « we can use asymptotic estimates of a;(y) and b;(y) to evaluate (45).
From the asymptotic properties of the Weber-Hermite functions and (39) one
finds
(46)  a(y) = —(2m) wyexp (=y"/2)[1 + o(1)] as y— —.

One can show that
(47) bhi(y) 1 as y— —o

either by substituting (38) and (46) into (43) and taking the limit y — —
or by using the fact that the Ornstein-Uhlenbeck process is continuous with
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probability 1. The latter implies that G(y, {) — 1 as y — — « for all finite
t > 0. Since bj(y) = 0

(48) 126,02 b

and
G(y, t) =< bu(y) exp [—ai(y)t] + exp [—ae(y)?]
< bi(y) + exp [—az(y)i].

From (48) and (49), plus the fact that as(y) — u for y — —  (which one
can also obtain from (38) and the asymptotic properties of D,(x)) we have
1 —e¢™* = b(y) £1asy— — . This can be true for arbitrary finite positive
¢t only if (47) holds.

From (46) we see that 0 < a;(y) = ai(yo)[1 + o(1)] fory < 4o, Yyo—> — =
therefore (45) and (47) give

(50) H(T) z exp {—ai(yo)[1 + o(1)]T}2(yo/0)[1 + o(1)]

as Yo — — ©.
The theorem now follows from (50), (27), and (46) by a choice of y, that
maximizes the bound in (50), or a choice yo = — (B log T with B = 2(1 — a).
One can easily give examples of Gaussian stationary processes that are mixing
and for which Hx(T) decreases slower than an exponential. Consider the proc-
ess X (t) with mean zero and covariance function

(51) p() = L+ % 0<a<l.

The fact that p(t) is convex for ¢ = 0 and approaches zero as ¢ — « implies
that it is a covariance function [3]. A theorem of Maruyama [4] states that a
Gaussian process is mixing if and only if its covariance function vanishes as
t — o, therefore X (¢) is mixing. Theorem 3 implies that Hx(T') decreases slower
than an exponential.

The process X(t) is also purely nondeterministic. Its spectral density is
given by

(49)

_ 1 +00 _ 1 @ .
i) =5 f_w cos (!\)p(t) dt = ;fo cos (]\) (1 + £)™* dt

_ 1 f“’ cos z dz =a(a+1) “ (1 — cos 2) dz
a\f2do (A + 2)° a\f b (] + 2)e?

Since the last integral is positive definite, f(A\) is monotone decreasing in |A|,
varies as |\ as |[\| — 0 and as |\|* as |\| — ». Therefore

+
f_w llog fON)] dA/(1 + M) < w

and the process is purely nondeterministic [2].
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