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Then for fixed w not in one of the exceptional sets and large enough k,

> M, ()27 < 3 2n;log 20(n) 27" < 21og 2 D, P20 < o,
>k >k n>ng
We apply the Borel-Cantelli lemma with respect to the measure u[E, ] to see
that u[T(w), w] = 1, where T(w) = im: Uise U; A4, n:). Since A (4, n,) is
part of the boundary of the convex set J(w) N C(4, n;), which is a subset of
C(j, n:), the length, |A(j, n,)|, of A(j, ns) is less than 27-27"/%, Take ¢ =
27-27"% We have:

W) £ 5 T h(4G D) £ T Mo(a)h(2n-27").
From (3) and the properties of »(n) and a(n), we obtain
BE(T(w)) = 2 2np(n)h(2r-27"%) log 2
>k

= 2log 2> nia(n)h(2r-27"%) /h(2r-27™/%) log 2™ = 2 a(n,).
>k 1>k

Since D a(n:) < , limyw bt (T(w)) = 0, so h*(T(w)) = 0.

Remark. From the uniformity of the Brownian motion, it would be surpris-
ing if K(w) had actual corners. One might even suspect that if k(¢) satisfies (4)
and lim,,, k(t) log 1/t = «, one would have k*(E) = o for any E such that
e[T(w) N E, w] > 0.
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ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED
TO A GAUSSIAN PROCESS

By T. S. PrrcuEr

Lincoln Laboratory®

Let 2 (f) be a real measurable Gaussian process on an interval T' with mean
0 and correlation function R (s, t). We-assume fT r R (s, t)dsdt < o so that
R(s, t) has an L, expansion ) \ei(s)e:(f) with DA} < «. We will write R
for the compact integral operator gotten from R(s, {). For any f satisfying
[2[R(, HP|f@)|dt < o we can form the random variables §(f, z) =
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330 T. S. PITCHER

ffx(t)f(t) dt ([1], Theorem 2.7, pg. 62). 0(f, ) will be Gaussian ([1], Theo-
rem 2.8, pg. 64) and, writing P, for the measure associated with z(f),
[o(f,z)dP. =0, [6(f, z)6(g, ) dP, = (Rf, g). Hence, if f, converges to f in
Ly, 6(f., x) converges in mean to a Gaussian random variable which we write
0(f, ) and which satisfies the above equations. Moreover, if f, converges to f
and the f, are in the range of R}, B(R“%fn , &) converges to a Gaussian random
variable which we write 0 (R™*, ). It is easily verified that this notation is con-
sis;oent and that the above equations continue to hold. In particular, ; =
N\:?0(p;, ) are independent normalized Gaussian random variables.

We wish to investigate the behavior of sample functions of processes y (f)
such that P,., < P, (Ps4y is absolutely continuous with respect to P,) where
(x + y) () is the process gotten by adding independent versions of z(¢) and
y (). If we write 5; for \7*6(p;, %), then clearly P,., < P, implies that the
sequence (0; + #;) is absolutely continuous with respect to the sequence (6;) in
the sense that every property possessed by the sequence (6;) with probability
one also holds for the sequence (0; + ;) with probability one. Conversely, if
(8:) is any sequence of independent normalized Gaussian random variables and
(n;) is any other sequence of random variables such that (8; + ;) is absolutely
continuous with respect to (), then P,,, < P, where z(¢) = »_ M6ip:(t) and
y(@) = > Nnw:(2), if \; decreases rapidly enough and ¢; is an orthonormal set
of sufficiently smooth functions on an interval T'. The results of this paper can
thus be interpreted in either context and both points of view will be used in the
proofs.

If y() is a “sure” function, then P,,, < P, if and only if y = R%f for some
square integrable f [4], and it is not hard to show that any process y (f) whose
sample functions are almost all drawn from the range of R? satisfies P4, < P .
The following example shows however that there are y’s satisfying P,yy < P,
whose sample functions almost all lie outside the range of R%.

Example: Let y (¢) be the Gaussian process on 7' with mean 0 and correlation
function S(s, &) = X Nipipi(s)e:(}) where D u; = o and Y, ui < . Then
P,y < P,since R*(R — R — 8)R™* = —R 'SR} is a Hilbert-Schmidt oper-
ator [2]. The norm of R~ if it existed would be X, w0 (@s, y)/ (haws) ¥’ but this
is infinite with probability one under the assumptions since the (e, y)/ (uh:)}
are (with respect to P,) independent normalized Gaussian random variables.

This example shows that no necessary and sufficient conditions on the sample
functions of y(¢) can be found to guarantee P,,, < P, . The situation cannot
be saved by making special assumptions on the z(f) process since it didn’t
really enter into the construction. Of course, the vector process (z (¢) + y (@), y(®))
is singular with respect to (2 (¢), v (¢)) since, once one knows y (¢), the usual per-
fect test can be applied to separate z () and z () + y(f). The following theorem
clarifies the situation somewhat in the case of Gaussian y (2).

TaeorEM 1. If y (t) s Gaussian, has mean 0, is independent of x (t) and P,y <
P, , then the following are equivalent:

(1) The sample functions of y (&) are in the range of R with probability 1.
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(2) The vector process (x(t) + y(t), y(t)) ¢s absolutely continuous with respect
to (x(t), y(8).

3) z(@®) + y(@) s strongly continuous with respect to x(t) in the sense of
Hagjek [5].

Proor. If S(s, £) is the correlation function of % (¢) and S is the associated
integral operator, then by hypothesis R*SR™ = > uP;, (P; being the pro-
jection on the subspace spanned by the normalized function ;) is Hilbert-
Schmidt, ie., ) uj < . The random variables §(R ™y, ) are independent
and Gaussian, and have mean 0 and variances 1, u;, and 1 + u; with respect to
P,, P,, and P,,, respectively. We shall show that each of the conditions is
equivalent to Y u; < .

Condition 1. The norm of R ¥y (t) if it exists is given by 2 0(R ., y)® =
Z wm: where n; are independent normalized Gaussian random variables and
this series converges or diverges with probability one depending on whether
>~ us converges or diverges. (This shows also that the sample functions are
either all in the range of R? or all outside it.)

Condition 2. According to Gel’fand [3] this is equivalent to

flog [dP(rl-u.y)/de dP,) dP(sty,4) < ©

and an easy calculation shows that the integral is 2> (2u; + u2)/(1 + u) —
log (1 + u:) whose convergence is equivalent to that of > wi.
Condition 3. Strong equivalence means the P, convergence of

2 0R M, o) — 1/ + w)]

which is equivalent to the convergence of Y [I — 1/(1 + u;)] which is equiva-
lent to the convergence of D u;.

We now turn to the problem of finding necessary conditions on the sample
functions of y(¢) without assuming that it is Gaussian. We will need the follow-
ing lemma.

Lemwma 1. Let y (t) be a process independent of x (t) with Pyyy < P, . Let A be a
measurable subset of sample space with P,(4) > 0 and v the measure defined by
»(B) = P,(AN B)/P,(A). Then there is a process z(¢) with P, = » and
P,..<P,.

Proor. The existence of z follows from Kolmogoroff’s theorem. For any
set B, Por.(B) = [P.(B + fP.(df) = 1/P,(A) [ P.(B + f)P,(df) =
P,,,(B)/P,(A) which implies P,, < P,.

THEOREM 2. If Pyyy < P, then 0, = 0(R %;, z) is defined almost everywhere
P, and for any numbers ¢; with 0 £ ¢ < 1 and D& < w, 0; must satisfy
> €6t < o with P, probability one.

This leaves open the question of whether Y, 6; must converge.

Proor. The existence of §; with respect P, and hence P,., implies its existence
with respect to P, . Let D, be the derivative of P,,, with respect to P, over the
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field generated by 6,, ---, 6, ;thenfor 0 < a; < 1

( [ D azm)2 - ( [ [ lexp (= 3 X)/(2m)™
[ o Cuot) ~yoiwn ar,| - a)
= (27r)‘"<f o [exp (= 3 T )
[fer (-2 - i - o)+ 30w ar, | as---an)
< @m0 [ [oxp (= Tast?) by --- dhy

[ e (=0 = wdtt — 0u(y) + 3020)) dPydn - - dt
The first integral equals (27) "*]] (2a:) ™ and the second is

(20" IT 21 — )™ [ exp (=T (1 — 200)/4(1 — )] 63(3)} dP,

so, setting a; = (1 + €;)/2, we have
(f Phare) s o (=4 T la/(1 - ) oity) + log (1 = )} ap,.

If D T [e/ (1 — €)]03(y) + log (1 — €}) = o almost everywhere, then
J lim D, ()]} dP. = 0

and P,., is singular with respect to P, contrary to hypothesis. If the serie
diverges on a set A of positive measure and g’ is the process gotten by restrictin
y to A as in the lemma, then the same contradiction can be gotten by using ¢’ i
place of y. Hence, the series cannot diverge to 4 « except on a set of measure
for any set of ¢; with |e] < 1.If D ¢ < o, then > log (1 — &) > —w g
that the series ) [e/ (1 — €)165(y) and hence, also the series . €03 (y) mus
converge almost everywhere.

CoRroLLARY. If S A < o (which does not imply that the sample Sfunctions ¢
z(t) are in Ly), then the sample functions of y(¢) are in L, with probability one.

Proor. This follows from the above theorem since [ |y (t)|"dt = D Nt (y)

The next theorem makes more sense in connection with sequences so we stat
it that way. The following lemma will be needed in the proof.

LemMA 2. If a; is a sequence of positive numbers with > a; = « and x; is an
sequence of random variables taking the values 1 and O with probabilities p; = e an
1 — p;, then > xio; diverges with probability at least e.

Proor. Let f, = 21 x:i0i/ 21 a;. Then 0 < f, £ 1and E(f,) = e Let p(a
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be the probability that f, < . Then
e = E(fa) £ ap(e) +1 — p(®)
sop(a) £ (1 —e/(1 — ). Thus,
prob (O°F xits = a1 a;) = prob (f, = a)
Z21l—plz1-[1-¢/0—-a)l

Letting n go to « and then « go to zero completes the proof.

TuroreM 3. Let (0;) be a sequence of independent normalized Gaussian ran-
dom variables and let the n;'s be independent of them. If (0; + n:) is equivalent
to (0;) and if m,; is any set of numbers with prob(n; = m;) = ¢ > 0, then

mi < o and Y, mm: < o with probability one.

PROOF The second assertion will follow from the first by Theorem 2. If
> m; = «,we can choose a set of numbers 3; to satisfy lﬁﬂml <1, 2 Bmi<
and Y Bﬂm = o. From Theorem 2 we have > Bamm; < o Wlth probability
one. If x; is the characteristic function of 77 = m,, then Y Banmi = D Bamix:

and the previous lemma gives a contradiction, completing the proof.
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NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND
BY RIORDAN!

By H. W. Gouwp
West Virginia University
In a recent paper on enumeration of graphs Riordan [7] has noted the follow-
ing two combinatorial identities:
n—1

(1) > (” - 1) AR+ 1)1 =

k=0
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