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1. Introduction. This paper is a study of a certain discrete parameter Markov
process in the interval of real numbers (0, 1]. The process is defined by choosing
an arbitrary number X, in (0, 1], specifying the distribution of a random variable
X, given X, , specifying the distribution of a random varlable X, glven X1,and
so on. Let the number X, have the binary expansion Xo = .5{”85” --- 8% -« -,
where {8”,n = 1,2 ---} is a sequence of zeros and ones. The dlstrlbutlon of a
random variable X; is determined by the joint distribution of the sequence of
digits in its binary expanslon, which we now give. Let {6.°} be a sequence of
digits in the binary expansion of X;. We attrlbute to the random digit 8" a
Bernoulli distribution with mean p, that is 8{" assumes the Va,lues 0 and 1 with
probablhtles g=1— pandp, respectlvely, o =1, weset oy = 1,k =1,

s if 882 = 0, then we give 871 the Bernoulli dlStI‘lbuthn with mean p,
lc = 1, 2, --- . The random digits {6."} are assumed to be mutually independent,
80 that their joint distribution is completed defined. The distribution of X, , given
(the binary expansion of) X, is constructed by the same procedure; thus, an
entire sequence {X,} is generated. The binary expansion of X, is written as
SMes™ .. m=1,2,--- . Itis clear that {X,} is a Markov chain with the state
space (0, 1]. An initial distribution for the chain is introduced by assigning a dis-
tribution to (the digits in the binary expansion of) X, .

In what follows, a binary expansion which terminates after a finite number of
digits 1 will always be written in its non-terminating form, i.e., with an unin-
terrupted sequence of digits 1 after a finite number of digits 0. For example, the
number .100 - - - will be written as .011 - -- . No ambiguities arise in the transi-
tion from one random variable to its successor. If X, has infinitely many digits 1,
so must X,4; by its definition; hence, if X, is written with infinitely many digits
1, so is every term in the sequence {X.,}.

In Section 2, a stationary distribution is constructed and shown to be unique.
The absolute distribution of X, converges only weakly to the stationary distri-
bution, but does not converge over every Borel set of the space (0, 1]. The strong
law of large numbers holds in a restricted form for {X.}; it is shown that
(n + 1) 270 f(X;) converges with probability 1 to the integral of / with re-
spect to the stationary distribution for every continuous f, but not for every
measurable function f.

In Section 3, the states of the chain are classified; Section 4 treats a first pas-
sage time problem; Section 5 treats an absorption problem; and Section 6 con-
tains applications to an epidemiological problem.

Received September 4, 1962.

1 Research supported in part by National Science Foundation Grant NSF-G14146 at

Columbia University.
416

&5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



A MARKOV PROCESS ON BINARY NUMBERS 417

2. The stationary distribution. The stationary distribution will now be con-
structed. Let {£, ,n = 1,2, - - -} be a sequence of independent Bernoulli random
variables with means £, = 1 — ¢",n = 1,2, - - - ,and let the random variable &
be defined as £ = D aomifn-2 " = .£1& -+ £ -+ . Let Py be the distribution of &.

TurorEM 2.1. The distribution P, is a stationary distribution for {X,}. It as-
signs probability 1 to the set R of binary numbers in (0, 1] having only a finite num-
ber of digits O; each element in R is assigned positive probability.

Proor. We show that if X, has the distribution Py, so does X; . The random
digit 6° has a Bernoulli distribution with mean p for any value of X ; the dis-
tribution of 85%; , given X, , is a Bernoulli distribution with mean p(1 — 8{”) +
8:”. Under the distribution P, , 8” has the Bernoulli distribution with mean
1 — ¢, so that by the total probability formula, 55; has the Bernoulli distribu-
tion with mean 1 — ¢**. But this implies that X, has the distribution P, so
that P, is stationary.

Let Po{A} denote the probability of the event A under the distribution P, ;
then

> Po{ X, has a 0 for its nth binary digit}
n=1
= 2L Pfo) =0} = 2¢"=¢/(1 —¢) < =,

and it follows from the Borel-Cantelli Lemma that with probability 1 85" has the
value O for only a finite number of values of n. This affirms the second assertion
of the theorem.

Let x be an element of R; there is then an integer m = 1 such that the (m — 1)st
digit in the binary expansion of z is 0, while digits from the mth on are all 1. It
is easily seen that Pof X, = 2} is a positive multiple of [[7.. (1 = ¢’), which is
a convergent infinite product. This proves that every element of R is assigned
positive probability by Py .

Let G(x) be the distribution function on the real line corresponding to Py .
Since R is dense in (0, 1], G(x) has an infinite number of discontinuities in every
open subinterval of (0, 1], and is a pure step function.

THEOREM 2.2. Let F,(x) be the absolute distribution function of X, , i.e., Fn(x) =
P{X,=z},n=1,2, --.. Then, for each x in the continuity set of G(x), the rela-
tion lim,. Fo.(x) = G(x) holds for any initial distribution of X, .

Proor. The random variable X, is of the form

(1) X,= 2 827 4 > §m.27

Jj=1 j=n+1
(n)
J

The first sum on the right side is distributed independently of X,, and §;" are
independent Bernoulli random variables with means 1 — ¢’, 7 = 1,2, -+, n;
hence, the first sum differs by at most 27" from a random variable having the
stationary distribution P, . On the other hand, the second sum is at most 27";
therefore, our theorem follows from a well-known convergence theorem ([1],
p. 254).
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TuEOREM 2.3. The distribution Py is the unique stationary distribution for {X,}.

Proor. Let P’ be any stationary distribution and G’ () the corresponding dis-
tribution function: then by Theorem 2.2, G'(z) = lim, ., P'{X,,A =z} = G(x)
for each z in the continuity set of G(z). Since the continuity set is dense, and
since G’ (z) is determined by its values on a dense set, G(x) and @ (z) must be
identical, and, therefore, Py and P’ must be the same.

Theorem 2.2. assures only the weak convergence of the absolute distribution to
Py, not convergence over every Borel set in (0, 1] for every initial distribution.
We give a counterexample to the latter. Let R’ be the complement of R, so that
R’ is the set of numbers in (0, 1] having infinitely many digits 0 and infinitely
many digits 1 in their binary expansions. Now the strong law of large numbers
implies that almost every sequence of independent repeated Bernoulli trials
results in infinitely many successes and infinitely many failures. From this we
conclude that if X, is in R’, so is X;, and, therefore, so is X, for every n = 1;
hence, if the initial distribution assigns probability 1 to R’, so does the absolute
distribution of X, for every n. On the other hand, the stationary distribution P,
assigns probability 0 to R’; therefore, the absolute distributions are all singular
with respect to the stationary one.

THEOREM 2.4. Let f(x) be any continuous function on [0, 1]; then with proba-
bility 1,

@) limyw (1 + 1>-‘§f<x,-> = [ 1@ d6t),

Sfor any initial distribution of X .

Proor. The conclusion of the theorem is known if X, has the stationary distri-
bution ([2], p. 465). To prove the theorem for any initial distribution, we show
that the limit in (2) exists and is independent of the initial distribution.

Now X, depends on the initial distribution only through the second sum in (1),
which is bounded by 27", If n is large, then (n + 1)™" D7 f(X;) varies by only
a small amount for different initial distributions since f(z) is uniformly continu-
ous and bounded; therefore, the limit exists and is the same as when the initial
distribution is the stationary one.

Theorem 2.4 is not true for every measurable function f(z) and every initial
distribution. Let f(z) be the indicator function of the set R' and let the initial
distribution assign probability 1 to R’. It follows from the discussion of the
counterexample to Theorem 2.2 that f(X,.) = 1 with probability 1 for every

n = 0, 5o that lim,. (n + 1) 7D 7 f(X;) = 1. On the other hand, f(z) is
equal to O almost everywhere with respect to P, so that [if(x) dG(z) = 0.

3. Classification of the states.

TuroreM 3.1. The sets R and R’ are closed sets of states. Every state in R’ is
transtent, and every state in R is recurrent with a finite mean recurrence time.

ProoF. The argument in Section 2 shows that X, is in R if and only if X,
is in R; hence, R and R’ are closed sets.

We shall prove that every state in R’ is transient. For a given X, in R’ consider
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the sequence of the ratios of the number of digits 0 in the binary expansions of
X 1 and X 0,

n n

> (1= a)/% (1 — 8.

T== =1

The strong law of large numbers implies that, with probability 1, the sequence
converges to ¢. The corresponding sequence of ratios for X,, and X, , form = 1,
converges to ¢" with probability 1. Since the binary expansion is unique, X, is
equal to none of the X, for j = m.

It is not hard to see that R is irreducible, so that {X,}, restricted to R, is an
irreducible Markov chain with a countable number of states; furthermore, this
chain is aperiodic. The distribution P, is the stationary distribution for this
chain; therefore, a well-known result on Markov chains asserts that each state
in R is recurrent with a finite mean recurrence time ([3], p. 356).

4. A first passage time problem. Let B, k = 1, denote the set of real num-
bers in (0, 1] having a binary expansion with the digits 0 in the first & — 1 places,
and a digit 1 in the kth place, i.e., numbers of the form .00 --- 0 1 641, d42,
- -+ . Every number in (0, 1] belongs to exactly one set B so that {Bi} forms a
decomposition of (0, 1] into mutually exclusive sets. In this section we consider
the distribution of the waiting time for the process to enter the set B;, given
that the process starts from a point of B;,j < k. Explicit forms of the generating
function and expected value of the waiting time are given.

LeMMA 4.1. Let Qu be a set in (0, 1] determined by the first M digits in the binary
expansion of its elements. Then the conditional probability

P{XllQM,XzL’QM, "'XnZQM,Xn+1€Qu|Xo=x}

depends only on the first M — 1 digits in the binary expansion of  for any n = 0°

Proor. The random digit 6177 is independent of all digits in X, except 3™
E=1.

LemMa 4.2. Let { Y%} be the process derived from {X,} by considering only the first
k digits in the expansion of each element of { X}, thatis, Y& = D 5= 8;”-27 n = 0.
Then {Y%, ,n = 0} is a Markov process.

Proor. This has the same proof as Lemima 4.1.

LemMA 4.3. For any state x in the set By, let T, denote the first passage time into
the set By11 from the state x. Then the distribution of T depends only on B but not
on .

Proor. The set Bi41 is determined by the first ¥ + 1 digits of the binary ex-
pansion so that Lemma 4.1 applies.

LemMA 4.4, Let T, denote the first passage time from (any state in the set) By, to
the set Biy1 . Let Ty denote the recurrence time of the state O for the chain Y, defined
in Lemma 4.2, that is the value N such that {Y§ = 0; Yy = 0,i=1,.--- N — 1;
Y% = 0}. Then Ty and Ty have the same distribution.

Proor. The probability that T assumes the value N is the conditional proba-
bility that there is at least one digit 1 among &, ---, 8 forn = 1,2, -- -,
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N — land 8™ = Oforj = 1,2, - - - k, given that 5\ = 0,8 = 0, --- 5 = 0,
3" = 1. The probability that T% assumes the value N is the conditional proba-
bility of the same event given that 6{” = 0, 8” = 0, - - - 6 = 0,5 = 0. But
Lemma 4.1 implies that the two conditional probabilities are independent of
8., so that they are identical.

Lemma 4.5. The first passage time from (any state in the set) B; to By, j < Fk,
1s dustributed as T + Tijp1 + -+ + Trywhere T;, ¢ = j, --- k — 1, are inde-
pendently distributed.

Proor. If X, is in B;j and Xy is in By, then there exist integers N;, 7 = j + 1,
+++k — 1, such that 0 < Njiz < Nj;2 < -+ < Ny < N, where N; is the
smallest index n for which X, is in B;. We see that N;,; — N, is distributed as
T;; we have to show the mutual independence of N,;1, Njyz — Ny, - - ,
N — Ni_;. It will be sufficient to show that N;;» — N;,; and N;,; are inde-
pendent, as the proof of the general case is similar. Now we have

P{Nju = h,Nj2s — Njt1 = m}
= P{Xisz-l-l,?:: 1, ,h— I;XhSBj+1;XiZBj+2,
1=h+1, ,h+m— 1;Xh+m€Bj+2lXo£Bj}

=f P{XigBui,i=1,-,h—1;X: £ Bns,
{XnreBj 1)

i=h—|—1,~-~,h—|—m—— ].;Xh+m€Bj+2th} dP,

where the last integration is performed with respect to the conditional distribu-
tion of X given X, . By using the Markov property, we may write the integral as

[ P(X:2Bu,i=1,-,h—1|X.
{XneBj 1)

P{X;2Bjs,i=h+1,---,h+m — 1; Xs1me B | X3} dP.
It follows from Lemma 4.3 that the second factor in the integrand is a constant
equal to
P{X;gBjia,t=h+1, -, h+m—1; XnyméeBja| Xne Bjyl
which, by the stationarity of the transition probabilities of {X,} is equal to
P{X;gBjja,t =1, ,m —1;X,eBjyu| Xoe Bjya} = P{Tj;1 = m}.

The first factor in the integrand is integrated to get the expression P{T; = h}.
TueoREM 4.1. The first passage time T, from (any state in the set) By to the set
By41 has the generating function

k—1
—1 — k (ke 4 -1
Z q"(n ) 12+n (K n+1)8n + q ( +1)/28k(1 _ 8)

(3) Fi(s) = =
1+ Z qn(n—l)/2+n(k—n+1)sn + qk(k+1)/2sk(1 _ s)_l

n=1
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and the expected value
(4) ETk — q—k(k+l)/2

The generating function of the first passage time from B;to By ,j < k, is Iz F. (s)

Proor. By Lemma 4.4, it is sufﬁclent to find the generating functlon of Ty for
the chain Y% . Let the sequence{ "} be defined as ul’ = P{Y% = 0| Y5 = 0},
n = 1; ud? = 1;let the sequence { ® be defined as f22 = P{T: = n}, n = 1;
1B = 0 and let the generating function Ux(s) and Fi(s) be defined as

(5) Uis) = 2 UPs%  Fulo) = 310"

Now u{¥ is the conditional probability that 8 = 0fors = 1,2, - - k, given that
= 0fori=1,2, - k; therefore, u{” = ¢*. We note that us® is equal to

P{§2)=0,i=1,2, k|80 =0,i=1,2 -7, K = - ()
In general, we have
u(k) — qn(n—l)/2+n(k—n+1) 1<sn<k-1
n b = =
(6) = feon n>k
The last relation unphes that limye u(k) = ¢***; application of a theorem

in the theory of recurrent events gives us (4) ([3], p. 286).
It is clear from (5) and (6) that

k—1
Uk(s) =1 + z; n(n—l)/2+n(k n+l) n + qk(k+l)/2 k(l _ 8)_1;
n=

the formula for Fi(s) follows from the known relation ([3], p. 285) Ui(s) =
[1 — Fi(s)]". The last assertion of the theorem follows from Lemma 4.5.

5. An absorption problem. Let Ay be the set of numbers in (0, 1] whose
binary expansions have digits 0 in the first N places, that is, Ay is the interval
(0, 27"]. Let Dy be the set of numbers in (0, 1] whose binary expansions have
digits 1 in the first N places, that is, Dy is the interval (1 — 27", 1]. Let Ey de-
note the event that the process {X ) enters the set Ay before entering Dy ; and
ay is defined as

ak=supuBkP{E1y|Xo=x}, k=1,2,"'N.

In this section, upper bounds are obtained for the numbers o .
TuEOREM 5.1. For a fixed N > 0,1let Cy, Ca, - - - , Cy be real numbers recursively
defined as .

Cr=qlg+p"T"
Co=qTl — pd™" — Coo(1l — ¢ = p" DI, k=2, ,N.
Then oy satisfies the inequality

(7) ak_S_IiIkC
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Proor. The following inequalities, which imply (7), will be derived:
(8) a, £ Cragsa k=1 -.--,N —1; ay = Cy.

We prove these by induction, starting with k¥ = 1. If X, is in B, , then the event
Ey can occur in two dlfferent ways: either X, isin B, i.e., 8 = 0 and 65" = 1,
or X;isin By — Dy, ie., 8{° = 1 and & = Oforsomez 3=7=N. The
former event has probablllty ¢ and the latter has probablllty at most equal to
p(1 — p"™*). These considerations lead to the inequality a; < p(1 — p" oy +
gos , and, therefore, &; < ¢(q¢ + p" )

Suppose that (8) holds for an integer Ic -1,1 S Ek—1=N—-2.1If Xpisin
By, then Ey can oceurin k + 1 mutually excluswe ways: X, 1isin By — Dy, or
X,isin By, ---, or Xy is in By . It is easily seen, as in the case k = 1, that

{XleBl — Dy | Xoe By} < p(1 = p™ %), P{XlsB | Xoe By} = pg’™ l,j = 2,

-k, P{X1eBip| Xoe By = ¢ From these follows the inequality a; =
p(l = 2" en + p2in ey +

Each number C) is evidently less than 1; hence, by (8) and the induction

hypothesis for £ — 1,

(9) aSa= - £ Chao.

From (8) and (9) we get ay < [p(l - ") + pZ,:2 q ]Ck—lak + pd" i +
¢"ary1, S0 that oy, £ g1 — pq — Cria(l — ¢" — p" )] 41 and (8) holds
for k. The inequality for ay is proved in the same way.

TuEOREM 5.2. If p > ¢°, then lim, ., max (ay, 0z, -+, ay) = 0.
Proor. Since ( 9) holds, it suffices to show that ay — 0, or Cx — 0. Since C; < 1,
we have O, < ¢"(&f + p"’_l)_l k=1, --- N.From this and the recursive relation

for Cx , the inequality .
Cv £ ¢"/11 — pd"™ = [0 = ¢ = 2"/ + )

follows. The conclusion of the theorem follows by a simple passage to the limit.
Theorem 5.2 indicates that the process is highly likely to visit Dy before Ay if
N islarge and p > ¢".

6. Applications. This paper was motivated by the study of a simple model for
the age distribution of a chronic. disease in a population. Suppose there is a
population of organisms, such that one new organism is born at each time unit,
one dies at each time unit, and each organism lives a fixed number N of time
units, At each time unit each living organism, including the one just born, has
the probability p of contracting a certain incurable disease. If a given organism
contracts the disease, then it has the disease during the remainder of its lifetime.
If it does not contract the disease, then it again has probability p of contracting
it at the next time unit, and so on until it dies. The contractions of the disease
are stocha,stically independent for the different individuals.

Let 6™, k = - N,n = 1,2, .- be the indicator of the event that the
organlsm of age k at time n has the dlsease The sequence of random variables

= > 11827 forms a Markov chain with a finite number of states. It is
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the process obtained by considering the first N digits in the binary expansion of
each element of {X,}. The first passage problem of Section 4 can be applied to
determining the distribution of the waiting time until the population is free of
disease. The absorption problem of Section 5 gives conditions under which it is
very probable that the population will consist entirely of diseased individuals at
some point before it is free of disease.

The author is indebted to Professor Herbert Robbins for the formulation of
the general mathematical problem of the age distribution of disease in a
population.
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