ESTIMATES OF LOCATION BASED ON RANK TESTS
By J. L. Hopbces, Jr.! AND E. L. LEEMANN?
University of California, Berkeley

1. Introduction and summary. A serious objection to many of the classical
statistical methods based on linear models or normality assumptions is their
vulnerability to gross errors. For certain testing problems this difficulty is suc-
cessfully overcome by rank tests such as the two Wilcoxon tests or the Kruskal-
Wallis H-test. Their power is more robust against gross errors than that of the
t- and F-tests, and their efficiency loss is quite small even in the rare case in
which the suspicion of the possibility of gross errors is unfounded.

For the corresponding problems of point estimation a beginning has been made
to attack the difficulty by modifying the classical estimates either through re-
moval or Winsorization of outlying observations; see for example Tukey (1960)
and Anscombe (1960). It is the purpose of the present paper to explore a different
approach to these problems of point estimation. In Sections 2-5 point estimates
of location or shift parameter are defined in terms of rank test statistics such as
the Wilcoxon or normal scores statistic, which are successful in providing robust
power for the corresponding testing problems. In Sections 6 and 7, certain regu-
larity and invariance properties of these estimates are proved. The distributions
of the estimates are shown in Section 8 to be symmetric with respect to the
parameter being estimated—and hence in particular to be unbiased—if the
underlying distribution of the observations on which the estimate is based is
symmetric. Without this assumption, the estimates are shown in Section 9 to be
either exactly or approximately median unbiased for small samples and in
Section 10 to be approximately normally distributed about the true parameter
value for large samples. The variance of this asymptotic distribution depends of
course on the underlying distribution of the observations, so that the estimates
are not ‘‘distribution-free.” In Section 9 there is also established a close relation-
ship between the estimates and the corresponding upper and lower confidence
bound for the parameter at confidence level %, with which the estimate coincide
in many cases. Finally, in Section 11, it is proved that the asymptotic relative
efficiency of the estimates to the classical linear estimates is the same as the
Pitman efficiency of the rank tests on which they are based to the corresponding
i-tests.

2. Point estimates based on test statistics. Let X1, -+, X ; Y1, -+, Y,
be independent random variables with distributions
(2.1) P{X; = u = F(u); P{Y; = u} = F(u — A).
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Since the variables X;, -+, X, and the variables Y; — A, ---, Y, — A ob-
tained by shifting the Y-sample A to the left, are independently, identically dis-
tributed, it is natural to estimate A by the amount of shift needed to align a
closely as possible the two sets (X:, ---, Xn») and (Y; — A, ---, Y, — A). A
definition of alignment could for example be given with reference to the Wilcoxon
statistic, by defining the two sets to be aligned if half of the non-zero differences
(Y; — A) — X, are positive and half negative. There is either a unique such
value of A, which would then serve as estimate, or an interval of such values; in
the latter case, the midpoint of this interval provides a natural estimate. More
generally, if a test of the hypothesis A = 0 is based on a statistic whose distribu-
tion is symmetric about a point x, the two sets could be defined to be in alignment
when giving to the test statistic the value u. To formalize these considerations let
us either assume that F is known to belong to the class &, of all continuous distri-
butions, or that it is known to belong to the class & of all continuous distri-
butions that are symmetric about zero. Consider a test statistic

h=hXy, -, Xn; Y1, - ,Y)
for the hypothesis H:A = 0 against the alternatives A > 0. We shall assume

throughout that ,
(A) (1, yZm, Y1+ @, -+, Yn + @) is a nondecreasing function of a for
all z and y,
(B) when A = 0, the distribution of (X, -+, Xpm; Y1, ---, ¥,) is sym-
metric about a fixed point u (independent of F), (i) for all F ¢ &, , or (ii)
forall F e, .
We shall use the notation z = (21, -+, %) andy = (y1, -+ , Y») With the
obvious conventions. Thus # < z’ means that the inequality holds for each coor-
dinate; if a is'a real number, then z + ¢ = (x; + @, - -+, 2, + a); ete. The no-

tation Pof-} will be used to indicate that the probability in question is being
computed for the case A = 0. Let

(2.2) A* = sup{A:h(z,y — A) > 4} and A™ = inf{A:h(z,y — A) < m
and let
(2.3) A = (&% 4+ a*™)/2.

For suitable functions & we propose A as estimate of the shift parameter A.
As a second problem suppose that Z;, - -+, Zy are independently distributed
with common distribution

(24) P{Z: < u} = F(u — 0)

where F is continuous and symmetric about zero.

Considerations similar to those in the two-sample problem suggest basing an
estimate on a test statistic h = h(Z,, --- , Zy) for the hypothesis § = 0 against
the alternatives 8 > 0. We shall assume throughout that

(C) h(z1 + a, -, zv + a) is a nondecreasing function of a for each z,
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and
(D) for 8 = 0, the distribution of h is symmetric about a fixed point u (inde-
pendent of F) for all F ¢ ;.
If p is the median of A(Z) when § = 0, let

(2.5) 6% = sup {6:h(z — 6) > u} and 6™ = inf {6:h(z — 6) < u}
and

(2.6) b= (6" + 6™)/2.

Then we propose f as the estimate of the location parameter 6.

3. A class of estimates for the two-sample problem. We shall be concerned
primarily with estimates based on rank tests. An important class of rank sta-
tistics for the two-sample problem is given by

(3.1) h(z,y) = ; Ey[V©?]

. where 81, -+, 8, denote the ranks of y1, - -+, y» in the combined sample, and
where V® < --. < V™™ denote an ordered sample of size m + n from a dis-
tribution ¥. :

The function h defined by (3.1) clearly satisfies requirement (A) of the pre-
ceding section. Conditions under which b satisfies (B) are given by the following
lemma, in which h is not assumed to satisfy (3.1).

LemMma 1. The distribution of h(X, Y) s symmelric about u if any one of the
following three conditions holds:

(1) his a function only of the ranks and satisfies

(3.2) h(z,y) + h(—x, —y) = 2p (a.e. Po)
(ii) the sample sizes m and n are equal, and h satisfies
(3.3) h(z,y) + k(y, x) = 2u (a.e. Po)

(iil) the distribution F is symmetric about zero, and h satisfies (3.2).

Proor. (i) If h(z, y) = g(s1, -, sa), then h(—2z, —y). = g(m + n — s,,
ceoom+n—s)and P{h(X,Y) < u—a} = Pfh(—X, =Y) > p+a} =
PO{g(m_l_n_Sn’ e :m+n_Sl) >I"+a} =P0{g(SI; e )Sn) >:u'+a} =
Po{h(X,Y) > u + a}. Here P, indicates that the probabilities are computed for
A = 0; the first equality follows from (3.2); the third equality follows from the
fact that (S;, -+, S,) and (m +n — S,., .-+, m + n — Si) have the same
joint distribution when A = 0.

(ii) When m = n and A = 0, the vectors (X, ¥) and (Y, X) have the same
joint distribution, and hence Po{h(X,Y) < p — a} = Po{h(Y,X) <p —a} =
Po{h(X,Y) > u + a} where the second equality follows from (3.3).

(iii) This follows from the first equality in the proof of (i) and the fact that
(X, Y) and (—X, —Y) have the same distribution when ¥ is symmetric about
Zero.
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Conditions under which the function 4 defined by (3.1) satisfies (3.2) or (3.3)
are given by the following lemma.

LeMMA 2. Let h be defined by (3.1). Then

(1) if ¥ 4s symmetric about b, the function h satisfies (3.2) with u = nb

(ii) ¢f m = n and b denotes the expectation of ¥ the function h satisfies (3.3) with
w=%(m + n)d.

Proor.

(i) h(x, y) + h( -z, —y) = ZE‘P[V(sj)] + ZEW[V(m+n_sj)]
= Z E‘I,[V(sj)] + Z Eq[2b — V(Sj)] = 2nb.

(ii) h(z,y) + h(y, z) = 2 EV?] + 3 Eo[VE] where 1, -+, 7 de-
denotes the ranks of the z’s. The right hand side is equal to the sum of the expec-
tations of all the V’s and hence to (m + n)b.

It follows from Lemmas 1 and 2 that a function h given by (3.1) satisfies Con-
dition B(i) of the preceding section if either ¥ is symmetric or the two sample
sizes are equal.

Among the statistics given by (3.1) and ‘satisfying B(i), we shall be particu-
larly interested in the Wilcoxon statistic and the normal scores statistic obtained
by taking for ¥ a rectangular or normal distribution respectively. The resulting
estimates will be considered in more detail in the next section.

Suppose next that m = n. Let us denote by ~ the average of the indicated
variables and by ~ or med their median, so that for example

(34) T=(m+ -+ + 2u)/m
and

L ™ ifm=2k+1
(3.5) Z =medz = % + 2%+)/2 fm = %

where 2® < --- < 2™ denote the ordered 2’s. Then both h(z,y) = § — & and
h(z, y) = § — % satisfy (3.3) with u = 0 and A* = A™ = h. The resulting
estimates are therefore ¥ — X and ¥ — X respectively.

More generally suppose that in addition to (3.3), h satisfies the invariance
relation

(3.6) h(z,y + a) = h(z,y) + a for all real a.

Assume without loss of generality that u = O since the function A'(z, y) =
h(z,y — w) satisfies (3.3) with u = 0. Condition (3.6) then implies that A* =
A* = B since for example

A (z,y) = inf {A:h(z,y — A) < 0} = inf {A:h(z,y) < A} = h(z, y).

4, Estimates based on the Wilcoxon and normal scores statistics. Let A(z, )
be the number of pairs (¢, j) such that z; < z; (1 £ 7 = m;1 =<7 =< n). The
test based on this statistic is the Wilcoxon two-sample test in the Mann-Whitney
form; it is equivalent to the test based on (3.1) with ¥ the rectangular distribu-
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tion on (0, 1). The possible values of the function h, which satisfies assumption
B(i), are the integers, 0, 1, - - - , mn. To find an explicit expression for the esti-
mate A obtained from h through (2.2) and (2.3) denote by W® < ... < w™»
the ordered differences Y; — X; . It is convenient to distinguish two cases.

Suppose first that mn is odd, mn = 2k + 1, say. Then p = k + %, which is
not a possible value of h, and

A™ = inf {A:h(z,y — A) < k + %}
= inf {A:Fewer than &k + % of the differences ¥; — X exceed A}
= inf {A:W* < A} = WO,
Similarly,
A* = sup {A:More than k& + % of the differences ¥; — X exceed A}
= sup {A: W < A} = W
so that A = W**,

On the other hand, if mn is even, mn = 2k say, then

A** — inf {A:W(k+1) é A} — W(k+1)
A* = sup {A:W® > A} = W®

and hence A = [W® + w**y/2,
Thus in both cases,

(4.1) A = med (Y — X)

is the median of the set of mn differences Y; — X, .

Formula (4.1) will frequently not be the most convenient way of computing A
in practice. To illustrate how this can be done quite expeditiously consider the
case mn = 2k + 1. Then k of the differences (Y; — A) — X are greater than,
k less than, and one is equal to, zero. To obtain A, plot the two samples on two
separate strips of paper. Sliding the Y-strip to the left decreases by one the
number of positive differences ¥, — X; each time a ¥ moves over an X. By pro-
ceeding in this way, one rapidly finds the position in which £ of the differences are
positive, k negative, and one is zero. The difference of the origins of the two
strips in this position is A. If mn = 2k, one finds in a similar way the shift A*
that produces k positive, k¥ — 1 negative, and one zero difference, and the shift
A™ that produces k — 1 positive, k negative, and one zero difference, and hence
the estimate A = (A* + A™)/2.

A somewhat similar procedure can be used to obtain the estimate based on the
normal scores statistic b = 2 Ea[V"]. Suppose the y-strip is slid to the left so
that Y moves across an X. Then s; is decreased by 1 so that h is decreased by
Es[V¢”] — Es[V® ). Starting out with a position of the two strips which gives
to h an approximately central value, the desired position can quickly be found
using a table of expected normal order statistics.
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b. Some estimates for the one-sample problem. Let Z; , - - - , Zy be identically
distributed, their distribution given by (2.1) with F symmetric about zero. Let
$1, -+, 8, denote the ranks of the positive Z’s among the N absolute values
|Zy|, -+, |Zx|- Here n is a random variable which for A = 0 has the binomial
distribution Bi(N, %). A class of rank tests is based on the test statistic

(5.1) h(z) = iEw[V“f’]

where V¥ < -+ < V™ denote the ordered absolute values of a sample of size
N from a distribution ¥, so that they constitute an ordered sample from the dis-
tribution given by V*(u) = ¥(u) — ¥(—u) foru > 0.

The function h defined by (5.1) clearly satisfied assumption (C) of Section 2.
As in Lemma 1(iii) it is seen that a function h satisfies requirement (D) if

(5.2) h(z) + h(—2) = 2u (a.e. Py) .

It follows from (5.2) that any function h given by (3.1) satisfies requirement (D).
We have in fact

Lemma 3. If h s given by (5.1) and 6 = 0, the distribution of h is symmetric
about u = INEy|Z,| for all F ¢ &, . ,

Proor. Let 71, - , rm denote the ranks of the negative Z’s among |Z,|, - -- ,
|Zx|. Then h(z) + h(—2) = 2, Eo[V?] + 20 Eo[V"] = NE4|Zi|.

An important special case is again that of the Wilcoxon test statistic corre-
sponding to the choice of a rectangular distribution for ¥. To obtain an explicit
expression for the estimate 6 in this case, it is convenient to use the equivalent
form of the test statistic due to Tukey (1949), namely

(5.3) h(z) = Number of pairs (z,j) with 1 <4 = j < N such thatz; + z; > 0.

The possible values of & are the integers 0, 1, - -+, N(N + 1)/2. Let W® <
oo < W™ be the K = N(N + 1)/2 averages (z; + z;)/2 with ¢ < j. Then
it is seen quite similarly to the corresponding result in Section 4 that # is the
median of the variables W®, ... W%,

Another class of examples is obtained by taking for h a functon that satisfies
(5.2) and is translation invariant in the sense that

(5.4) h(z + a) = h(z) + a for all real a.

As in the corresponding examples for the two-sample problem discussed at the
end of Section 3, one can assume without loss of generality that u = 0 and then
finds 8(z) = h(z).

Examples of this are (i) h(z) = Zand (ii) h(z) = 2. It is interesting to see that
% is also obtained as the estimate corresponding to quite a different function h.
For let h(z) be the number of positive 2’s, so that the test defined by h is the
sign test. Then & satisfies (5.2) with 4 = N/2 and a computation similar to that
of the Wilcoxon case then shows that

(5.5) b=172.
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6. Regularity properties. In Section 2, estimates A and 6 of a shift or location
parameter were defined in terms of given test statistics, and these estimates
were illustrated in Sections 3—5. The remainder of the paper is concerned with
general properties of these estimates. In the present section, certain regularity
properties are obtained; these are immediate consequences of the following
theorem.

THEOREM 1. Let h be a real-valued function on (m -+ n)-space such that
h(xi, ** yZm, 1+ @, -+, Yo + a) 25 a non-decreasing function of a for all =
and y, and let A*, A** be defined by (2.2). Suppose that (X1, -+, Xm, Y1, -++,
Y.,.) s a random vector with joint distribution H. Then the distribution of A* and
A™* is (absolutely) continuous provided H is (absolutely) continuous.

Proor. For any fixed numbers &y, -+, &n, h(Z1, ¢, Tm, Y1, Y1 + L2, -+,
11 + t.) is non-decreasing in y; . Let w(xy, -+, Tm, &2, -+, t») be such that
h(xI) yTm Y1, Y1 + t23 ”')yl+t”) <OI'% “ifylis <or> u(xly"')xm;
23 g o ,tn) Then

A**(xly s X, Y1, Y + by, U + tn)

(6.1)
=y1_u(x17 "')xm;tZ’ "')tﬂ)'

Suppose now first that H is continuous. Since

(62) A**(xl;""xm’yl"“’yﬂ)=c@
’ yl=u(xl)""xm’yz_yl?“"y"_yl)+c’

the set S = {(ml; y Tmy Y1, 0 ;yﬂ):A**(xl’ s Tmy Yy o ,yn) = C}
intersects each line
0 0

63) L(x‘l), cee T, e ) =Xy, T = Tm
. Yo=Y+ ta, Y=yt b
in the single point whose y;-coordinate is w(zl, -, am, ta, - ,ta) + c. Con-

sider now the probability of the set S. Each section of S with one of the lines
(6.3) consists of a single point and by the assumed continuity of H therefore
has probability zero. Since S is measurable, it follows from Fubini’s theorem

that P(S) = 0, as was to be proved.
Suppose now that H is absolutely continuous. Let A be any set on the real

line with Lebesgue measure zero and let
S ={(x1, ) Tm, ¥, e YR A (@, T, Yry e, Un) € A}
Since
A (@1, o Tmy W, s Yn) €A
Sy —ul@, ,Tm, Y2 — Y1, 5 Yn — Y1) €4,

the section of S with each line (6.3) has Lebesgue measure zero, and thus S itself
has Lebesgue measure zero. It follows from the absolute continuity of H that

P(8) = 0, as was to be proved.
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In both cases, the proof for A* is completely analogous. It follows therefore
that the distribution of the estimate A is (absolutely) continuous if F is (ab-
solutely) continuous. The corresponding result for é follows by letting m = 0,
n = N in the lemma.

7. Invariance properties. A simple but useful property of the estimates A and
6 is their translation invariance, namely

(7.1) A(z,y + a) = A(z,y) + a for all real a
and
(7.2) 0(z + a) = 6(2) + a for all real a.

These are immediate consequences of the definitions (2.2) and (2.5), which
show that A*, A™*, 6* and 6™* are translation invariant.
It follows from (7.1) and (7.2) that

(7.3) Pa(B — A 2 u) = Po(A £ w)
and
(7.4) Py — 0 =u) = Po(6 = u)

where the notation P, and P, indicate, that the probabilities are computed as-
suming A and 6 to be the true values of these parameters. Relations (7.3) and
(7.4) show that when investigating distributional properties of the estimates,
one may assume without loss of generality that A = 0 or 6§ = 0 respectively,
since the distribution for the general case is obtained simply by translation.

Typically, the function A in the two-sample problem satisfies the invariance
relation

(7.5) h(z + a,y + a) = h(z,y) foralla.

This relation holds in particular for any rank test. It is obvious from the defini-
tion that (7.5) implies the corresponding relationship for A.

8. Symmetry properties. If A and § are to be reasonable estimates of A and ,
their distribution should in some sense be centered on the true parameter values.
In the present section, we shall give conditions under which the distributions of
A and 6 are actually symmetric with respect to A and 6, so that in particular the
estimates are unbiased. (These conditions are related to those given by van der
Vaart (1950).

TuEOREM 2. The distréibution of the estimate A defined by (2.2) and (2.3) is
symmetric about A if either one of the following conditions hold:

(i) The distribution F defined in (2.1) is symmetric and h satisfies (3.2) and
(7.5);

(ii) the two sample sizes m and n are equal, and h satisfies (3.3) and (7.5).

Proor.

(i) By the results of Section 7, we may assume without loss of generality that
A = 0. Further, by (7.5), the distribution F may be assumed to be symmetric
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about zero. Since the random vectors (X, Y) and (—X, —Y) then have the
same distribution, A(X, Y) and A(—X, —Y) will also have the same distribu-
tion. To prove that A(X, ¥) and —A(X, Y) have the same distribution (which
is what the theorem claims), it is therefore only necessary to show that

(8.1) A(—z, —y) = —A(=, y).
This equation follows from the relations
(82) A*(—z, —y) = —A%(z,y) and A*(—z, —y) = —A(x, y).
To see for example the first of these, note that

A" (z,y) = inf {Ath(—2,y — A) < 4} = inf {A:h(z,y + A) > 4}
while

—A*(z,y) = inf {—A:h(z,y — A) > u} = inf {A:h(z,y + A) > 4.

(ii) Assume again that A = 0. Since then the vectors (X, ¥) and (Y, X)
have the same distribution, it is enough to show that

This equation is an immediate consequence of the relations
A*(y7 x) = _A**(x’ y) and A**(y, x) = —A*(Il?, y)

which follow from (3.3) and (7.5) as the corresponding relations in the proof of
(i) followed from (3.2).

COoROLLARY. If h is given by (3.1), then the distribution of A is symmetric about A
if either one of the following conditions holds:

(1) the distributions F and ¥ are symmetric

(ii) the sample sizes m and n are equal.

Proor. Since » depends only on the ranks, it satisfies (7.5). The result now
follows from Lemma 2 and Theorem 2.

The requirement in part (i) of the Corollary is a restriction on the test, which
is satisfied both for the Wilcoxon and the normal scores test. On the other hand,
the symmetry condition for F concerns an unknown distribution, and it is there-
fore much less certain whether it is satisfied in any given situation. The assump-
tion is however frequently not unreasonable if one might be willing to assume
normality except for the possibility of symmetric gross errors.

If F is not symmetric, A need no longer be either symmetric or unbiased. Con-
sider for example the case that A is the Wilcoxon statistic and that m = 1. Then
A =med (Y — X) = med Y — X,. For large n, Y is essentially equal to the
median of F, and A need clearly not be unbiased. We shall however show in the
next section that A is typically at least approximately, and in many cases exactly,
median unbiased.

Results analogous to Theorem 2 and its Corollary hold also for the one-sample
problem.
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TuroRrEM 3. The distribution of the estimate 0 defined by (2.5) and (2.6) is sym-
metric about 9 if

(1) F is symmetric about zero and h satisfies (5.2) and hence in particular if

(ii) h s given by (5.1).

Proor. The proof of (i) is exactly analogous to that of Theorem 2(i); part (ii)
follows from (i) and Lemma 3.

As in the two-sample problem, the symmetry assumption for F is frequently
not unreasonable. In the particular case of a paired comparison experiment, with
Z; = Y; — X,, it is of course guaranteed if the assignment of the two subjects
within each pair to the two treatments is performed at random.

9. Median unbiasedness. In general, when the distribution of A or 6 is not
symmetric about the true value, the estimate will also not be unbiased, that is,
its expectation will not coincide with the parameter being estimated. The esti-
mate will, however, in many cases still be median unbiased in the sense that the
median of the distribution will be equal to the true value of the parameter. This
follows from the following two lemmas, the first of which will also be used in the

succeeding sections.
LeMMA 4. For any real number a, the estimates A and 0§ satisfy the inequalities

(91) PA(X,Y —a) <uw < P{A<a = PR(X,Y — a) < 4}
and
(92) Ph(Z —a) <u} < Pld <a < PRZ — a) < .

Proor. By the definition of A*and A**; A** < a= h(z,y —a) <p=A" =< aq
and A* > a= h(z, ¥y — a) > p= A* = a. Since A* and A™ have been shown
to have continuous distributions, it follows that

(9.3) P{A*™ < g} = P{W(X,Y — a) < u}
and
(9.4) P{A* < @} = P{M(X,Y — a) = 4},

and these imply (9.1).
The proof of (9.2) is exactly analogous.

Lemma 5. Let
(9.5) Pih(X,Y) = p} =3, Pih(Z) = y} = e
Then
(9.6) }—8/2= PRz A S }+08/2
and
(9.7) F— /2= Polb = 0) <5+ ¢/2.

Proor. The inequalities (9.6) follow directly from (9.3) and (9.4).
As an immediate consequence of Lemma, 5, it is seen that A and 6§ are median
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unbiased if Po{h(X, Y) = p} = 0and Po{h(Z) = u} = 0 respectively. Examples
are the estimates based on the Wilcoxon statistics: in the two-sample problem
if m and n are both odd, in the one-sample problem if N is odd, since in both
these cases u is an impossible value of h.

Even if Py(h = p) is not zero, it will typically be small, and it then follows
from Lemma 5 that the probabilities of over- and under-estimation with the
estimates A and § will be close to %.

The fact that A and § are either exactly or approximately median unbiased is
related to their behaviour as upper or lower confidence bounds for A and 8. To
discuss this relationship for the two-sample problem (the other case is completely
analogous), consider the acceptance regions

(9.8) A(Ao) = {(z, y):h(z,y — L) < u}

for testing H(Ap):A = Ao against A > Ao on the basis of the test statistic 4. The
associated family of confidence sets is {A:h(z, y — A) < u}, so that A* is a
lower confidence bound for A at confidence level Py{h(X, Y) < u}. Analogously
A* is an upper confidence bound for A at confidence level Po{h(X, ¥) < u}.
Suppose now that A* = A™* as is the case for example when h is the Wil-
coxon statistic and m-n is odd. It then follows from (9.3) and (9.4) witha = 0
that Po{h(X, Y) = u} = 0 and hence that A = A* = A** is the lower and upper
confidence bound for A with confidence coefficient 3, based on the test statistic A.

10. Asymptotic normality. So far, we have discussed small-sample properties
of the estimates A and §; in the remaining sections, we shall be concerned with
their large-sample behaviour. For the two-sample problem, let m(N) and n(N)
for N = 1,2, ---, be a sequence of pairs of sample sizes tending to infinity in
such a way that m(N)/N — A, say, and let Ay be a sequence of values of the
parameter A. Also for the one-sample problem consider the sequence of sample
sizes N = 1, 2, --- and let » be a sequence of values of 6. In both cases, we
shall indicate the dependence of h and u on N by writing hy and ux .

TueoREM 4. Let a, ¢1, ca, + - - be real constants, and let

(101) Ay = —a/cN or Oy = —a/cN.

Let @ be the continuous distribution function of a random variable with mean zero
and unit variance, and suppose

(10.2) limyoe Pyfew(hy — pv) = u} = G((u + aB)/A)

where Py indicates that the probability is computed for the parameter values Ay or Oy
and where hN standsfor hN(Xl y 'ty Xm(N) 5 Y1 y * Yn(N)) OThzv(Zl y Tty ZN).
Then for any fized A and 0

(10.3) limpe Pa{cy(Ay — A) < a} = G(aB/A)

or

I

(10.4) limy.o Pofen(by — 0) < a} = G(aB/A).
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Proor. It is enough to give the proof for Ay, and we may in the proof let
A = 0. It follows from (9.1) that

liInPO{cNAN = a'} = hmPO{h<X1; e )XM(N);YI - c_a) e )Yn(N) - c—a> é#N}
N N,

. B
= Lm Py{h(Xy, -+, Xuan; Vi, -+, Xoan) S un) = G(%—),
and this completes the proof.
Consider now the family of test statistics h given by (3.1). It then follows
from the work of Chernoff and Savage (1958), see for example Theorem 7.1 of
Puri (1962), that under suitable regularity conditions on ¥

(10.5) Nihw(X, Y) — pal

satisfies the assumptions of Theorem 4, with @ the standard normal distribution
and with 4 and B given by

(10.6) A =21 =) l:‘[ﬁ(u) du — (‘[J(u) du)z]

and
(10.7) B =1—2) f {dJ[F (2)]/dx}dF ()

where J = ¥,

Combining this result with Theorem 4, we have

THEOREM 5. If h is given by (3.1) with ¥ satisfying the assumptions of Theorem
7.1 of Puri (1963) and if m(N)/N — A as N — o, then N*(Ay — A) has a limit-
ing normal distribution with mean zero and variance A/ B’ where A and B are given
by (10.6) and (10.7).

Consider now in particular the estimate (4.1) which is obtained from (3.1)
by taking for ¥ the rectangular distribution on (0, 1). Since then J(u) = u for
0 <u =1, wehave A> = A\(1 — \)/12 and B = A (1 — A [ fi(x) dx where f
is the density of F. The asymptotic variance of N* (A — A) in this case is there-
fore

(108) 1/[12)«1 - </f2(x)dx>2].

11. Asymptotic efficiency. In basing the estimates A and 6 on tests with desir-
able efficiency properties, it was the hope that these properties would be trans-
ferred to the estimates. That this hope is fulfilled under suitable regularity con-
ditions follows from a result of Stuart (1954). The following theorem proves it
under somewhat different assumptions.

TuEOREM 6. Let Ay and Ay (or O and 8y) be estimates of A (or 0) based on
sequences of test statistics hy and hy satisfying the assumptions of Theorem 4 for the



610 J. L. HODGES, JR. AND E. L. LEHMANN

same limiting distribution G. Then the asymptotic relative efficiency of Ay relative to
Ay (or of by relative to bx) in the sense of reciprocal ratio of asymptotic variances, s
the same as the corresponding Pitman efficiency of the two sequences of tests based
on hy and hy provided the latter exists and ey = cy =

Proor. Since G is assumed to have unit variance, it is seen from (10.3) that
the asymptotic variance of N*Ay is A4°/B* and that of N*Ay is A'?/B” so that
the asymptotic relative efficiency of the second sequence of estimates with re-
spect to the first is ARE(Ay ; Ay) = (4"*/B"*)/(A*/B?).

Consider on the other hand the power against the alternatives Ay given by
(10.1) of the sequence of tests of H:A = 0 against A < 0 with rejection region
hy < px . By (10.2), this power tends to G(aB/A). Similarly, the power of the
corresponding sequence of tests based on A" and N’ observations against the
alternatives Ay = —a’/cy tends to G(a’B’/A’). If we want the same limiting
power against the same sequence of alternatives. we must have

&/(N')t = a/N* and aB/A = a'B'/4’

and therefore N'/N = (a'/a)’® = (4"?/B'*)/(A%/B?). This completes the proof
for Ay, and that for dy is completely analogous.

It follows from this theorem (or more directly from (10.8)) that the asymp-
totic efficiency of the estimates (4.1) and (5.5) relative to the classical estimates
Y — X and Z is 126°( [ f*(x) dz)®, which in the case of normal F is 3/ ~ .955.
It is interesting to compare this value with the corresponding values for very
small N. For N = 1 and 2, we have y = Z so that the efficiency in these cases
is 1. For N = 3, fy is the median of the six quantities Z:, Z2, Zs , (Z1 + Z1)/2,
(Zy + Zs)/2, (Z» + Zs)/2. Let the ordered Z’s be denoted by Z® < Z® < z®,
Then

7% < (2" +29)/2 < 2% < (Z° + Z9)/2 < 2®
and
Z0 < (Z9 + 2®)/2 < (Z® + Z9)/2 < (2 + Z9)/2 < 2.
These inequalities show that f; is the average of Z? and (Z® + Z®)/2 so that
by = 3(2% + 22% + 29).

From a table of the covariances of normal order statistics, the efficiency of 8, is
then seen to be .979.
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