ON A CLASS OF STOCHASTIC PROCESSES!

By Joun LaMPERTI?
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1. Introduction. We shall introduce our problem by recalling (see, for instance,
[1]) the example of a branching process {X} with mean number of descendants
per individual per unit time = p > 1. It is well known that

(1.1) Pr (lim X,/u’ = Y exists) = 1
t->00

where Y is a random variable. This result implies that

(1.2) lim {X,1.o/u} = {V4, —w <t <,
exists, where the brackets mean that we are considering the processes one of
whose random variables is indicated, and the limit is in the sense of convergence
of finite-dimensional distributions®. Of course, (1.1) implies also that

(1.3) (v} = (w7},

so that {V} is deterministic in the sense that if its state at some time ¢ is given,
the entire past and future are uniquely determined.

The problem studied in this paper is as follows: Which processes can arise as
limits in a manner simslar to (1.2)? That is, if for some stochastic process { X4
in Euclidean space there is a positive measurable function f(s) such that

(1.4) lim {X.1/f(s)} = {Y4, —o <t < =,

what can be inferred about the process { Y} ? This question is very analogous to
the one considered in [2]. The point there was to generalize the limiting operation
by which the Wiener process derives from simple random walk under contrac-
tion of the space and time scales. The class of limiting processes which can be ob-
tained in that way by varying the starting process (random walk) and the rates
of contracting the axes was characterized by the “semi-stable” property. Some
special classes of processes having this property were then described. The present
investigation has a similar motivation; we are generalizing a well-known theorem
(above) involving contraction of the space scale and translation of the time axis
of one process to obtain another in the limit.

An outline of our results is as follows: in Theorem 1 a characterization is ob-
tained for processes { ¥’} which can arise in the manner (1.4). This does not, how-
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ever, make it clear which Markov processes with stationary transition probabili-
ties belong to the class of possible limits. This question is perhaps more interest-
ing and we shall solve it completely in Section 3 for one-dimensional, continuous
parameter processes {Y,}. The result is, roughly, that a process in the class is
either a strictly stationary one or else it must be, apart from sign, deterministic
in the manner of (1.3). In the discrete parameter case, however, or in several
dimensions, there are many other possibilities, in contrast to the situation for
branching. The general characterization in Theorem 1 is related to the “semi-
stable’” property of [2], but the Markov processes found are of a very different
nature in the two cases.

2. Characterization of {Y.}. We now give the general answer to the problem
of which processes are possible limits in (1.4):

TueorREM 1. Suppose that there exists a process { X} and a positive measurable
Sunction f(s) such that (1.4) holds; suppose also that for some t; the distribution of
Y., is not degenerate at 0.* Then

2.1) f(s) = e*M(s) for some real «,

where M (s) is a function with the property that

(2.2) 311_1)10{.} M(s+c)/M(s) =1 forany fixed c.

The process { Y} has the property that for each fized u,

(2.3) {Yi) = {74}

Conversely, each process {Y;} satisfying (2.3) can be obtained as a limit of the
form (1.4).

REMARKS. The result holds in n-dimensions; the one-dimensional proof applies
to each component separately as regards (2.1) and (2.2), and it will be clear
that the argument from there to (2.3) is valid. We thus shall give the proof
in the one-dimensional case only. The theorem also holds both for continuous
and integral parameter, as we shall see. In the latter case, naturally « and ¢
must both be integers in (2.3).

Proor. First we shall show that the distribution of Y, is not degenerate at 0
for any ¢. Suppose the contrary for #, , while by assumption there is a #; where
Pr (Y, = 0) < 1. Now from this and (1.4), we have X, ¢/ (s + &) tending
t0 0 in law as s — oo, while the distribution of X4, +¢/f (s + f) has the law of
Y, , not concentrated at 0, for its limit. It follows that f(s 4+ &) /f(s + &) —
as s — . But then we consider

Xorae, _ Xotor, f(s + &)
fe+t) fls+t) fls+u)’

The distribution of the left side converges to that of Y,;, which has mass away

4 When Y: = 0 a.s. for each ¢ (2.3) is trivially true but (2.1) fails, since if some funection
f(s) will serve in (1.4), so will any larger one.
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from 0; the distribution of the first term on the right tends to the law of Yo, .
Since the second factor on the right tends to 0, we have reached a contradiction
which proves the assertion.

Next we state a lemma of a familiar kind; the proof is very easy and will be
omitted.

LemMA. If constants a, > 0, b, > 0 and distribution functions G, are such that
lim,e Gu (@) = Fi(z), limy e Gn (bx) = Fa(x) exist where Fy and Fy are dis-
tribution functions not degenerate at 0, then lim, .., 6,/b, = a exists, 0 < a < .

Now from (1.4) we have

(24) lim, ., Pr (X, = zf(s)) = Pr (¥, = 2),
and also, for any fixed ¢,
(2.5) lim, Pr (X, < zf(s — t)) = Pr (¥ = x).

Since neither of the distributions on the right is degenerate at 0, we can conclude
that

(2.6) lim, o f (s + t) /f(s) = h(t)

exists for each ¢ (integral or real, depending on the process {X ). If s and ¢ are
discrete, it is easy to see that A (f) = h(1)’; upon defining M (s) by (2.1) with
a = log h(1) and substituting in (2.6) we obtain (2.2). The continuous case is
similar, except that the relation h(f) = e*‘ is obtained by showing that & (f)
satisfies the functional equation (v + v) = h(u)h ().}

To prove (2.3) is now very simple. Thus using (1.4), (2.1) and (2.2),

Pr(Yiy < z) = lim Pr <Xs+‘+" < x)
8-> f(S)

. Xoter )\ i
= lim Pr (f(s T = TG+ u))‘ Pr(¥: £ 26™)

for any 2 which is a continuity point of the distributions of Yy, and of ¢™Y ;.
The same argument works for the finite-dimensional joint distributions; hence
(2.3) and the direct part of the theorem. The converse is trivial; if a process
satisfies (2.3) we can simply let f(s) = ¢™ and {X;} = {Y} and (1.4) will be
satisfied.

Observe that from (2.3), a “construction” of the most general process arising
as a limit (1.4) is possible. Let {Z,} be any strictly stationary process, and put
(Y} = {e*Z}; it is easy to see that this yields all processes satisfying (2.3).
The unsatisfactory thing about it (as mentioned above) is that it does not help
in identifying the Markov processes with stationary transition probabilities which
arise from (1.4). A similar situation occurred in [2].

(2.7)

3. The one-dimensional Markov case. In this section we consider only con-

§ Bquation (2.6) with st in place of s - ¢ is the defining relation for what Karamata has
called a function of regular variation; a change of variable would reduce our case to that one.
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tinuous parameter processes { Y} which are Markovian with a stationary transi-
tion-probability function

(3.1 pi(x, A) = Pr (Y eA|Y, = x).

The class of strictly stationary Markov processes have this property and satisfy
(2.3) with @ = 0; this class contains many members which are in no sense de-
terministic processes. By contrast, we have

TueorREM 2. Suppose t is continuous, and that {Y} s a Markov process on the
positive real axis satisfying (3.1) and also (2.3) for some a #% 0. Then for each t,

(3.2) Pr (Y, = ¢*'Yy) = 1.

Proor. We first observe from (2.3) that the transition probabilities p.(z, 4)
must satisfy

(3.3) pe(z, 4) = pi(Ex, £4) for all £ > 0.

The reason is that transition probabilities are (by assumption) invariant under
a translation of the time scale, and so by (2.3) they are the same for {¢*“Y} as
for {Y}, for each u. Now consider the process {W; = {log Y,}. This is again a
Markov process; from (3.3) we have

(34) Pr (Wt+3 é Y l Ws = x) = pt(ez; [0’ ey])
= p‘(euez’ [07 6u6y]) = Pr (WH'*‘ =u+ 4 I W‘ =u-+ x)

for all real u. It follows that {W has stationary independent increments. How-
ever, (2.3) implies that

(8.5) Pr(W,.2y) =Pr(Wo=y — at).

Since W; = Wy + (W, — W,), and the two summands are independent, (3.5)
implies that the distribution of W, — W, assigns probability one to the point
at; this yields (3.2).

Next we remove the restriction that ¥, > 0, keeping all the other assumptions
of Theorem 2. First notice that because of (2.3), Pr (¥, = 0) = p is constant,
while because of (3.3), p:(0, {0}) = 1for all {. (A distribution concentrated on 0
is the only one invariant under all expansions of the state space.) Thus the process
{Y} can (a.s.) neither enter nor leave state 0.° We accordingly can turn our
attention to the process {Y:}, defined as {¥;} conditioned not to be in state 0.
{Y}} is again a Markov process satisfying (2.3) (and hence (3.3)). We will also
assume that {Y;} changes sign with positive probability, since otherwise Theorem
2 suffices to determine its structure.

TuroremM 3. If, under the conditions above, for a constant A > 0 we define

g - {~1 i Y.<o0
tT 44 i Y>>0,

6 This statement is true for all ¢ if the process {Y.} is assumed separable; if not, it holds
for any countable set of parameter values.

(3.6)
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then {S4 is a stationary Markov chain and there is a choice of A for which the
representation

(3.7 Y: = Se*'Y

holds with Y a positive random variable independent of the process {Si}. Conversely,
if {84} is a stationary Markov process with states —1, A and Y is a positive random
variable independent of {Ss}, then the process defined by (3.7) is a Markov process,
has stationary transition probabilities and obeys (2.3).

Proor. Form the auxiliary process

(3.8) Z, = (log |Yi| — ot, sign Y3).

It is clear that this is a Markov process with state space consisting of the pair of
lines y = =1 in the plane. It follows from (2.3) that {Z4} is strictly stationary;
we denote its transition probabilities by

(3~9) qij(a% fi’) = Pr {Z;S ([—007:E]7j) lZO = (x’ Z)})
where 7 and j take the values ==1. For each ¢, (3.3) implies that
(3.10) g+ u, &+ u) = ¢ii(@, 5) = Q@& — 2).

Thus Z, is a stationary, translation-invariant Markov process on two parallel
lines.

Let Fi(z), i = =1, be the (stationary) probability that Z. is on the line
y = 1, to the left of z. For any ¢ we have

(311 F@) = [ gt ) dP(@) + [ dhals, ) dPi(a).

Letting ¢;(\) be the Fourier-Stieltjes transform of F;( ), and ¢:;(A) that of
Q:;( ), (3.11) with (3.10) yields

Yo1,-1(N)  P—1a(N)
(312) (a0, 00 [1 D) 9D | = o0, 0.
Thus for each A in a neighborhood U of the origin (where ¢_; (A) and ¢1(A) don’t
vanish) the determinant of [8;; — ¥:;(A\)] must be zero.
Notice next from their definition that the functions @;; are monotonic, and that
if v;; = variation of Q:;, then v; 4 + v;; = 1. In addition, we know that
[¥:;(A\)| < vi; for all \. Now a complex determinant of the form

l1—a

(3.13) Db bl S Ll il s

can vanish only if either ¢ = 1 or d = 1, or else if a and d are real and non-
negative, if be is real, and if equality holds in both places in (3.13). Applied to
[6:;; — 5], the first possibility is eliminated by the condition that Y, changes
sign. This shows that y;;(\) = v, for all A ¢ U so that Qi; concentrates all its
mass at 0 for both values of 7. In addition, Q}; is degenerate (not necessarily at 0)
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for ¢ £ j since |¢i;(\)| = v;; for all A ¢ U. Thus from a point (z, ¢) in the state-
space of {Z,}, the only transitions possible in time ¢ are to itself, or to some one
point (z’, j) on the other line; from that point the process, if it moves, can only
go back to (z, 7). The location of 2" is independent of ¢, for if (1 ,7) and (25, J)
were accessible from (z, 7) in times  and s, then (zz , ) would be accessible from
(21, 7) in time ¢ + s contrary to what we have shown.

It is now not hard to see how the most general process {Z;} is formed. Asso-
ciated with a point z on line y = —1 is a point 2’ on y = +1 such that from
either point only transitions to itself or the other are possible; these transitions
are those of a two-state Markov chain. Because of (3.10), the same transition
probabilities hold for the points (z + u, —1) and (&’ 4+ w, +1). The stationary
Markov process {Z} must be a mixture of these elementary two-state ones. Such
a mixture is uniquely determined by a probability measure on one of the lines.
Indeed if p is such a measure on line y = —1, and if p, q are the stationary
probabilities of (z, —1) and (z’, 41) for one of the elementary Markov chains,
then the stationary measure for the whole process must be ppony = —1, gu’ on
y = +1, where 4 is the measure u translated by an amount ' — z. It follows
that if the process {Z;} were modified by translating the points on the line
y = +1 horizontally by the amount z — z’, then the line occupied and the hori-
zontal position would be independent.

It is now possible to “read off”’ the conclusions of the theorem. It is certainly
clear that {sign Y7}, and hence {S4, is a stationary Markov chain for any 4.
Let A = exp (z' — ), and consider the further modified process

Z: = (log |S7'Y:| — o, sign V7);

this is nothing but the process {Z;} with the line y = -1 translated as described
above. We then see from our earlier work that the random variables

log [S7'Y: — ot = log ¥

are constant in time and independent of the process {sign Y}. It is now simple
to write ¥; = |Y;| sign Y} in terms of ¥ and S, and (3.7) is the result. The
converse part of the theorem is easily verified.

4. Other cases. Let us first consider the situation of Theorem 2 with only one
factor changed: {Y,} will have integral parameter. The “invariance” relation
(3.3) then holds only if £ = ¢*™ for some integer m, and consequently we can not
conclude as before that {W,} has independent increments. The theorem is, in
fact, false, and it is easy to construct examples. For instance, let {Z,} be a strictly
stationary Markov process with state-space interior to the interval (0, @), @ > 0.
Define

(4.1) Y, = "™

it is clear that {Y,} is again a Markov process, ¥, > 0, and that (2.3) holds. It
is therefore only necessary to verify that the transition probabilities are inde-
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pendent of n. However this too is trivial in the following sense: with probability
one an < Y, < a(n 4+ 1). Thus the sets of possible states which can be attained
by Y, are disjoint as n varies, which automatically yields the desired stationarity.

The possibilities seem to be still more varied in several dimensions, even in the
continuous-parameter case. For instance, consider a process {(U,, V) } satisfy-
ing (2.3) and with positive components. Then (3.3) holds, but only for multi-
plication by positive scalars, and so the process

(4.2) Zy= (log U;,log V,)

has transition probabilities which are invariant under translations in a direc-
tion parallel to the line y = z. The process

(4.3) Z¥ = (log U; — at,log Vi — at)

has the same property and, by (2.3), is strictly stationary. Rotating coordinates
through 45 degrees, we are led to consider the possibilities for finding strictly
stationary plane Markov processes { (U7 , V) } whose transition probabilities are
invariant under translations in the u-direction. Every such process would lead,
reversing the transformations above, to a solution of (2.3) of the type we are
considering. They can be construed as follows: Let w; be a strictly stationary
1-dimensional Markov process, and f a real measurable function. Then

(4.4) (UE, V) = (fwe), we)

has the desired properties, as does any mixture of horizontal translates of this
“elementary”’ process. The situation is somewhat analogous to that occurring in
the proof of Theorem 3; one is tempted to conjecture that we have described the
most general case, but this has not yet been proved.
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