DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES
CRITERION FOR SMALL EQUAL SAMPLES!

By E. J. Burr
University of New England

1. Introduction and summary. The null hypothesis that the two independent
random samples %, -« , %, and v, -+ -, v, come from the same (unknown)
continuous distribution may be tested by the two-sample analogue of the Cramér-
von Mises «” criterion, as described by Anderson [1]. In the particular case of
samples of equal size (m = n), this test criterion may be expressed in the form

t= (do+di+ - +d)/4an’

where d; is the difference between the number of members of the first sample
and the number of members of the second sample, contained in the first ¢+ mem-
bers of the pooled set of 2n members arranged in order of magnitude.

Let P,(t) be the probability, under the null hypothesis, that this test criterion
will attain or exceed the value ¢. As n — oo, the limiting distribution P, is the
same as the limiting distribution of nw’ , which has been tabulated by Anderson
and Darling [2]. The main object of this paper is to study the manner in which
P, approaches P, in the upper tail (P, = 0.1). It is an extension, for the case of
equal samples, of a similar study by Anderson [1] which includes also unequal
samples.

An iterative method for computing P, for n = 1, 2, 3, - - - is described. This
method has been used to find the complete distributions for n =< 10, and parts
of the upper tails for n = 11 (Py = 0.06), n = 12 (P = 0.026) and n = 14
(P = 0.00014). For n = 10 and for n = «, the smallest attainable values of ¢
significant at each of the levels 10%, 5%, 2%, 1%, 0.5 %, etc., are given, with
corresponding partial results for n = 11, 12 and 14. The limiting distribution is
tabulated for 0.3 < t < 2.2, which corresponds approximately to 10~ > P, >
5 X 107°. Finally the deviations of P, from P, are examined and are found to
conform to the empirical formula:

P, = P.{l +nf(®)},
and the correction function f(¢) is given by table or formula for 0.3 = ¢ =< 1.7.
2. Exact small-sample distributions. The pooling and ordering of the 2n
sample values may result in any one of (2,:') permutations of the » members of

the first sample with the n members of the second. Each such permutation
determines a value of ¢, and under the null hypothesis each permutation occurs
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with the same probability <2:>_1 . Hence the evaluation of P, reduces to the

problem of counting the permutations which give rise to each attainable value
of ¢. Consider a simple random walk on a line, in which the particle starts at the
origin and takes m discrete steps of 41 or —1. We represent the walk graphically
in the cartesian -y plane by a path joining the points (0, 0), (1, v1), -- -,

(%, v:), -+, (m, yn) where y; — y; _, = ==1. It is clear that the <27:L> distinct

paths which terminate at (2n, 0) are in one-to-one correspondence with the
permutations of the 2n members of two samples each of size n, and that for
each such path and the corresponding permutation we have

't =yi+yityt o 4 yia.

This representation leads to a simple iterative method for finding the fre-
quency function of Y y%, and hence of ¢, for n = 1, 2, 3, - - -. Suppose that we
have tabulated separately the m -+ 1 frequency functions of D y: for paths to
(m,m), (mym—2), (mym —4), -+, (m, —m). Then we can at once write
down the corresponding functionsforpathsto (m + 1, m + 1), (m + 1, m — 1),

+, (m+1, —m — 1). For a path to (m + 1, m — 3) (for example) must
pass either through (m, m — 2) or through (m, m — 4), so that we have only
to add the frequencies of each . y; for paths to (m, m — 2) and (m, m — 4)
and increase each Y y2 by (m — 3)% In this way, the frequency functions of

> yi were tabulated for paths to (m,m — 2r), forr =0, 1, ---, m and m =
1, 2, --+, 14. Among these are the functions for paths to (2, 0), (4, 0), ---,
(14, 0), which yield the probability distributions of ¢ for n = 1,2, ---, 7.

For n > 7 the method was modified as follows. To find the distribution of ¢
for n = 8 (for example), we require the frequency function of Y y.* for paths to
(16, 0). This is found by deriving separately, and then combining, the frequency
functions for paths through (8, 8), paths through (8, 6), paths through (8, 4)
and so on. Consider the contribution due to paths from (0, 0) to (16, 0) via
(8, 4) for example. The frequency function of » yj for paths from (8, 4) to
(16, 0) is identical with that for paths from (0, 0) to (8, 4), which is known,
being included in the tabulation described above. Hence the required con-
tribution is found by forming the convolution of this frequency function with
itself, and subtracting 4° from each new »_y? to allow for the fact that the value
of y at the junction (8, 4) has been included twice. In this way, the probability
distributions of ¢ were found for n = 8, 9, 10, and partial results were obtained
for n = 11(Py < 0.06), for n =12 (Py < 0.026), and for n = 14 (P =
0.00014). Table 1 gives the smallest attainable ¢ significant at each of the levels
0.1, 0.05, 0.02, 0.01, 0.005, and so on, and the true value of P, for each. (A few
of these values duplicate some of the significance points tabulated by Anderson
forn < 8.)

The distribution for n = 10 is given in full in Table 2.
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3. The limiting distribution. By means of Anderson and Darling’s series
[2], the values of P, were computed for twelve values of ¢ between 0.6 and 2.2.
These were found to fit the empirical formula

logwPs = —a — b logit — ct + €(t)

where ¢ = 0.458, b = 0.444, ¢ = 2.151, and e(t) is close to zero over a wide
range; more precisely,

le@)| <4 X 107" for 042 <t < 2.2,

so that interpolation to five decimal places in log;y P, was made easy by plotting
e(t) against ¢. The values of ¢ so found at P., = 0.02, 0.01 and 0.001, agreed
precisely with the values given in Anderson and Darling’s table.

The results are given in Table 3, in a form suitable for linear interpolation.
(In this table, the values of P, for 0.3 < ¢ < 0.66 were found by interpolation
from Anderson and Darling’s table.) The same results are also included in
Table 1 in another form.

It seems to be unusual to tabulate significance points as far as the level 107°,
but this has been done here, partly for use in deriving the empirical formula
given below, and partly because these points are sometimes required to deter-
mine the effective over-all significance level when one of a very large number of
test criteria gives a nominally highly significant result. A composite test of this
kind is described in [3].

4. An empirical small-sample formula. Smoothed graphs of logiP, against
t for 8 =n =12 and ¢ = 0.3 indicated that the deviations of log,P, from
logyP., all changed sign at about the same point (¢~ 0.62), and were approxi-
mately proportional to 7" for each fixed ¢. Therefore the formula

logioP, = logiP., + n g (t)

was tried out by plotting smoothed values of n log (P./P.) = g(t) against
t, to see if g(t) was really independent of n. The fit was fairly good, with g (¢)
a cubic polynominal in ¢; but the values for n = 14 (computed later) did not
conform. After two or three other formulae had been tried and discarded, the
simple formula

(1) P, = Po{l +n7%(t)}

was found to given an excellent fit, except as noted below. The function f(¢)
appears to be linear at least for 1.15 < ¢ = 1.7, being given by

@) F) = —3.00 — 10.8 (t — 1), t = 1.15.

For 0.3 =t = 1.15 the values of () were read off from a free-hand curve drawn
through or between points representing smoothed values of n(P,/P, — 1) as a
function of ¢. These values of f(¢) are given in Table 4, in which linear inter-
polation is permissible.



TABLE 1
Smallest values of ¢ significant at the levels 0.1, 0.05, 0.02, 0.01, etc.

P, is the probability of attaining or exceeding the value ¢. Numbers in paren-
theses indicate the power of ten by which the preceding number is to be
multiplied.

n t P, n t P,
4 .5000 5.714 (—2) 11 4773 4.781 (=2)
.6875 2.857 (—2) .6260 1.891 (-2)
7417 9.441 (-3)
5 .4500 8.730 (—2) .8492 4.732 (—3)
.4900 4.762 (—2) .9814 1.999 (-3)
.6900 1.587 (—2) 1.0888 9.668 (—4)
.8500 7.937 (—3) 1.1963 4.366 (—4)
1.3202 1.786 (—4)
6 .3750 9.307 (—2) 1.4112 9.639 (—5)
.5139 3.896 (—2) 1.4855 4.536 (—5)
.6250 1.948 (—2) 1.6095 1.985 (—5)
.7639 8.658 (—3) 1.7583 5.670 (—6)
.8750 4.329 (—=3) 1.8409 2.835 (—6)
1.0139 2.165 (—3)
12 .6250 1.953 (—2)
7 .3827 9.324 (—2) .7361 9.705 (—3)
.4847 4.895 (—2) .8472 4.903 (—3)
.6480 1.690 (—2) L9931 1.926 (—3)
L7704 8.159 (—3) 1.0972 9.785 (—4)
.8520 4.079 (—3) 1.2014 4.652 (—4)
1.0561 1.166 (—3) 1.3333 1.901 (—4)
1.1786 5.828 (—4) 1.4236 9.541 (—5)
1.5208 4.659 (—5)
8 .3750 9.635 (—2) 1.6181 1.849 (—5)
.4844 4.817 (—2) 1.7292 8.875 (—6)
.6250 1.943 (—2) 1.7986 4.438 (—6)
.7344 9.790 (—3) 1.9306 1.479 (—6)
.8594 4.196 (—3) 2.0069 7.396 (—7)
.9688 1.865 (—3)
1.0625 9.324 (—4) 14 1.4515 9.677 (—5)
1.2344 3.108 (—4) 1.5485 4.886 (—5)
1.3438 1.554 (—4) 1.6658 1.939 (—5)
1.7628 9.273 (—6)
9 .3735 9.329 (—2) 1.8444 4.886 (—6)
.4846 4.681 (—2) 1.9413 1.994 (—6)
.6204 1.974 (—2) 2.0383 9.472 (=7)
.7315 9.996 (—3) 2.1046 4.487 (=7)
.8426 4.813 (—3) 2.2117 1.994 (=7)
.9784 1.974 (-3) 2.2730 9.971 (—8)
1.0772 9.461 (—4)
1.1636 4.936 (—4) 0 .3473 1.000 (—1)
1.3241 1.645 (—4) .4614 5.000 (—2)
1.4105 8.227 (—5) .6198 2.000 (—2)
1.5093 4.114 (-5) 7435 1.000 (—2)
.8694 5.000 (—3)

98



CRAMER-VON MISES CRITERION 99

TABLE 1—Continued

n t P, n ¢ P,

10 .3650 9.861 (—2) w0 1.0384 2.000 (—3)
.4750 4.978 (—2) 1.1679 1.000 (—3)
.6250 1.972 (—2) 1.2983 5.000 (—4)
.7350 9.948 (—3) 1.4720 2.000 (—4)
.8450 4.796 (—3) 1.5603 1.000 (—4)
.9750 1.992 (-3) 1.7371 5.000 (—5)
1.0850 9.201 (—4) 1.9135 2.000 (—5)
1.1750 4.980 (—4) 2.0475 1.000 (—5)
1.2950 1.732 (—4) 2.1818 5.000 (—6)
1.3750 9.743 (—5)
1.5050 4.330 (—5)
1.6750 1.083 (—5)

Because of irregular deviations of P, () from the smoothed values, the values
of f(¢) given by Table 4 or by (2) are uncertain within about = 0.05. In the
interval 0.3 = ¢ = 0.6 there is greater uncertainty because of incomplete in-
formation on Py and Py, , and in 0.45 < ¢ < 0.6 there seems to be a systematic
difference between values of f(¢) based on Py and Py, , those based on Py being
lower by about 0.2. (This leads to a relative error of about 2 per cent when
using (1) to compute smoothed values of Py; for those ¢.) Therefore we hesitate
to conjecture that (1) remains valid forn > 11 in 0.3 < ¢t < 0.6.

For ¢ > 0.6, formula (1) gives an excellent fit up to the following approximate
limits:n = 8,1 < 1.0;n = 9,{ < 1.2;n = 10,t < 1.3;n = 11, < 1.4;n = 12,
t < 1.5;n = 14, ¢t < L.7. For larger values of ¢ than those indicated (relatively
few of which are attainable for ‘each n), the smoothed true values of P, are
always larger than the values predicted by (1) and (2).

The very satisfying accuracy of (1) for predicting individual (unsmoothed)
values of P, is shown by the upper bounds of the absolute error of prediction in
the following formulae for » = 12 and 14:

Py = Py{1 + f(t)/12 == 0.020}, 0.58 < ¢ < 147,
Pu = Po{l + f(t)/14 = 0.015}, 140 < ¢ < 1.72.

We therefore conjecture that, at least for 0.6 < ¢ < 1.7, formula (1) remains
valid for n > 14, with errors not exceeding & (0.015) P, .
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TABLE 2
Distribution of t for n = 10
The probability Py that ¢ will be attained or exceeded, equals the cumulative
frequency divided by 184,756.

t Cumulative t Cumulative ¢ Cumulative
frequency frequency frequency

1.675 2 0.865 800 0.415 13,302
1.585 4 0.855 838 0.405 14,146
1.505 8 0.845 886 0.395 15,080
1.435 12 0.835 974 0.385 16,342
1.425 14 0.825 1,042 0.375 17,322
1.375 18 0.815 1,060 0.365 18,218
1.355 24 0.805 1,140 0.355 19,410
1.325 28 0.795 1,226 0.345 20,670
1.295 32 0.785 1,314 0.335 22,016
1.285 42 0.775 1,416 0.325 23,548
1.255 46 0.765 1,468 0.315 25,064
1.245 50 0.755 1,528 0.305 26,542
1.235 54 0.745 1,680 0.295 28,502
1.225 74 0.735 1,838 0.285 30,684
1.215 76 0.725 1,912 0.275 32,522
1.205 80 0.715 2,022 0.265 35,012
1.175 92 0.705 2,122 0.255 37,750
1.165 98 0.695 2,272 0.245 40,262
1.155 110 0.685 2,498 0.235 43,690
1.145 118 0.675 2,634 0.225 46,888
1.135 126 0.665 2,754 0.215 49,440
1.115 138 0.655 2,930 0.205 53,220
1.105 150 0.645 3,146 0.195 57,248
1.095 162 0.635 3,360 0.185 61,290
1.085 170 0.625 3,644 0.175 66,610
1.075 194 0.615 3,832 0.165 71,970
1.065 204 0.605 4,028 0.155 77,594
1.045 230 0.595 4,402 0.145 84,742
1.035 242 0.585 4,696 0.135 91,886
1.025 262 0.575 4,980 0.125 98,990
1.015 282 0.565 5,270 5115 107,056
1.005 302 0.555 5,510 0.105 115,604
0.995 316 0.545 5,884 0.095 125,748
0.985 346 0.535 6,368 0.085 137,844
0.975 368 0.525 6,724 0.075 149,044
0.965 384 0.515 ’ 7,030 0.065 159,156
0.955 420 0.505 7,534 0.055 169,908
0.945 456 0.495 7,988 0.045 179,124
0.935 488 0.485 8,518 0.035 183,732
0.925 528 0.475 9,198 0.025 184,756
0.915 546 0.465 9,658

0.905 566 0.455 10,172

0.895 646 0.445 10,974

0.885 700 0.435 11,702

0.875 744 0.425 12,396
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TABLE 3
The limiting distribution of ¢
Entries are logyy P + 10.

¢ 0.00 0.02 0.04 0.06 0.08  Half difference
0.3 9.1309 9.0750 9.0199 8.9656 8.9119 —.0272
0.4 8.8588 8.8063 8.7542 8.7025 8.6512 —.0258
0.5 8.6003 8.5496 8.4993 8.4493 8.3995 —.0250
0.6 8.3499 8.3006 8.2514 8.2025 8.1537 —.0245
0.7 8.1051 8.0566 8.0083 7.9602 7.9122 —.0241
0.8 7.8643 7.8165 7.7688 7.7213 7.6738 —.0238
0.9 7.6264 7.5792 7.5320 7.4849 7.4379 —.0235
1.0 7.3910 7.3442 7.2974 7.2507 7.2041 —.0234
1.1 7.1575 7.1110 7.0646 7.0182 6.9719 —.0232
1.2 6.9256 6.8794 6.8333 6.7871 6.7411 —.0230
1.3 6.6951 6.6491 6.6032 6.5573 6.5115 —.0229
1.4 6.4657 6.4199 6.3742 6.3285 6.2829 —.0228
1.5 6.2373 6.1917 6.1462 6.1007 6.0552 —.0228
1.6 6.0098 5.9644 5.9190 5.8736 5.8283 —.0227
1.7 5.7830 5.7377 5.6925 5.6473 5.6021 —.0226
1.8 5.5569 5.5118 5.4667 5.4216 5.3765 —.0225
1.9 5.3315 5.2864 5.2414 5.1965 5.1515 —.0225
2.0 5.1066 5.0616 5.0167 4.9719 4.9270 —.0224
2.1 4.8821 4.8373 4.7925 4.7477 4.7029 —.0224
2.2 4.6582
TABLE 4

Empirical small-sample correction function f(t)
Using this table, an approximation of P,(f) is given by P.(t) = P« {1 + 2" f(¢)},
For ¢ = 1.15, use the formula f(¢) = —3.00 — 10.8(¢ — 1).

¢ 1@ ¢ @ ¢ @
0.30 +1.10 0.65 —0.18 1.00 —3.04
0.35 +1.00 0.70 —0.50 1.05 —3.56
0.40 +0.88 0.75 —0.84 1.10 —4.09
0.45 +0.74 0.80 —1.21 1.15 —4.62
0.50 +0.56 0.85 —1.61 1.20 —5.16
0.55 +0.35 0.90 —2.05 1.25 —=5.70
0.60 +0.10 0.95 —2.53 1.30 —6.24




