CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS
PROBABILITIES!

By A. Jorre’ axp P. E. Ney

Cornell University

1. Introduction and summary. We are concerned in this paper with a process
characterized by the arrival of units at a facility consisting of an integral number
¢ of channels or servers, who are to process these units. Denote by the random
variable ¢, the arrival time at the facility of the nth unit, and by T, = ¢, — t,
the inter-arrival time between the (n — 1)st and nth units. The random var-
iables {T,}, n = 1, 2, ---, are assumed to be independent and identically
distributed (I.I.D.) as some typical random, variable T' with distribution funec-
tion (d.f.)Fr. The trivial case Fr(0) = 1 is excluded. If an arriving unit finds
channels free, it is processed by any one of them. The channels behave inde-
pendently and identically, in the sense that the processing time of a unit does
not depend on the particular channel doing the processing, or on the status of
the other channels. If an arriving unit finds all channels busy, it departs, or is
lost. It is assumed that the nth unit has associated with it a processing time
R, , whether or not it is in fact processed. The {R,}, n = 1, 2, - - - are taken to
be random variables which are I.I.D. as some typical B with d.f. Fr, and are
furthermore to be independent of the {7',}. Unless it is stated to the contrary,
we assume that R has finite expectation.

In a typical example, the units might be messages or telephone calls, and
the channels be lines or cables over which the messages or calls are transmitted.
The {T,} would be the time between attempted calls. If all lines are busy when
the nth call is attempted, the call or message is lost. The {R,} represent the
length of conversation that would follow from the nth call if that call were to
find a free line. Among the quantities which characterize the reliability of such
a system are the probability p, that the nth call or message is not lost, and
the probability p; that at some specified time ¢ not all lines or cables are busy.
We shall be concerned here with the convergence of {p,} and {p} (as n — «
and ¢ — o), as well as that of a larger class of probabilities.

The question of the convergence of the sequence {p,} was first studied for the
case of one channel by F. Pollaczek in the last chapter of his book [2]. Under
certain restrictions he proves the convergence by somewhat lengthy, and purely
analytical methods. In Section 2 we indicate how a very elementary application
of renewal theory yields a somewhat more precise result under less conditions.

It was also Pollaczek who first posed the question of the convergence of {p.}
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in the multiple channel case. The analogous problem for {p;} was posed to one
of the authors by L. Takacs, and also by the referee of an earlier version of this
paper.

The main results of this paper are to answer both these questions subject to
only mild restrictions. These results are contained in Theorems 2 and 3 in Sec-
tion 3, which in fact establish the convergence of a considerably larger class of
probabilities.

2. The convergence of {p.} for a single channel. In this section it is not
necessary to make any assumptions on the moments of 7 and R.

For any distributions Fr and Fr, define A to be the smallest integer = 2
such that R has no point of support in the semi-closed intervals

(2.1) (kkmy ((k 4+ 1N = 1) M], k=012---,

where m = ess. inf. T', and M = ess. sup. T, provided that such an integer exists.
If such an integer does not exist, defineA = 1. Let &, = P{T1 + --- + T, = R}
and y = Z::;l (otn — an-1).

THEOREM 1. P — N u; pe = 0 ¢f X does not divide k. If u = o then p, — 0.

Proor. Suppose that the (j + 1)th unit which arrives to find the channel
free is the A;th in the sequence of arriving units. Then p, = D 0 P{h; = n}.
Let H; = hj — hj—; . The sequence of random variables { H ;} is clearly a discrete
renewal process. Let f, = P{h; = n}. Then Z’;=1 fn= azy— lask— . Hence
by the discrete renewal theorem (see e.g. pp. 3867 of [1]), the theorem will
follow if we can show that the definition of A is equivalent to the statement
that A be the smallest integer with the property that f, = 0 for every k not
divisible by A. (This is the usual definition of periodicity of {p.}. See [1].)

Suppose there is a A = 2 satisfying (2.1). Then P{R = kwxm} =

P(R= (k+ 1)N—1)M};k=0,1,2, ---, which implies that
(2.2) AR\ = QDA =012 ---,
which in turn implies that fiapr = <+ = fgna = 0. Thus in this case {p.}

has period A = 2.

Conversely, suppose that {p,} has period A = 2. Then clearly (2.2) is satisfied.
We shall show that this implies that R has no point of support in the intervals
(2.1). Suppose the contrary. Then there is a point of support of R, say r, and a k

such that
(2.3) am < r < ((k+ DN — 1)M.

Now suppose that 7;, « -+, 7a41n—1 are points of support of 7. Then by (2.2)
we have P{T1 ’l‘ + T(k+1) A1 g R} = P{Tl + v + TEN ; }, and thllS

(24:) r é T1 + s + T (+1)A—1 implies r é T1 + ce + T\ »

Hencesettingr; = M, =1, ---, (k+ 1)A — 1 we seeby (2.3) thatr < kAM.
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It is now sufficient to show that for all 7 such that 0 < ¢ < kN — 1,

(2.5) r < im 4+ (kN — )M
implies
(2.6) r< G+ Dm+ (b —i— 1)M,

since then » = kNM implies that r < kAm, which contradicts (2.3). But (2.5)
implies that »-= (¢ + N — 1)m + (kA — 7)M, which by (2.4) yields
r=ON+i—Dm+UN—N—i+ 1M = i+ 1)m~+ (k\—i—1)M, which

is (2.6).

3. Main results. We shall consider two processes defined on the space

Q@={(@®,  +,%):x; = 0,72 =1, ---,¢c}. One is the continuous parameter
process {u;} = {(wa, * -, Usw)}, where u,; is the processing time after ¢ remaining
to the unit in channel ¢ at time ¢. If channel ¢ is empty at ¢, then u;; = 0. The
other process is the discrete parameter process {t,} = { (%n1, - -+, Unc)}, Where
Uni = Ug,,; - This process is Markovian, and typical one step transitions from
Un = (Un1y " Une) 10 Unpa = (Unq11, *** ) Unga,c) GTE

(Uni — Tnyr) ™ if the (n + 1)th unit is not processed by the
7th channel,

(Ry — Twy1) © if Un,; = 0and if the (n 4 1)th unit is processed
by the 7th channel,

(31) Upt1,i =

where for any real z, 7 = max (0, z). (We adopt the convention that if the
7th channel is empty at ¢, , and the nth unit is processed by this channel, then
we set u,,; = 0 rather than u, ; = R,.)

Analogous to the one channel case, suppose that the (5 + 1)th unit which
arrives to find all channels free is the A;th in the sequence of arriving units,
and write g; = &, . Thus g, is the first time at which all channels are free. We
assume that at time zero the system is in an initial state uo = (w01, -+ , %),
and write £, = h_y = g_1 = 0. Furthermore write P{u, e A | uo} for the proba-
bility that u, ¢ A if the initial state was uo, and define P{u, ¢ A | uo} similarly.
Let

Hj=h;—=hia;0;=9;—gi2,] =0,1,2, -+
Ny(n) = max {m: Hy + -+ + H,_; = n};
and .
Ng@) =max{m:Go+ -+ 4+ Gna = 8.

The instants {g;} = {#,},7 =0, 1, 2, - - - are regeneration points (see [4]) of
the {u;} process in the sense that at these instants any knowledge of the past
history of the process has no predictive value. Similarly the points h; are regenera-
tion points for the discrete process {u.,}. It follows that the conditional probability
that u, or u, respectively be in any specified Borel subset A of €, given (i) an
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initial point ue, (ii) the fact that there has been at least one regeneration point
prior to £, or ¢ respectively, and (iii) the time at which this regeneration occurred,
is a function only of A, and time which has elapsed since this last regeneration
point. Stated precisely, there exist functions h(A;n) and g(4;t) such that

(3.2) Plun e A |uo; Ne(n) > 0; by} = B(A;n — hygm)
and
(3.3) Pluse Aluo; Ne(t) > 0; gnonr} = (A5t — gngw)-

Smith [4] calls processes with this property equilibrium processes.

Since the points {h;} and {g;} are regeneration points, the random variables
{H;} are I.1.D. as some typical random variable H with d.f. Fx , and the random
variables {G;} are I.1.D. as some typical G with d.f. Fg. Let EH; = u, EG; = ».
The distributions of Hy and G, will in general depend on %, , and we denote them
by Fu, and Fg, . It is expedient to introduce the above terminology at this time
even though we do not yet know that Fg, Fe, Fg, and Fg, are honest d.f.’s in
the sense that they go to 1 as their arguments go to «. That this is in fact so will
be proved somewhat later below.

Our main results concern the existence of limy,e P{u. € 4 | ug} and lim.,
P{u, e A | ug}, where A is a Borel subset of Q. In order to be able to state the
conditions under which the convergence holds we must first make some addi-
tional definitions.

Denote by BT the class of all Borel subsets A of @ which have the property
that if (uy, --, ) €A, then forany real bk = 0, (us + k, -+, u. + k) ¢ A.
Similarly let B~ be the set of all A such that if (u,, -+, ¢c.) ¢ A then ((u; — k) ™,
coo, (e — k)T) €A, and let B* = BYUB™. For example, the set representing
the event “‘channel ¢ will be busy for at least u; before becoming idle’” is in B¥,
and in particular so is “all servers are busy.”” The sets for the events ‘‘channel ¢
will be busy at most u; before becoming idle”” and “‘all servers are free,” are in
B~. Note that our class B satisfies the requirements of the class A* discussed
in paragraph 3.6 of Smith [4].

For lack of a better phrase, we shall call z, a probability accumulation point
(P.A.P.) of therandom, variable X, if for any neighborhood W (z,) of z, , we have
P{X ¢ W (xo) — x} > 0.

Finally, for any random variable X, let S(X) and I(X) denote the essential
supremum and infimum respectively of X; let Fy be the conditional distribution
of T, given T' # 0 (the case when P{T' = 0} > 0 has not been excluded) ; and
let 7™ be the random variable with d.f. F7.

We shall prove the following results.

TugoreM 2. If (a) P{T = min [R, cI(T")}} > 0, and (b) T hasa P.A.P. at
zero, then for any tnitial point uo and any Borel subset A of Q

(3.4) lim Plun e A | uo) = %gﬂ WA DL — Fa()] > 0.

n->00

The proof will be given in Section 4.
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ReMARKk 1. The condition (a) is also a necessary condition in the weak sense
that if it is violated, then for any 7 we can define a random variable R and a set
A for which the theorem is false. Depending on the particular choice of T, R, and
A4, it may then happen in some cases that the limit in (3.4) exists but is zero,
or in other cases that the limit does not exist. An idea to the construction of such
counter-examples can be obtained by studying the manner in which Lemma 3
(to be proved below) would fail.

REMARK 2. As a corollary of Theorem 2 we see that if the conditions of the
theorem are satisfied, then {p,} converges. (p, is the probability defined in
Section 1).

ReMmArKk 3. The condition (b) is not really crucial for a theorem of the above
form to hold, its main purpose being to simplify the result. It assures us that the
{u.} process is aperiodic, i.e. that there is no interger A = 1 such that P{u, ¢ A} =
0 for all n which are not integral multiples of A. If such a periodicity did exist,
then an obvious modification of the proof of Theorem 2 would show that (3.4)
is to be replaced by

(341)  limpow P{UneA| Us} = %Eo MAM)IL = FaOrd)].
Z

TaeoreM 3. If (i) P{T = min[R, ¢I (T*)]} > 0, and (ii) T has a P.A.P., and
(iii) A s in B*, then for any initial point uo

limgow P{Use 4| Uo} = 1/0 fow (A (1 — Fo(t)} dt < o,

The proof will be given in Section 4.

ReMARK 4. Condition (i) is again necessary in the sense mentioned in Re-
mark 1. Conditions (ii) and (iii) are technical conditions with which it seems we
can not dispense. Condition (ii) serves to eliminate the possibility of periodicities
(note that the P.A.P. need not be at zero) ; while (iii) is tailored to enable us to
use a theorem of Smith [4] on regenerative processes.

ReMmark 5. If (i) and (ii) are satisfied then an obvious choice of A leads to
the conclusion that the probabilities {p;}, ¢ = 0, defined in Section 1, converge
ast— o,

4. Proofs of the main results. We shall break up the proofs into a sequence
of lemmas. The first lemma gives an inequality between certain joint probabilities
and product probabilities. This inequality is similar to a result given by H.
Robbins in [3], and the proof can be carried out in an anologous manner.

Lemma 1. Let {X3},7 = 1,2, - - -, be a sequence of independent random variables,
and let S, = izt Xs. Then for any real numbers a;,1 = 1,2, ---, and any
integer n,

(£.1) P{Siza, , 8 = a} =[] P{S: = a}.
=1

Now choose and fix any real k in the interval (0, 1), and let K = I(R) —
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ES(T). Also for any real b, define the set Ab = {(z1, -+, 2,): 0 = z; =
b, i =1, ,¢.

LeMMA 2. Given any 0 £ D < o, there exists an ¢ > 0 not depending on D, and
and an N < o such that for all uo &€ AD and n > N we have (a) P{u, & AK | uo} >
€; (b) If P{T = R} > 0, then P{u, ¢ AO | up} > e

Proor. A sufficient condition for the event u, ¢ A K is that the arrival time
t, of the nth unit should not precede by a time greater than K the departure
time of any previously arrived units, and that ¢, > w,; — K" fori =1, -+, c.

1 if the 7th arriving unit is processed,
Let o; =

0 if the 7th arriving unit is lost.

Then the departure time of unit ¢ is ¢; + o:R; . Letting
(4.2) Pn(uo) = P{ﬂ (tn > Uos — K+)},
i=1

and for any random variable X
(43) Fn,T(X) = P{T1+ e + Tné X},

we thus obtain

n—1
P{u, e AK |uo} = P,.(uo)-P{ﬂ (b > ti + os R — K+)}
7=0

(44) = P,,(uo)~P{F1 (Ti+ -+ +Tw > Riy — K+}

2 Pa(u) TT[1L = FurlR — K.

The last inequality follows from Lemma 1.
A sufficient condition for the product on the right side of (4.4) to converge
to a positive quantity as n — <« is that for some § > 0

(4.5) Fir(R—K") <1—5 for ¢=1,2, -+,
and
(4.6) Z: Fir(R— K%) < o.

If Kt* = 0, then P{T = R} > 0, and hence (4.5) holds. If K* > 0,
then Fr(R — K*) = P{I(R) — kS(T) < R — T} < 1, since by assumption
Fr(0) < 1 and hence S(T) > 0. But since the 7; are non-negative,
Fir(R—K") £ F:(R— K" fori=1,2, ---,and hence (4.5) is established.

Turning to the verification of (4.6), write) o1 Fir(R— KV) =2 2, [#+
Fir(r — KYdFp(r) = limp.e [§ D iy For(r)dFe(r + K*). But from renewal
theory it is well known that there exists a constant ¢; < « such that Yo
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Fir(r) < crr. Hence it follows that the integrals [¢ > iy Fir(r)dF(r + K1)
are uniformly bounded by ¢,E (R) < « since we have assumed ER < «. Hence
the sum (4.6) converges, implying that the product in (4.4) is uniformly bounded
away from zero. Since clearly P,(u) — 1 uniformly for u, & AD, part (a) is
proved.

Part (b) follows identically, with the replacement of K™ by 0 throughout the
proof being justified by the condition P{T = R} > 0.

Following Smith [4], we shall say that the set A is an a-set with respect to the

sequence {u,}, n = 0,1, 2, - -, if there is a real « > 0 and an integer N < o,
such that for any =,
4.7) P{Ng(n + N) > Na(n) |uo; un e A} Z a.

Note that « is independent of u, . Similarly, we shall say that A4 is an a-set with
respect to {uj, ¢ = 0, if there exist real numbers 7, @ > 0, such that for any t,

(4.8) P{Ns(t+ 7) > Na(t) |uw;urc A} Z

(Smith’s definitions of a-sets were weaker in the sense that he only required
(4.7) and (4.8) satisfied for sufficiently large » and t.)

Lemma 3. (a) If P{T = R} > 0, then AO is an a-set with respect to {u,}, n = 0,
1,2, .-+, and {u},t = 0. (b) The set AK s an a-set with respect to {u.}, n = 0,
1,2, -+ ,and {ud, t Z 0, for all R, if and only if P{T = ¢I (T*)} > 0.

Proor. Part (a) is an immediate consequence of the definition of a-set. We
turn to the sufficiency part of (b).

If AK is an a-set with respect to {u,}, then obviously it is one with respect to
{u4}, and hence we may limit attention to the former. Suppose first that I () >
0. If P{T < I(R)} < 1, then we are in case (a), and hence we need consider
only the case when P{T < I(R)} = 1. Recall that the random variable Nz (n)
denotes the number of passages through the empty state up to time ¢, (including
what we have called the zeroth passage). Thus the statement Nz(n + N) >
Nz (n) is equivalent to saying that there is at least one passage through A0 in
the interval (¢n, fn4n). To establish the sufficiency part of the lemma for the
{ua} sequence it is thus enough to show that thereisan a; > 0and an N < oo,
such that for each u, ¢ AK, there is an N’ (u,) < N with the property that

(49) P{un+N',i = O, 1= 1, ey, C} > .

Because of the symmetry of the problem it is no loss of generality to assume that
Unp = -+ = U, and that if several channels are free then the arriving unit
enters the channel with the lowest index. It is thus sufficient to prove that there
is an oy > 0 and an integer L < « with the property that if u, ¢ AK, and if
Unp = -+ = Uy = 0 for any particular integer b satisfying 1 < b =< ¢, then
there is an integer L' (u,) < L such that

(4.10) Plupprg= -+ = Untr'p = Unirrppr = 0} > ag.

The sufficiency part of the lemma will then follow with N = cL.
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Finally we see that it is in turn sufficient to prove the following: There exist
real ¢ > 0, a; > 0, and an integer M < oo, such that if u,y < -+ = Upe, Um =

© = U= 0,0 < Uppp1 < K,forany 1 £ b =< ¢, then there is an M'(u,) < M
such that

(4-11) P{un+M',1 = 0 = Ungmrp = 0, Untm’ pr1 = [un,b+1 - €]+} > asz.

Then clearly (4.11) implies (4.10) with L = [I(R)/e]M, and hence (4.9) with
N = [I(R)/e]Mc.

If b = ¢ in (4.11) then the proof degenerates to a trivial situation, and hence
we assume that b < ¢. Let o,; = 1 if the nth unit is processed by the 7th channel,
and ¢,; = 0 otherwise. For any positive integer m define

Ri(n, n + m) = On,: Rn —I' e + On4m—1,i Rn+m—1 )
(4.12) I:(n,n + m) = total idle time of channel ¢ during the interval
[tn ) tn+m) .

Let B(n, m, 6, 82, 8;) denote the event
H(R) —I(T*) — 8. € Tapa+ -+ + Topma < I(R) — I(TH)]

NI(R) — 8 S Tuss + -+ + Totm < I(R)]
NIR) €S R <IR) +8,57=1,-+,m]

n[Tn+J§I(T*) +53,j= 1,---,m]

We shall partition the remainder of the proof of the sufficiency part into
several cases.

Case (). I(T™) does not divide I (R).

Case (ii). I (T™) divides I (R) and P{R = I(R)} = 0.

Case (iii). I (T™) divides I (R) and P{R = I(R)} > Oand P{T = I(T™)} = 0.

Case (iv). I(T*) divides I (R) and P{R = I(R)} > Oand P{T = I(T*)} > 0.

Case (i). Let j be the largest integer smaller than I(R)/I (T™), and
8= I(R) — jI(T™). Then 0 < & < I(T™), due to the hypothesis of Case (i).
Either 7 = ¢, or P{T = R} > 0. In the latter case we are in part (a) of the
lemma and are through. In the former there is an m = ¢ such that

(I(R) — I(T*) — & }
(4.13) P i STou+ -+ Togma <I(R) — I(TH]} = au> 0.
NIR) = = Topr+ -+ + Togm < I(R)]

Fix m. Choose 0 < 8, < I(T™*) — 6,0 < 8 < (1/¢) {I(T*) — 8 — &}, and let
83 = I(T*) — 8, — 8 — ¢d; . Due to the assumption U, = -+ = us = 0, one
verifies directly that the event B(n, m, 6;, 8, &) implies that (i) channels 1,
-+, b will begin to process exactly one new unit each, during the interval
ltw, tnim1), and none in [fnim_1, tusm); (1) if Unpp = I(R) — I(T™), then
channel b + 1 will begin to process exactly one new unit in [t, , toym); (iii) if
Unpsa > [(R) — I(T*), then channel b + 1 will process no new units during

[tn » tatm—). Thus B(n, m, &, &, &) implies that:
(4.14.1) R;(n,n+m—1) = Ri(n,n +m) = I(R) + 5.
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(4.14.2) Rppm,n4+m—1) =0, if wwpu > I(R) — I(TY),
(4.14.3) Roa(n,n +m) = I(R) + 8, if tUnp =< I(R) — I(T");
Lin,n+m—1) =ILin,n+m) £ ( —2) I(T* + &),
1=1,---,b<eg
(4.152) DIy mym4+m —1) =0, i sy > I(R) — I(TH),
L (nyn +m) [0 — 1T + &) — unpal™ + T(T7)
+ 8), i Unpp = I(R) — I(T);
sy b L, i U > I(R) — I(TY),

(4.15.1)

(4.15.3)

(416.1) Ui ntm—1 > 0, 7 =

[y

(4.162)  iim > 0,0 =1, -+, b+ 1, I wnpa S I(R) — I(T7).
Furthermore,
Untm,i = Rz(n,n+'m) —I—I,(n,n -|—m) —_ (T”_H_I_ e +Tn+m),
(4.17.1)
’[: = 1, cee, b,
Unim,i = Rs(nyn +m — 1) + Li(n,n +m — 1)
(4.17.2) i ®, .
— (Tapr+ o+ Tagma)y 5= 1,4, b,
Unimbit S Unpir + Boa (n, n + m) + Iy (n, n + m)
(4.17.3) e (Toss + o+ Tagm)y i Uy = I(R)
—I(T%),
(4.17.4) Unpmippl = Unptt — (Topa + o+ Togma), H Unpn

> I(R) — I(T").
Substituting (4.14), (4.15), (4.16) in (4.17), we see that B(n, m, &1, 62, &)
implies that
(4.18.1) 0 < Unpmi < (c— 1) I(TH,5=1,---,b,

(4.18.2) 0 < Unpmai = cI(TH,i=1,---,b,

Unppr + 21(T*) — 84, i (0 — 1) (I(T*) + &)
S tnpn = I(R) — I(TY),

(b + 1) I(T*) — s, if Unpsa
< (b —1) (T +5),

= ma,x{un,b+1 + 2Z(T*) - 34, (b + ])I(T*) - 34}, if Un ,b+1

< I(R) — I(TY),

0 < Un4m—1,b+1 § Un b1 — I(R) + I(T*) b 31 5 if Un b+1
> I(R) — I(T).

(4.18.3) 0 < Ungmpyr =

(4.18.4)
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Since P{B(n,m, 61,82, 83)} > asfor some a5 > 0, we see that

0 < Unymi = (c— DI(TH,s=1,---,b

(4.19) P {0 < Ungmpss S max[tnpin +21(T*) — 8y, (b 4+ DI(TY — &

Unpyn = I (R) — I(T*)} > as,
and

0 < Unym,i < (T, c=1,---,b
0 < Ungmotpst < Unppr — L(R) + I(TF) + &

(4.20) P{
Unppr > T(R) — I(T*)}> o .

Finally, let ¢ = min[d,, I (R) — I(T) — 8], and note that by hypothesis there
is an ag > 0 such that
(4.21) P{Toym = eI (T*)} = P{Tpimz Z cI(T%)} > .

Then (4.19), (4.20) and (4.21) imply that for some oy > 0

(4 22) P{un+m+l,1: = 0, 1= 1, cee b; Un4+m41,b4+1 = [un,b+1 _ E]+

| |t < I(R) — I(TH} > ar,
and
(4.23) Plttgym = 0,4 = 1, -+, b5 Unympir = Unpia — ¢

| Unppr > T(R) — I(TH} > a.

Letting M be any integer greater than m + 1 and a3 = a7 we thus have proved
(4.11).

Case (ii). Since by hypothesis P{R = I(R)} = 0, there is a § > 0 which is
small compared to I(T*), I(R) and ¢, and such that I (R) + & is a point of
support of R. Then I (T*) does not divide I (R) + 8, and the proof of Case (i)
goes through identically with I (R) replaced by I(R) + 6.

Case (iii). Let 7 = I(R)/I(T*). By hypothesis j is an integer. If j < ¢ then
P{T = cI(T*)} = P{T = I(R)} > 0. Since P{R = I(R)} > 0 it follows that
P{T =z R} > 0and we are in part (a) of the lemma. It thus remains to consider
the case j = ¢ + 1. Since P{T = I(T™)} = 0, there is a § > 0 which is small
compared to I (T™), I(R) and ¢, and has the properties that (a) I(T*) + &
is a point of support of T, (b) I (T*) -+ & does not divide I (R), and (c) I(R)/
(I(T*) + 5) > c. The argument of Case (i) now goes through identically with
I(T*) replaced by I(T*) + s.

Case (iv). By assumption, {I (R)/I(T*)} = j is an integer. As in Case (iii),
if 7 < ¢, then part (a) of the lemma applies. Assume that j = ¢ + 1. Suppose
first that u, is one of the lattice points {4 (T™), - - -, 4, (T*)}, where 4, , - - - ,
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1, are integers such that 0 < ¢, =< j. Clearly there is an integer m = ¢ such that
[Tona+ -+ + Togm = I(R) — 2I(T*)] _
P{ﬂ[Tn+1+“'+Tn+m=I(R) - I(T%)] =>0

Fix m. The event B(n, m, I(T™), 0, 0) implies (4.14), (4.15), (4.16) with
82 = 8 = 0. Furthermore it implies that the last inequality in (4.15) can be
strengthened to read

(4.24) Lin(nyn +m) £ [0 — DI(T) — wappl™
Analogously to (4.18), B(n, m, I (T*), 0, 0) implies

0<  UnpmiS (c— DI(T,5=1,--,b,

0< Uppmas = cl(TY,i=1,---,b,

(4.25) 0 < Unimpp < max{unpp + (T, bI(TY)]},
it e < I(R) — I(TY),

IA

0 < Un+m—1p4+1 = un,b+1 - I(R) + 2I(T*)7
i Unpn > I(R) — I(TY).

Since clearly there is an ay > 0 such that P{B(n, m, I (T*), 0, 0)} > a0, it
follows that there is an ay; > 0 such that

P 0< Untm,i = (C - l)I(T*),'L =1, ,b
0 < Ungmpir = MaX [Up s +I(TF), bI(TH)]

(4.26)
tnss < I(R) — I(T*)} > o,
and
P{O<u"+"’—1"§CI(T*),i=1,"‘,b \
@27) 0 < Ungmipis = Unp — I(R) + 2I(T7)

Un b1 > I(R) - I(T*)} > o .

Then (4.21), (4.26), (4.27) imply (4.22) and (4.23) with ¢ = I(T"), and oy
replaced by some oz > 0.

Finally we note that if u, is any point in AK, but is not one of the lattice points
defined in the previous paragraph, then there is an integer N; < « and a real
a3 > 0 (neither depending on u,), such that with probability ai; the system
will be at such a lattice point within N, steps. This is a trivial consequence of
the assumptions of Case (iv). Thus setting N = N, + [[(R)/I(T*)] ¢(m + 1),
and a3 = (aus) (aus), we have once again proved (4.11). This proves Case (iv).

It remains to remark that if 7 (T™) = 0, then we can find an I’ (T*) > 0 such
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that I'(T*) < S(T)/cand P{I'(T*) = T = I' (T™) + d} > 0for alld > 0.
Then the proof goes through as above with I (T™) replaced by I' (T*).

To prove necessity, suppose that P{T < ¢I (T*)} = 1, and take R = ¢I (T™).
Then with probability one, all units are processed, the (nc + k)th unit being
served by channel k. On the other hand each arriving unit finds its predecessor
still being processed, and hence with probability one the system is never empty.

This completes the proof of the lemma.

Lemma 4. If P{T = min [R, cI(T*)]} > 0, then Fg,() = 1 and Fe,() = 1.

Proor. Let Wlu, , N] denote the event that if the process is in state u, at
t, then u,,; = AO for some 1 < j < N; and let W be the complement of W.
We shall show that given any § > 0, there exists an ¢ > 0, and a sequence of
numbers {N;}, ¢ = 1, 2, --- , such that

(4.28) P{Wluo, Nily £ (1 — " +8/(1 — 9).

This will prove that Fg, () = 1, and hence (since Fr(0) = 1) also that
Fg, (o) = 1.
Choose any § > 0. To prove (4.28) we shall construct a sequence of real num-

bers Dy, Dy, -+ -, and an associated sequence N (Do), N (Dy), - - - of integers,
such that if Ny = N(Do) + --- + N(D;), then
(4.29) P{Wuo, Ni} £ G — & + 6+ + -+ + 5"

Note that it follows from Lemmas 2 and 3 that there is a fixed ¢ > 0 with
the property that given any D < o, there is an N(D) < o« such that
P{W{u, , N(D)]} > efor any u, ¢ N(D), regardless of the history of the process
up to £, . Hence letting Dy = max (4o , *** , %o.) , we may choose an N (D,) such
that P{W{u,, N (Do)l} > e. Next choose D; so that P{uypy ¢ AD;} > 1 — 8,
and then in turn pick N (D;) such that P{Wluwy, N (D1)]} > e Having
chosen Do, -+, Diy, N(Dy), -+, N(Di), pick D; so that P{uy:_, ¢ AD;} >
1 — &%, and N (D;) so that P{Wuy_, , N(D)]} > e

We can now prove (4.29) by induction. The first step in the induction is
implicit in the definition of Dy and N (D). Suppose that (4.29) is true for ; =
k — 1. Then

P{Wluo, Nil} = P{Wluo, N&], ux,_, ¢ AD, — AO}
+ P{Wluo, Ni), uni_, € AD#}
< P(Whuwi_, , N (D&)]| Wluo , Niil, uwi_, & AD; — A0}
P{Wluo , Nia], unj_, € AD — AO} + &°

(4.30)

But by the induction hypothesis P{WTluo, Nial, uri_, e AD; — A0} =
P{Wlu , Neetl = (1 — 1+ 6+ 8 4+ .-+ + 8. Furthermore we have
seen that the probability of W{ux:_, , N (Ds)]is less than 1 — e regardless of the
history of the process up to ¢x%_, . Applying these two facts to (4.30) we ob-
tain (4.29) with ¢ = k. This proves the lemma.
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LemMa 5. If P{T = min [R, cI(T")]} > 0, then {H} and {G3} are renewal
process with finite means p = EH; and v = EG; .

Proor. We have already seen that {H,} and {G,} are each a sequence of posi-
tive L.I.D. random variables. That » = EG; < « follows from our Lemmas 2
and 3, and Theorem 4 of Smith [4]. This together with the assumption that
Fr(0) < 1, implies that u = FH; < .

The proofs of Theorems 2 and 3 will now follow very easily.

Proor or TureorEM 2. Hypothesis (a) implies the conclusions of Lemmas 4
and 5.

Furthermore it follows from Lemma 4 that P{uy ¢ A0} > 0 for some N < .
If P{T = R} > 0, then P{ux,; € A0} > 0. If P{T = R} = 0, then there is an
e > 0 such that P{uy_1,: > ¢,2 =1, --- ,¢} > 0.If T has a P.A.P. at zero then
P{0 < T,i< ¢2} > 0, and hence P{uy; > ¢/2, ¢ = 1,---, ¢} > 0.
Thus P{uy 2 AO, uy; € A0} > 0. Hence we have shown that there is always an
N with the property that P{uy ¢ A0} > 0 and P{uyi1 & A0} > 0, and there-
fore by definition H; has period one. Applying this fact and the conclusions of
Lemmas 4 and 5 to Smith’s Theorem 3 yields our result.

Remark. Note that if the aperiodicity argument is dropped, then the conclu-
sions of our Lemmas 4 and 5 and Smith’s Theorem 3 are still sufficient to guaran-
tee (3.4.1) for some A = 1.

Proor or TaEOREM 3. Our result will follow from the conclusion of Theorem
2 of Smith [4]. We proceed to verify his hypotheses. We have seen that {u,} is
an equilibrium process. Our hypothesis (i) implies the conclusion of Lemma 5,
and hence there is finite mean recurrence time between regeneration points.
Next we note that our hypothesis implies the conclusion of Lemma 4, and hence
that with probability one we will eventually be at a regeneration point.

We must verify that the random variables G; are aperiodic. But our hypothesis
(ii) says that the inter-arrival time distribution of successive units has distinct
but arbitrarily close points of support. Furthermore G; is a sum of a positive
number of independent random variables each distributed as 7. Hence clearly
G; also has a P.A.P. and is aperiodic.

Finally, it remains to verify a technical condition in Smith’s theorem, namely
that g(4; 1) -{1 — Fe(?)} is of bounded variation. To do so we make use of his
Lemma 2 [4]. Suppose that A ¢ BY. For any interval I = (¢, 7”), define

Oif upeAandur e A
5 = Oif upgAandur2zA

' 7 —lifurgdanduwcd
+1if . € A and u,» 2 A.

Let n; be the number of units arriving at the system during any time interval I,
and let y; = 2n; + & . Then it is straight forward to verify that y; satisfies
the conditions of Smith’s Lemma 2, and that the required function is therefore
of bounded variation. If A ¢ B™, set 67 = —&F , and define y; = 2n; + & .
This completes the proof of the theorem.
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