OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL TESTS!

By D. L. BurkHOLDER AND R. A. WijsmMaN
University of Illinois

1. Introduction and summary. In Wald’s sequential probability ratio test
(SPRT) [7], with stopping bounds B, A(B < 4), for testing a simple hypothesis
H, against a simple alternative H, , sampling continues until the first time the
probability ratio is either less than or equal to B, or greater than or equal to
A. In the former case H, is accepted, in the latter case H, is accepted. This
test is known to have a certain optimum property (OP) first conjectured by
Wald [6], [7] Section A7, later proved by Wald and Wolfowitz [9], [10] and
partly by Arrow, Blackwell and Girshick [1] (see also Wolfowitz [11]). This
OP can be expressed in words rather roughly as follows: Among all sequential
tests whose error probabilities do not exceed those of the SPRT under considera-
tion, the latter has the smallest expected sample size under both distributions.
However, the validity of the OP has been demonstrated only under two con-
ditions. The first condition is that B < 1 < A. The second condition is that
only sequential tests with finite expected sample sizes are considered. The ques-
tion arises then whether these conditions are necessary. The purpose of this paper
is partly to show that the second condition is not necessary, but the first one is.
The superfluousness of the second condition is shown for a rather general cost
function in the following form: If a test has OP among all tests with finite ex-
pected sample sizes, then it has OP among all tests. If B = 1 = A does not
hold, then the SPRT is not admissible, in a sense which will be made precise in
Section 2. This will be demonstrated in a manner which at the same time ex-
hibits a test that not only improves upon the SPRT, but which itself possesses
OP. However, if only tests are considered which take at least one observation,
then there are no restrictions on 4 and B (other than B < A) for a SPRT to
have OP. A summary of the main results appeared in [2]. Some of the results
were also obtained by Ghosh [3] under slightly less general conditions.

The methods employed in this paper yield some additional results that are
of interest. Part of the Wald and Wolfowitz OP proof [9] consists in showing
the existence of a loss function that makes a given SPRT Bayes for a given
a priors distribution of the two hypotheses. We give a simpler existence proof
in Section 5, as well as proving a lemma that, although slightly weaker, achieves
the same aim. In Section 6 a certain continuity property of the error probabilities
of a SPRT as functions of the stopping bounds is shown. If the lower bound is
fixed, the error probabilities are left or right continuous functions of the upper
stopping bound depending on whether the latter is a stopping point for the
probability ratio or not. Similar statements hold for the error probabilities as
functions of the lower stopping bound.
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2 D. L. BURKHOLDER AND R. A. WIJSMAN

2. Definitions and main theorems. Throughout this paper we will employ
the following abbreviations: PR = probability ratio, SPRT = sequential prob-
ability ratio test, OP = optimum property.

Let P, and P; be two probability measures over some measurable space, and
let X;, Xz, - -+, be random variables on this space such that with respect to
Pi,i=1,2,X:,X;, - are independent and identically distributed. Through-
out, ¢ will always run over 1,2. The X, can be considered as independent ob-
servations on a random variable X whose distribution is determined either by
Py or by P,. We exclude the case that the distributions of X induced by P,
and P, are the same. Let H; be the hypothesis that the true distribution is P; .
We shall denote the PR at the nth stage of sampling by Y, , i..,

Yo =p(X1) - po(X0)/p1(X0) -+ pu(Xa)

(n=1,2, ---), where p; is the common density of the X’s under H; with respect
to any sigma-finite measure that dominates P, and P, . For any (possibly ran-
domized) sequential test 7' let N be the random number of observations, and
let @;(T) and »;(T) be the error probabilities and expected sample sizes, re-
spectively, i.e.,

(2.1) a(T) = P;(H,;is rejected | T')
(2.2) vi(T) = E(N | T).

In Theorem 2.1 we shall define the »; a little more generally, as follows. Suppose
the cost of n observations is ¢;(n) if H; is true, with

(2.3) 0=1¢ci0) Zci(1) = -+ <ei(®) =
and ¢;(n) — © asn — . Then we define
(24) vi(T) = Ei(cs(N)| T).

It is seen that (2.2) is a special case of (2.4), with ¢;(n) = n.

For some results it is essential to allow randomized tests. We shall be mostly
interested in the type of randomization where, in advance, a random device
selects one test from among a finite collection of tests. If this collection con-
sists of the tests 71, - - - , T’ , and the random device selects T',, with probability

Tm,m = 1, -+, k, then the resulting randomized test will be denoted sym-
bolically by
(25) T = 7I'1T1 + R + Tka .

We shall say that T is a mixture of T, -+, T} .

Given a cost function ¢;(n), admissibility and inadmissibility of tests is de-
fined in terms of the a; and »; as follows:

Derinrrion 2.1. A test T will be called inadmissible relative to a cost function
ci(n) if there is a test T™ such that ai(T*) < ai(T), vi(T*) < vi(T), with strict
wnequality in at least one of the four inequalities.
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We shall define two kinds of optimum property, termed OP I and OP II,
respectively, the latter being somewhat stronger than the former.

DrrintTION 2.2. T 45 said to have optimum property I (OP 1) relative to a cost
Sfunction ci(n) if vi(T*) < oo, and if for each T satisfying vi(T) < o we have

(2.6) aiT) < ai(T*), ¢=1,2, implies »(T) = vi(T*), i=1,2.

Definition 2.2 gives the usual form of the optimum property as introduced
by Wald [6], [7] Section A7. It should be remarked at this point that Definition
2.2 would allow at least one strict inequality in (2.6) on the left of the implica-
tion sign, and at the same time equality for both 7 on the right, in which case T
is obviously a better test than T™. However, this can actually not happen, as
will follow from Theorem 2.1 below, so that Definition 2.2 is a sensible one. It
also follows immediately by examining the proof of OP I, [9] Section 7, that in
(2.6) on the right at least one of the inequalities must be strict if at least one
of the inequalities on the left is strict. However, Theorem 2.1 gives more, namely
that both inequalities on the right in (2.6) are strict if at least one inequality
on the left is. OP II makes this as part of its definition, and, in addition, drops
the restriction to finite »; .

DrrintTION 2.3. T 45 said to have optimum property II (OP I1) relative to a
cost function c;(n) if, for each T' (2.6) holds, and if for each T satisfying the left
side of the implication (2.6) with at least one strict inequality, the right side s
satisfied with both inequalities strict.

Since to all appearances Definition 2.3 is stronger than Definition 2.2, one
would be inclined to think that there could be a test 7™ having OP I but not
‘OP II. More specifically, there could conceivably be a test T such that a;(T) <
ai(T*), n(T) = o and »(T) < »(T*). That this cannot be the case after all
follows from

TarorEM 2.1. Relative to a cost function ci(n), if T has OP 1, 4t has OP II.

The proof is given in Section 3. Thus, if 7% is a SPRT with B = 1 < 4,
so that T™ has OP I relative to c;(n) = n, it follows from Theorem 2.1 that 7™
also has OP II relative to ¢;(n) = n. Therefore, the usual restriction of com-
paring T™ with tests T having finite expected sample sizes is unnecessary. In
other words, T™ has OP among all sequential tests. From now on, if a test has
OP I, and hence also OP II, by Theorem 2.1, we shall simply say that it has OP.

In the remainder of this section it is assumed that c¢;(n) = n, i.e., (2.2) is
taken as the definition of the »; . Since a SPRT with B < 1 < A4 has OP, it is
certainly admissible. What can one say about a SPRT with 1 < Borwith A < 1?
It turns out that such a test is not even admissible, let alone that it has OP.
This will be shown by exhibiting another test with the same o; but smaller »; .
It will be necessary to consider SPRT’s of slightly different form than the usual.
Usually, the acceptance interval for H; is taken as the closed interval I; = [0, B],
and the acceptance interval for H, as I, = [4, «]. There is, however, no reason
why we could not let I; be open on the right and/or I, open on the left. We
shall, therefore, consider all four combinations. As a matter of notation, if
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I, = [0, B), we shall denote the lower stopping bound by B—. Likewise, I, =
(4, «] will be indicated by A4. Thus, we consider the four types of SPRT’s
denoted by T(B, A4), T(B—, A), T(B, A+) and T(B—, A+). All four are
defined if B < A ; the last three are also defined if B = A. Instead of a;,(T(B, 4)),
vi(T(B, A)), we shall write a;(B, A), vi(B, A); and similarly for the other
kinds of tests. Furthermore, it is convenient to introduce the quantities g
defined by

(2.7) Br = ar/(1 — o), Bz = az/(1 — ou).

Since the a; depend on the test 7', the notation 8:(T), B:(B, A), etc., is self-
explanatory. From a notational point of view it is fortunate that a quantity
like o;(B, A+) turns out to be the same as lim a;(B, A") when A" | A. This
will be shown in Section 6 after Lemma 6.2. Concerning the difference between,
say, T(B, A) and T'(B, A+), it goes without saying that these tests are really
the same if the PR cannot ever assume the value A. Even if this value can be
assumed, but only with probability 0 for both 7 (e.g., if the PR is continuously
distributed under both H.), the two tests are still the same with probability 1.
This leads to

DerintrioN 2.4. Two tests will be called equivalent if they differ on a set of
sample sequences of probability 0 under both P; .

With these preliminaries, we are able to state the main theorems concerning
inadmissible tests. We repeat that, throughout, the cost function is taken to be
ci(n) = m, i.e., the v; are defined by (2.2).

Tueorem 2.2. If B > 1 the SPRT T(B, A) is inadmissible unless it is equiva-
lent to the SPRT T'(1, A). Similarly, if A < 1 T(B, A) isinadmissible unless it is
equivalent to T'(B, 1). The same statements are true if B is replaced by B—, and/or
Aby A+.

Theorem 2.2 is really a corollary of the next theorem. The latter gives a more
or less explicit description of the test which improves upon the inadmissible test,
but cannot be improved upon itself. For simplicity, the theorem will be stated
only for the case T(B, A), with B > 1, but analogous statements are true for
the other cases mentioned in Theorem 2.2. First we dispose of some trivial special
cases. If B > 1 but T'(B, 4) is equivalent to T(1, A), the former is not only
admissible, but has OP, since the latter does. In the same way,if A < 1, T(B, 4)
has OP if it is equivalent to T'(B, 1). Now let ¥ = py(X)/p:(X) be the PR
of one observation and suppose B > 1 and Py(Y > B) = 0, so that also P;(Y >
B) = 0. Then for any A > B (including 4 = B+) we have ay(B, 4) = 0,
(B, A) = 1, v{(B, A) = 1. Clearly, we do better by taking the test T'; which
accepts H; without taking any observation, because then a;(T;) = 0, an(T;) =1,
l/i( T]) = 0.

TaEOREM 2.3. Let 1 < B < A and Po(Y > B) > 0, where Y = po(X) /pi(X).
Let T = T(B, A) and suppose that T s not equivalent to T(1, A). Then there
exists A" > 1 and a mizture T' of T(1, A") and T(1, A'+) such that B(T") =
Bi(T) and as(T") < as(T). Let \ be defined by
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(2.8) A== a(T)/l — a(T)].

so that 0 < N < 1. Let T be the test that accepts Hy without taking any observation.
Then the mizture T* = (1 — N)Ty + NT” satisfies as(T*) = ai(T), vo(T*) <
vi(T), with at least one of the inequalities strict. Moreover, T* has OP.

The proof of this theorem is given in Section 6.

The test 7™ in Theorem 2.3 uses T with positive probability 1 — . There
may be occasions where it is objectionable to use a test which takes no observa-
tion with positive probability.” For instance, suppose that P; and P, are only
two members of a family of distributions indexed by a real parameter 6, and
suppose that it is desired that the power function of a test should approach
Oas § — —x,and 1 as § — «. Then any test that takes no observation, with
positive probability, is ruled out. The test T, for instance, has its power func-
tion bounded above by A < 1. Now, if we restrict ourselves to sequential tests,
possibly randomized, that take at least one observation, then it turns out that
every SPRT has OP, whether B < 1 = A or not. This is stated, as well as the
ordinary OP statement, in Corollary 2.2, which follows from Theorem 2.4 below.
Before stating this theorem we shall introduce the notion of extended SPRT.

Let T'; be the test that accepts H,; without taking any observation. It is some-
times convenient to consider each 7T'; also as a SPRT. We can do this by con-
sidering the stage before any observation has been taken as the zeroth stage of
sampling, denoting the PR at this stage by Yo, and putting ¥, = 1. If B > 1,
then Yy < B so that we decide to stop and accept Hy , which is test 7T . Similarly,
if A < 1weobtain T;. If B =1 < A we have the option to stop and accept
H, , or take an observation, or randomize between these two possibilities. Simi-
larly if B< 1= A.If B =1 = A we may randomize between three decisions:
accept H; , accept H, , or take an observation. The situation is the same at the
nth stage of sampling, n = 1, except that now the randomization probabilities
may also depend (measurably) on the whole past history, i.e.,on X;, -+, X, .
This kind of a test is strictly speaking not necessarily a SPRT, since it may
depend on the X’s in a more complicated way than only through the sequence
of probability ratios. Tests of this kind are implicit in [1], [8] and [10], since they
arise naturally as Bayes procedures. However, in its application to the SPRT
these references do not explicitly state that, if the PR equals A or B, the decision
rule may depend on the past history. This was pointed out by Hoeffding ([4],
p- 359). We shall call such a generalization of the usual SPRT an extended SPRT,
and for future reference give here the formal

DreriniTION 2.5. A test will be called an éxtended SPRT with stopping bounds

A and B if, forn = 0,1, - -+, Hy 1s accepted if Y, < B, Hs accepted if Y, > A,
sampling continues if B < Y, < A, and a possibly randomized rule depending
on Xy, -+, Xa ts adopted to decide between accepting H, and continuing sampling

if Y. = B, between accepting Hy and continuing sampling if Y, = A; where
Yo=1,and forn = 1Y, is the PR at the nth stage of sampling.

2 This was pointed out to us by Colin R. Blyth.
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ReMarks. 2.1 The above definition also makes sense if B = A, except that
whenever PR = B = A the decision rule has to decide between the three al-
ternatives: accepting H,, accepting H,, and continuing sampling. 2.2. Any
SPRT T(B, A) is an extended SPRT provided B £ 1 < A. More generally,
any mixture of T'(B, 4), T(B—, 4), T(B, A+) and T(B—, A+) is an ex-
tended SPRT provided B = 1 < A. For instance, if 4 > 1, #=T(1,4) +
(1 = x)T(1—, A) is an extended SPRT with stopping bounds 1 and 4 and the
following rule concerning what to do if PR = 1 or A: at any sampling stage
accept H, if PR = A4; at the zeroth stage (when PR = 1) continue sampling;
with probability = accept H; at every stage n = 1if PR = 1, and with prob-
ability 1 — = continue sampling at every stage n = 1if PR = 1.

If, in the following, we say that a test T’ agrees with another test 7’ from the
mth observation on, we mean that the decision rules of 7 and 7’ are the same
for all sampling stages n = m.

We can state now, in Theorem 2.4 below, a slight generalization of the usual
optimum property statement of SPRT’s. A proof of the theorem is sketched in
Section 5. '

TaEOREM 2.4. For any integer m = 0, if a test T takes at least m observations
and agrees with an extended SPRT from the mth observation on, then T has OP
amonyg all tests that take at least m observations.

By taking m = 0 in Theorem 2.4 we have

CoroLLARY 2.1. Every extended SPRT has OP,

By taking m = 1 in Theorem 2.4 we get

CororLARY 2.2. Every SPRT has OP among all tests that take at least one
observation, and any SPRT with B = 1 £ A has OP.

The last part of Corollary 2.2 follows from Remark 2.2 and Corollary 2.1.
It is, of course, the usual OP statement of SPRT’s. As an application of Corollary
2.11t also follows that the test T'; that accepts H;without taking any observation
has OP, which is of course trivially true.

3. Proof of Theorem 2.1. We shall use repeatedly the fact that if
T = (1 - >\>T1 + AT, s then Olz(T) = (]. - >\)Ot7,(T1) + )\ai(T2), and VZ(T) =
(1 — N)wi(T1) + Avi(Te). The proof proceeds in four stages, (A), (B), (C)
and (D). Stage (A) is a preliminary, (B) and (C) together establish (2.6),
and (D) establishes the fact that in (2.6) there are two strict inequalities on
the right if there is at least one on the left. Throughout, 7% has OP I and T
satisfies the left hand side of implication (2.6).

(A) Ifforeitherj = 1orj = 2we have a;(T) < a;(T*) and P;(N < o | T) =
1, then the right hand side of (2.6) s true.

For each positive integer &, let 7% be the test agreeing with T at
stages 0, 1, 2, - -+ , k — 1, and such that if the kth stage is arrived at, the sam-
pling stops and H; is rejected. Then

(31) a3—j(Tk) = 0[3_j(T) = a3—f(T*)7 k= 17 2,
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and
k—1

(3.2) a;(Th) = ZOP,.(Hj is rejected, N = n | T) + P;(N = k| T).

Since, by the assumption made in (A), P;(N = k|T) — 0 as k — =, the
right hand side of (3.2) converges to «;(T), which is < a;(T™) by assumption.
Hence, for some £,

(3.3) a;j(Ty) < a;(TY).
Clearly, vs(T:) < . Since by (3.1) and (3.3) we have a;(T) < a(T*), and

since T has OP I, we conclude »;(T:) = »:;(T*). The observation »;(T) =
v;(T}) completes the proof of stage (A).

(B) If ai(T*) > 0 then the right hand side of (2.6) ds true.

Suppose (B) were not true, then either »,(T) < »(T*), or »(T) < w(T").
Suppose the latter, the other case being similar. Then »(T) < o, so, a fortiort,
Py(N < o | T) = 1. Let T" be a fixed sample size test such that ai(T") < a:(T™),
and let 7\ = (1 — N)T + AT, 0 < A < 1. For any such A we have
Py(N < o | T)) = 1,and ay(Th) < ai(T*) since ai(T) £ a:(T*) and ai(T") <
a;(T*). Furthermore, \ can be chosen so small that »(Th) < w(T™). This
contradicts (A), and therefore establishes the truth of (B).

(C) If ax(T*) = 0 or ax(T*) = 0, then the right hand side of (2.6) s true.

Suppose a1 (T) = 0, the other case being similar. We also assume ay(T™) < 1,
the case as(T*) = 1 being trivial. Thus,

(3.4) 0 = Y Py(H, accepted, N = n | T*)
n=0
and
(3.5) 0 <1 — ap(T*) = Y, Py(H,accepted, N = n | T%),
n=0

using the fact that Po(N < | T*) = 1. Since P,(H; accepted, N = 0| T™)
does not depend on ¢, and therefore, by (3.4), is 0, it follows from (3.5) that
for some positive n we have Py(H; accepted, N = n | T*) > 0. Thus there is a
set Fy such that 0 < Py(X e F2) = sup Py(X ¢ @), Pi(X ¢ Fs) = 0, where
the supremum is taken over all sets G satisfying Po(X ¢ @) > 0, P1(X ¢ G) = 0,
and where X is a random variable with the same distribution as the X ;. Let
F; be the empty set if there is no @ such that Py(X e G) > 0, Po(X ¢ @) = 0.
Otherwise, let F; be defined similarly to F, .

Let T’ be the test which stops and accepts H; as soon as an observation falls
in F; , but otherwise is the same as 7. Then a:(T") £ a:i(T) £ ai( T™), vi( T <
Vi( T), and

5:6) PyN < o | T') =1 — limysw Po(N > 0| T)
’ > 1 — limpw [Po(X 2 F)]" = 1.
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We now show that
(3.7 v(T*) = v(T),

implying (2.6).

Case Cl: ay(T*) = 0. Then all three tests, T, T and 7", have their error
probabilities equal to 0. Clearly, if a test has both error probabilities equal to
0, then it is equivalent to a test which, at the nth stage, stops and decides H;
only if the observation falls in F;. Moreover, of all such tests, the one which
stops as soon as an observation falls in F; or F; minimizes the expected sample
sizes. The test T" is of this nature. Thus, »;(T") < »s(T™), so that »o(T') < =.
Since T* has OP I and ai(T") £ as(T™), (3.7) follows (actually with equality
for both 7).

Case C2: ap(T™) > 0. Let T, be the fixed sample size test which takes &
observations and is such that if one of the k& observations falls in F,, then H,
is accepted, otherwise Hj is accepted. Then ay(T%) = 0, as(Ti) = [Po(X 2 F2)T,
k=1,2---. We can choose &k so large that a(T%:) < ax(T™). Let
Th= (1 —=MNTs+A",0 <) <1, then a;(Th) = 0, a(Th) < a(T™), and
Py(N < o |T)) = 1 using (3.6). By (A) we have then »;(T*) < »i(Th) =
(1 — Nes(k) + Mvi(T'). Letting A — 1 gives (3.7).

(D) Suppose one of the inequalities on the left in (2.6) is strict. Assume
ax(T) < ay(T*), the other case being similar. Let T\ = (1 — N)T + T4,
0 <\ <1, where T, accepts H; without taking any observation, so that
ai(T1) = 0,(Ty) = 1, v;(T;) = 0. Then A can be chosen so small that a.(T)) <
ax(T*). For any A we have ay(T\) = (1 — Na(T) £ au(T*). By (B) and
(C) we conclude then »;(T*) < v(T)). But v«(T\) = (1 — Nwi(T) < v(T),
so that »;(T*) < »;(T). This concludes the proof of Theorem 2.1.

4, Characterization of Bayes tests as extended SPRT’s. In this section a
summary will be given of some of the main results in [1] and [10] as applied to
the two decision problem. A geometric interpretation (Fig. 1) of these results is
given and will be helpful in establishing the existence lemmas of Section 5.

Throughout this section we shall assume that a loss is associated with a
wrong decision. Let W = (Wy, W), 0 < W; < «, where W, is the loss if H;
is true and the wrong hypothesis is accepted. In this section W will be kept
fixed. The cost of each observation will be taken to be 1 unit, i.e., the cost func-
tion in Section 2 is taken as ¢;(n) = n. We shall consider all possible tests,
allowing randomization at each stage of sampling between stopping and con-
tinuing sampling, and, if it is decided to stop, between accepting H; and ac-
cepting H, . For any test T let ;(T') be the expected cost if H; is true:

(4.1) ri(T) = Wiai(T) + »i(T)

with the a;, »; defined by (2.1) and (2.2). The point »(T) = (r(T), r(T))
will be called the risk point of T'. Let S be the set of all risk points r(T'), S, the
set of r(T") with T restricted to tests that do not take any observations, and S;
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the set of r(T) with T restricted to tests that take at least one observation.
These three sets are indicated in Figure 1 for a typical case. It is easy to show that
all three sets are convex and that S, is the line segment connecting (0, W)
and (W, 0). A test that takes at least one observation has obviously »:(T) = 1,
so that, by (4.1), r:(T) = 1. That means that S; is contained in the portion of
the plane where r; = 1. Consequently, if the W; are sufficiently small, e.g., if
one of the W is £ 1, the sets S, and S; will be disjoint. This would necessitate
exceptions of a trivial nature to be appended to statements that follow later
in this section. In order to avoid these trivialities, it will be assumed in this
section that W is such that S, and S; have at least one point in common. It
follows from monotonicity lemmas in Section 5 that if S, and 8, are disjoint
it is possible to make them intersect by increasing the W; , while keeping Wo/ W
constant.
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Let an a priori distribution over H; and H, be given by g = (g1, ¢2), g: = 0,
91 + g2 = 1, where g, is the probability that H, is true. The overall expected cost
is then

(4.2) (T, g) = > gari(T)

with the r;(T) given by (4.1). A test T that minimizes the overall expected
cost (4.2) is called a Bayes test with respect to the a prior: distribution g, or,
simply Bayes (g). Wald and Wolfowitz [10] and Arrow, Blackwell and Girshick
[1] proved that the Bayes (g) tests can be described in the following way. First

the a posterior: distribution is introduced. The joint density of X, -+, X,
at (o1, -+, @) is pi(21) - - - pi(2,), but for short we shall write 2" for (z;, -« - ,
%,) and pe(z”) for ps(z1) - - - ps(z,). After observing x; , - - - , &, the a posterior:

distribution g(z") is defined by its components

j; g5 Pin(z")

A characterization of Bayes (g) tests can now be made as follows. There are
two critical numbers, which we shall denote cand d,’0 < ¢ < d < 1, independent
of g (the dependence on W will be taken up in Section 5). At the zeroth stage of
sampling, if g» < ¢ no observation is taken and H, is accepted, if g, > d no ob-
servation is taken and H, is accepted, if ¢ < g» < d an observation is taken.
If g, = c one may randomize between taking an observation and accepting H,
without taking any observation; similarly if g, = d. At the nth stage of sam-
pling, n = 1, 2, - - -, the decision rule is the same as at the zeroth stage, except
that g;(2") has to be substituted for g, . Using the definition (4.3), with ¢ = 2,
for go(z™), the above rule is recognized to define the class of extended SPRT’s
(Definition 2.5) with stopping bounds given by

(4.4) B = (g/g)le/(1 = ¢)], 4 = (g:/g2)ld/(1 — d)].

There is an immediate geometrical interpretation of ¢ and d in Figure 1.
The two lines marked L, and L play a special role. L, is the supporting line of
S through (W, 0) of minimum slope (maximum negative slope); L; is defined
analogously. We then recognize the slope of L; to be —(1 — ¢)/¢, since g < ¢
is equivalent to g1/g. > (1 — ¢)/c, and if g1/g. is larger than the negative of the
slope of L;, then clearly > gs; is minimized only by the risk point (0, Ws),
i.e., > ga:(T) is minimized only by the test T: that accepts H; without taking
an observation. Similarly, the slope of Ly is —(1 — d)/d. We have ¢ = d if
and only if the slopes of L, and L, are equal, and this happens if and only if
So does not contain interior points of S; .

The geometric interpretation of ¢ and d leads to some useful expressions and
inequalities. The slope —(1 — ¢)/c of Ly is the smallest slope (largest negative

3 They are denoted A’, 2” in [8] and ¢’, ¢” in [10].
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slope) that any line connecting a point 7 ¢ S with (0, W;) can have. Therefore,
(1 — ¢)/¢c = sup (W — 1)/, where the supremum is taken over all r ¢ S
(actually the supremum is a maximum). It suffices to take the sup over r ¢ S,y
and over r ¢ S;, and then take the largest of these two numbers. The sup over
r & So is simply W,/W; . Thus we have

1—c¢c W, Wy — 79
(4.5) S = max (Wl, ?}g) - >

(In (4.5) we have not assumed, as we did in the rest of Section 4, that S, and
S: intersect, the reason being that we shall need (4.5) in Section 5.) An analogous
expression for d is obtained by replacing in (4.5) ¢ by 1 — d and interchanging
the subscripts 1 and 2. This enables to turn any true statement about ¢ into
one about d. In the remainder of the paper this procedure, i.e., interchanging ¢
and 1 — d and simultaneously interchanging subscripts 1 and 2, will be termed
“by symmetry.” From (4.5) and by symmetry we have the inequalities

(4.6) 0< (1 —=d)y/d=Wy/Wi=(1—=¢)/e< .

If S, contains interior points of S;, the middle inequalities in (4.6) are both
strict; otherwise both are equalities. In particular, these equalities will occur
if one of the W;is = 1.

Till now we have considered Bayes tests among all tests. One can also restrict
the class of tests and ask for Bayes tests within the restricted class. In particular,
let C., be the class of tests that take at least m observations. How can the Bayes
tests within C,, be characterized? The answer is essentially contained in [1]
and [10], and is stated in the following lemma for future reference. The notation
Bayes (g, W) is employed in the anticipation of Section 5 where W is no longer
held fixed.

Lemma 4.1. For m = 0, let C., be the class of tests that take at least m observa-
tions. A test in C., is Bayes (g, W) among all tests in C. if and only if it agrees
with an extended SPRT from the mth observation on, with the stopping bounds
A and B given by (4.4).

For m = 0 Lemma 4.1 reduces to the characterization of the Bayes (g, W)
tests among all tests.

5. Existence and uniqueness lemmas. In this section we shall consider the
W ; as variables, and we shall sometimes write ¢(Wy, Ws), d(Wy, Ws), or ¢(W),
d(W), to express the dependence of ¢, d on the W, . In this notation we rewrite
the Equations (4.4):

W) g2 d(W)

51 =% ) A=

- 5T = o)’ 0. T— &)

Wald and Wolfowitz [9] proved that, given 4, B and g, with0 < B < 4 < o,
and both g; > 0, there exists W satisfying (5.1). Since their proof is somewhat
involved, we propose to give a simpler proof in this section. First we restate the
proposition in an equivalent form as
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Lemma 5.1. Given ¢y, do, with 0 < ¢y = do < 1, the pair of equations
(5.2) C(Wl 3 Wz) = 0o, d(W1 ) Wz) = do

has a solution for the W;, with1 < W; < .

Parallel to the existence question is the question of uniqueness, of some
interest in itself although not used in the OP proof. Concerning uniqueness we
have

Lemma 5.2. If 0 < ¢ < do < 1 and the Equations (5.2) have a solution, this
solution s unique.

The proofs of Lemmas 5.1 and 5.2 will be given a little later in this section. A
lemma similar to Lemma 5.1, serving the same purpose, was proved in an in-
genious way by L. LeCam (in [5] Chapter 3, Lemma 6), who also obtained the
uniqueness result.

Lemmas 4.1 and 5.1 are the two crucial lemmas from which the OP of SPRT’s
follows at once. Since we have stated the OP in slightly more general form than
usual in Theorem 2.4, and also to show how Lemmas 5.1 and 5.3 are used, we
shall give below the few simple steps of the proof, following [9], Section 7.

Proor or THEOREM 2.4. Let C,, be the class of all tests that take at least m
observations, so that the test T in Theorem 2.4 is a member of C,, . Let T" be
any other test in Cp, Wlth ai(T' ) = a,(T) and »;(T') < «.Denote az(T) = a;,
vi(T) = vi, as(T') = ai, v:(T") = v; . Let the stopping bounds of the extended
SPRT, as mentioned in the theorem, be 4 and B, B < A. Let any g be chosen,
with both g; > 0. With these values of 4, B, g1, g, the Equations (5.1) have a
solution for W = (W;, W), by Lemma 5.1, with 1 < W, < «. With this
W and the given ¢, T is Bayes (g, W) in Cm , using Lemma 4.1. Hence
Z gi(Wiai + v;) = Z gz(Wzaw =+ V%) or Z g%("z — ) 2 Z ng (0‘1 - 0‘1) =
0. Since this holds for any g with both g; > 0, we must have »; — »; = 0, and
Theorem 2.4 is proved.

From the proof of Theorem 2.4 it is clear that instead of using Lemma 5.1,
we could get by with the somewhat weaker but easier to prove

Lemma 5.3. Given A, B and ¢, with0 < B < A < o and e > 0, there exists
(i) W and g, with g1 < ¢, satisfying (5.1); and (i) W' and g, with g5 < e, satis-
Sfying (5.1).

Before proving Lemmas 5.1 through 5.3, we need a few simple properties of
the functions ¢(W) and d(W). In (4. 5) the r; are functions of W and T, as given
by (4.1). We rewrite

(53) 1 :(VC;)W ) _ max (vwvf sup (1, W))

in which

Wz(l - Olz(T)) - Vz(T)
W1 al(T) + Vl(T) )

In (5.3) the supremum is taken over all tests that take at least one observation.
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In view of the expression (5.4) for f we may restrict the supremum to all 7 ¢ ¢
with ay(7T) < 1 and »,(T) = B;, for some suitable B; (e.g., B; = W, would
suffice.) Denoting this restricted class of tests by CF , we see from (5.4) that
f(T, W) is continuous as a function of W, uniformly in T ¢ C¥ . From this it
follows immediately that the right hand side of (5.3) is continuous in W. Thus,
we conclude that ¢ is a continuous function of W. The same is then true for
d(W), by symmetry (see Section 4, after (4.5)).

In (5.3) on the right hand side, the supremum is attained by some T ¢ C7 ,
say by T* We can write (5.3) then as

(5.5) (L — c(W)/e(W)] = max (Wo/ Wy, f[(T*, W)).

The dependence of T on W is suppressed in the notation.

There are some obvious monotonicity properties of the functions ¢ and d.
In (5.5) if T* is kept fixed, but W changed to W' in such a way that W,/ W,
increases and f(T*, W) increases, then

— 1 ; —

Loa = max (%- A, W'>)> max (%— e, W)) -l

so that (1 — ¢)/c increases. Consulting (5.4) we see that f(T™, W) is increased
if W, is fixed and W, increased (remember ax(T*) < 1), and f(T*, W) is not
decreased if W, is fixed and W; decreased (if oy (T™) > 0, f is actually increased).
Furthermore, by (5.5), if W, is fixed and W; — «, ¢ — 0. All this proves

LemMa 5.4. If W, is fized, ¢ is a strictly decreasing function of Ws , and ¢ — 0
as Wy — . If Wy is fized, ¢ is a non-decreasing function of Wy . Simalar state-
ments for d follow by interchanging c and 1 — d, Wy and W, .

Somewhat less obvious is the following

LemMA 5.5. If W; — o, with W,/W, fized, then ¢ — 0, d — 1.

Proor. It is sufficient to show ¢ — 0 since d — 1 then follows by symmetry.
Let Wo/Wy = . It is sufficient to take the sequence (n’°, 7n°) of W’s and show
that ¢ — 0 as n — . Using (4.5) it is sufficient to show that there is a sequence
{T,} of tests for which the quantity (W. — r)/r1 — » as n — «. For each
n = 1let T be the test which takes exactly n observations and which minimizes
max (ay , az). Write as(n) for a;(Th). It is well-known that a;(n) —0asn — .
We have for T, :

We— 19 (1 — a(n)) —n

9 nay(n) + n

which — «© as n — . This proves the lemma.

LemMA 5.6. Let W be such that c(W) < d(W). Let W be changed to W + AW,
with AW ; 2 0 and at least one strict inequality. Then ¢ decreases if A(W,/W1) = 0
and d increases if A(Wsy/W1) = 0.

Proor. It is sufficient to prove the first part of the conclusion of the lemma,
the second part then following by symmetry. The condition A(W,/W;) = 0
together with the conditions on the AW, imply AW, > 0. Since ¢ < d for the
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given W, the two middle inequalities in (4.6) are strict so that on the right
hand side of (5.5) f(T™, W) is the larger of the two quantities of which the maxi-
mum is taken. Using (5.4), keeping T™ fixed, it is elementary to show that
F(T™, W) increases if A(W,/W1) = 0and AW, > 0, which establishes the lemma.

Proor or Lemma 5.3. We need only prove part (i), part (ii) then following
by symmetry. Choose 7 > 0 in such a way that

(5.6) A < /(1 — ¢)

In the following W,/W; will be kept fixed and equal to 7, i.e., W is of the form
(w, Tw). The quantities ¢ and d will then be continuous function of w; we will
sometimes write ¢(w), d(w). The quantity d(1 — ¢)/¢(1 — d) is a continuous
function of w which equals 1 if w = 1 (since then ¢ = d) and which — « as
w — o, by Lemma 5.5. Since A/B = 1, there is a value of w, say w,, with
wy = 1, such that

A d(w) 1 —c(wn)

(5.7) B 1 —dw) c(w)

Finally choose ¢ such that

g _ 41— d(wo)
(5.8) .‘—7—2 4 d(’U)o)

By (4.6) we have
(5.9) [1 — d(wo)]/d(wo)

and (5.6), (5.8) and (5.9) imply g1/g. < ¢/(1 — €), or g1 < e. The equations
(5.7) and (5.8) are equivalent to the equations (5.1), which establishes (i)
of the lemma, with the chosen g and with W; = w,, Wy = rwo.

Proor or Lrmma 5.2. Suppose W and W' = W + AW are two solutions of
(5.2), with given ¢y < do. Thus, when passing from W to W, ¢ and d do not
change. In that case, however, the AW, cannot be of the same sign without both
being 0, by Lemma 5.6, and the AW, cannot be of opposite sign without both
being 0, by Lemma 5.4. Thus, W = W'.

Proor or Lemma 5.1. First it should be observed that it is possible to in-
crease both W, in such a way that the image (¢(W), d(W)) keeps its first co-
ordinate ¢ fixed. For, increasing W; with W, fixed does not decrease c; an in-
crease of ¢ can be annihilated by increasing W, while leaving W, fixed, since,
again by Lemma 5.4, ¢ decreases and — 0 as W, — . The strict decrease of ¢
when W, increases while W, is fixed also shows that there is only one value of
W, which restores the original value of ¢. This makes d a function of W;, given
the value of ¢. We shall write d = d(W; ; ¢). By Lemma 5.6 this function is
strictly increasing whenever d > c¢. It is also easy to see that the function is
continuous: If W, is changed by an amount AW, , keeping W, fixed, and then
W, changed, keeping W, fixed, to restore the original value of ¢, d first changes
by Ad;, then by Ad,, producing an overall change Ad = Ad, + Ad: . Now Ad,
has the same sign as AW, , and the same is true of Ad, by the monotonicity of

lIA

T
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d(W; ; ¢), whereas Ad, has the opposite sign from AW, . As a result, |Ad| < |Ad,]
which — 0 as AW; — 0, since d is a continuous function of W, with W, fixed.

Suppose the W, are increased in such a way that ¢ remains constant >0.
Then it must be true that W,/W; — 0, otherwise ¢ could not remain constant,
using Lemmas 5.5 and 5.4. It follows then that d(W,;¢) — 1 as W; — o,
using Lemmas 5.5 and 5.4. Let now W* = (Wi, Wy), with Wi = 1, Wiy =
(1 — ¢o)/co, then ¢(W*) = d(W™*) = ¢, using (4.6) (observe that the two
middle inequalities are equalities due to W3 = 1). We have now that d(W, ; ¢o)
equals ¢o when W, = Wi = 1, and —1 as W; — . Since the function d( Wy ;¢o)
is continuous and ¢y = dy < 1 there is a value of W; = 1 for which d(W; ; ¢) =
do . That the corresponding W, is also =1 follows by symmetry and the unique-
ness Lemma 5.2. This concludes the proof of Lemma 5.1.

6. Proof of Theorem 2.3. We precede the proof by a few lemmas. As before,
the probability ratio of the first n observations will be denoted by Y, ; instead
of Y; we shall simply write Y.

Lemma 6.1. Let 0 < o' < w, Po(Y > u) > 0, Po(v’' < Y = ) > 0, and
let By be defined by (2.7), then By(u', v +) > Bi(u, u+).

Proor. Denote ay(u, u~+) = a;, ai(u,w'+) = a; + Aa;, then

(6.1) a; = Pi(Y > u), 1 — ay = Po(Y > u),
(6.2) A = Pi(v/ <Y 2 w), Al —a) = P(v <Y = u).
Consider the inequalities

1 Py <Y g Pi(Y > u)
uw T Py <Y = PxY > w)’

Substituting (6.1) and (6.2) into the second and fourth members of (6.3)
gives Aai/A(1 — as) > ay/(1 — a3), which leads immediately to the conclusion
of the lemma.

LeEMMA 6.2. For fived B, the a;(B, A) and a;(B—, A) are left continuous, the
a,(B, A+) and a;(B—, A+) right continuous functions of A. For fized A, the
a;(B, A) and ai(B, A+) are right continuous, the a;(B—, A) and as(B—, A+)
left continuous functions of B.

Proor. We need only show the continuity properties of ai(B, 4) and
ai(B, A+) for fixed B as a function of A. We shall drop the subscript 1 on P,
and instead of the variable A we shall write z. Let N(z) be the random number
of observations determined by the SPRT T'(B, z), B < z. The probability ratio
at stopping is then Yy . We shall show that P(Yyu = ) is left continuous.
In the first place, EN(z) < o, or D .51 P(N(z) = n) < . Then, given
¢ > 0, there exists & such that Y i1 P(N(z) = n) < e Take y so that
B <y < z, then

0= P(Yywy Zy) — P(¥Ynw 2 2)

(6.3)

[1\%

w) _ 1
uw) ~ u

IIA

S>PB<LY,<ym=1,-,n—1y=Y, <2a).
n=1
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The last series we split into the sum from n» = 1 to &, and a remaining series from
n=1Fk-+1to «.Thesum fromn = 1 toklsboundedby Zn_lP(Y =Y.<zxz)
which | 0 as y 7 2. The series from n = & 4 1 to « is bounded by
Zn>k+1P(B<Y <y7m'_1 "n_1)<2n2k+IP(N(x)>n)<e
This proves the left continuity of ai(B, x). To show the right continuity of
ai(B, z+), let M(z) be the random number of observations determined by
T(B,z+).Letz > x, then P(Y y > 2) = P(Yue > 2), 50 that P(Y y@ > x)
— P(Yyw >2) = P{Y yew > o} — P{Yyuw > 2 =Pz < Yyu = z) L O
asz | «. This proves the right continuity of P(Y @ > 2) = ai(B, z+), and
the proof of the lemma is complete.

We can Verlfy now the assertion made in Section 2 that ai(B, A+) =
lim a:(B, A') as A’ | A, and similar statements with B—. Verifying this for
al(B A+) we have al(B A'+) £ (B, A") = au(B, A+) If we let now
A" | A, the two extreme members of the resulting 1nequaht1es are equal because
of the right continuity of (B, A'+) as a function of A’

LemMa 6.3. For any B for which Po(Y > B) > 0 let 1 be defined by (2.7).
Then, as a function of z, Bi(B, ) s non- mcreasmg, continuous from the left, and
Bu(B,x) —>0asxz— . More speczﬁcally, if & > x and T(B, x) is not equivalent
to T(B, «'), then B1(B, x) > Bi(B, z').

Proor. The monotonicity of 8i(B, z) was proved in [12], Corollary 2. The
left continuity follows from Lemma 6.2. Finally,

a(B, ) _ Py(Yy =
1 — ay(B,z) Py(Yy = )

Proor or TaroreM 2.3. Let T = T(B, A) be as in the hypothesis of Theorem
2.3. We shall first show the existence of the test T’ mentioned in the theorem.
According to Lemma 6.3, 81(B, B+) = B:(B, A), and according to Lemma 6.1
Bi(1, 14) = Bu(B, B+). Moreover, equalities in both of these inequalities can
occur only if T(B, A) is equivalent to T'(B, B+), and T(B, B+) is equivalent
to T(1, 1+). However, in that case T'(B, 4) would be equivalent to T'(1, A).
Since this is excluded, by the hypothesis of the theorem, one of the inequalities
must be strict, and we have 8:(1, 1+) > B1(T'). Observing that Py(Y > 1) > 0,
we can apply Lemma 6.3 to the function 8:1(1, ). There is then a value A’ for
z;, A" > 1, such that 8:(1, 4" = BI(T) > (1, A'4). It follows that there
exists m, 0 < « = 1, such that T’ (1 — =)T(1, A" + =T(1, A'+)
has Bu(T") = Bu(T). Of course, if B:(1, x) is continuous in A’ we can simply
take = = 0.

It should be noticed that B(T") = Bi(T) implies that in the a-plane the
point a(T") lies on the line through (0 1) and «(T). Note also that (0, 1) =
a(Ty). It will be shown now that as( T') < as(T), or, in other words, tha,t a(T")
does not lie on the segment between (0, 1) and «(T). Suppose first 4’ = A.
Then to pass from 7 to 7" the lower stopping bound is decreased and the upper
one not increased. Since the two tests are not equlvalent by the hypothesis of
the theorem, oy decreases. If, on the other hand, A’ > A, to pass from T to T’

Bl(By .’l}) =
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the lower stopping bound is decreased, the upper one increased. Since the two
tests are not equivalent, ».(T") > »(T). If we had as(T") = as(T), i.e., a(T")
lying on the segment between (0, 1) and «(T'), there would be a mixture 7" of
T, and T such that «(T”) = «(T’), namely 7”7 = (1 — «')T; + «'T with
= (1 — a(T))/(1 — a(T)). Since v;(T”) = 7'vi(T) = vi(T) < »:(T"),
the test 7” has the same a; as T" but has smaller »; . This is impossible since 7"
has OP.

Let T* be as in the conclusion of the theorem. With ) defined by (2.8) and
remembering 8;(T) = B,(T"), we compute easily oy (T™) = Nau(T") = au(T),
and ao(T*) = 1 — N 4 Nao(T") = as(T), so that a(T*) = a;(T) as asserted
in the conclusion of the theorem. To prove the remaining assertions note that
T* is an extended SPRT (Definition 2.5) so that 7™ has OP by Corollary 2.1.
Since ai(T) < ai(T*) (actually equal) it follows that »;(T) = vs(T*). If these
latter inequalities were both equalities, 7" would be Bayes (g, W) for any (g, W)
for which T™ is Bayes. Now take any g with g; > 0, substitute in Equations
(51) B =1,4 = A', and solve for W (the existence of a solution guaranteed
by Lemma 5.1). With this g and W, if a test is Bayes (g, W), it is equivalent to
some extended SPRT with stopping bounds 1 and A’. T™ satisfies this but 7
does not, so that at least one of the inequalities »;(T) = »:(T™) must be strict.
This concludes the proof of the theorem.

REFERENCES

[11 Arrow, K. J., BLackwELL, D. and GirsHIck, M. A. (1949). Bayes and minimax solu-
tions of sequential decision problems. Econometrica 17 213-244.
[2] BurkHOLDER, D. L. and Wissman, R. A. (1960). Optimum properties and admissibility
of sequential tests. Ann. Math. Statist. 31 232 (abstract).
[3] Grosn, J. K. (1961). On the optimality of probability ratio tests in sequential and
multiple sampling. Calcutia Statist. Assoc. Bull. 10 73-92.
[4] HorrrpinGg, Wassiny (1960). Lower bounds for the expected sample size and the
average risk of a sequential procedure. Ann. Math. Statist. 31 352-368.
[5] Leamann, E. L. (1959). Testing Statisiical Hypotheses. Wiley, New York.
[6] WaLp, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Statist. 16
117-186.
[71 Wavrp, A. (1947). Sequential Analysis. Wiley, New York.
[8] WaLp, A. (1950). Statistical Decision Functions. Wiley, New York.
[9] Warp, A. and WoLrowiTz, J. (1948). Optimum character of the sequential probability
ratio test. Ann. Math. Statist. 19 326-339.
[10] WaLp, A. and WorrowiTz, J. (1950). Bayes solutions of sequential decision problems.
Ann. Math. Statist. 21 82-99.
[11] WoLrowrTz, J. (1955). Review of Theory of Games and Statistical Decisions by David
Blackwell and M. A. Girshick. Bull. Amer. Math. Soc. 61 247-253.
{12] Wissman, R. A. (1960). A monotonicity property of the sequential probability ratio
test. Ann. Math. Statist. 31 677-684.



