FUNCTIONS OF FINITE MARKOV CHAINS!

By S. W. DHARMADHIKARI
University of California, Berkeley

0. Summary. This paper came out of an attempt to solve the following general
problem: Suppose {Y, , n = 1} is a stationary process with a finite state-space J.
Under what conditions can we express it as a function of a finite Markov chain?
More precisely, when can we find a stationary Markov chain {X, , n = 1} with a
finite state-space I and a function f on I onto J such that the process {f(X,)}
has the same distribution as {Y,}? We do not lsolve the general problem here
but for mixing' processes we obtain a theorem which is the best possible in a
certain sense.

Suppose ¢ denotes a state of J and suppose s, ¢ denote finite sequences of
statesof J.If s = ¢ - -+ €, let p(s) = P[(Y1, --+, Y,) = s]. For each ¢, define
n(e) to be the largest integer n such that we can find s;,¢; (¢ =1, ---, n) such
that the matrix [|p(s.et;)| is nonsingular. Gilbert [4] has shown that if {Y,} is
a function f of a finite Markov chain {X,} and if f takes N (e) states of I into the
state e of J, then n(e) < N(e). If n(e) = N(e), then {¥,} is said to be a regular
function of a Markov chain. Thus a necessary condition for {¥,} to be a function of
a finite Markov chain is that >_n(e) is finite. It is proved here that if > _n(e) < «
and if the process {Y,} is mixing, then there exists a positive integer m* such
that for every m = m* the process {¥,mi1, n = 0} is a function of a Markov
chain with D_n(e) states. An example is constructed to show that m* cannot,
in general, be brought down to 1. Thus the whole process {Y, , n = 1} may still
not be a function of a Markov chain with ) n(e) states.

1. Introduction. Let {X, , n = 1} be a stationary Markov chain with a finite
state-space I, transition matrix M and initial distribution m. Let f be a function
on I onto some finite set J. We can assume that J = {0, 1, ---, D — 1}. Let
N (¢) states of I go into the state e of J. Then I can be conveniently represented
as{ej|j=1,---,N(e);e= 0,1, ---, D — 1}. The transition matrix can be

partitioned as
M «vv Moypa
M = 5 E )
‘ MD—],.o cev Mpypa

where M., has order N(e¢) X N(u). Finally m can be written as m =
(mo, -+, mp), where m, has N(e) elements.
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Let e, bein J, (¢ =1, ---, n). Then
(Ll) P[f(Xi) =e;t=1,-- 7"] = mequfz tee M¢n-1eneen,
where e, is the column vector with all its N (€) elements equal to unity.

Consider now a stationary process {Y, , n = 1} with state-space J. If {Y,} is
the function f of the Markov chain {X,} above, then (1.1) shows that

(1.2) P[Yy, = €; ;i = 1, ctty, n] = melMeleg ttc M‘n—ﬂneen .

Conversely, if we can find a transition matrix M and a stationary initial dis-
tribution m such that (1.2) holds, then {Y,} is a function of a finite Markov
chain.

(1.2) shows that, as far as computations of the probabilities involving the
Y-process are concerned, the nonnegativity of the matrix M does not play any
role. The term ‘“‘pseudo-Markov matrix”” will be used to denote a square matrix
whose rows add to 1. Gilbert [4] shows that starting with stationary processes
satisfying certain conditions it is possible to obtain a class of pseudo-Markov
matrices from which the probability structure of the given process can be repro-
duced through a functional approach represented by (1.2). However, in order
to admit interpretation as probabilities, the elements of I/ must be nonnegative. .
Our approach will therefore be to construct certain classes of pseudo-Markov
matrices and then try to find conditions under which the classes contain non-
negative matrices.

Blackwell and Koopmans [1] and Gilbert [4] have studied the problem of
identifying the underlying transition matrix when it is already known that the
process {Y,} is a function of a finite Markov chain. To each state ¢, Gilbert at-
tached a number n(e) which can be defined completely in terms of the process
{Y,} without any reference to an underlying Markov chain. He proved that for
a function of a finite Markov chain Y _n(e) must be finite and conjectured that
this condition is also sufficient. Martin Fox has disproved this conjecture, but
this result has not yet been published. Some sufficient conditions for {¥,} to be a
function of a finite Markov chain have been obtained by this author [2] and by
Fox [3].

In this paper we have tried to see how far one can go with the con-
dition D_n(e) < o if the process {Y,} is mixing. Section 2 studies a matrix which
was introduced by Gilbert and which is of fundamental importance in the present
work. It is shown that certain mixing conditions characterize the asymptotic
behavior of A”. The main theorem of this paper is proved in Section 3. That
this theorem is the best possible in a certain sense is exhibited by means of an
example. This example also shows that the condition ) n(e) < « is not suffi-
cient for {Y,} to be a regular function of a Markov chain. This result has been
reported by Fox [3], but our example, which involves 2 states, appears to be
simpler than his example, which uses 4 states.

2. The fundamental matrix A. Consider a stationary process {Y, ,n = 1} with
a finite state-space J = {0, 1, --- , D — 1}. ¢, u, § will denote states of J and
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s, t will denote finite sequences of statesof J.If s = & - - e, let p(s) =
P[(Yy, -+, Y,) = s]. Assume that each p(e) is positive. The empty sequence
denoted by & will satisfy p(&) = 1 and p(s@) = p(Js) = 1L
P(sy, ,8m;ti, - ,t,) will denote the m X n matrix whose (%j)th element
is p(s:et;). For every ¢, define the number n(e) to be the highest integer n such
that we can find s;, t; (¢ = 1, --- , n), such that the matrix ||p(s:et;)| is non-
singular. It will be assumed throughout this work that n(e) s finite for every e in J.
This assumption is equivalent to the finiteness of > n(e), because J is finite.
Thus for each e there exist s, tei, (¢ = 1, --+, n(e)) such that

Pe(sel y tt y Sen(e) s b, tm(e))

is nonsingular, whereas for every s and ¢, Pe(Sa, =+ , Senter » S3 ety =+ 5 bentor » 1)
is singular. Hence, for each s, there exist unique constants ae.(s),
(¢=1,---,n(e)), such that

n(€)

21 p(sele;) = ‘;an(S)p(seietej), (G=1--,n(e).

The same constants satisfy, for every ¢
n(€)

(2.2) p(set) = ; 0ei(8)P(Seiet).
Similarly there are, for every ¢, unique constants af(t), (i =1, --- ,n(e)), such
that, for every s )
n (e
(2.3) p(set) = D aX(t)p(setes).

=1

For every e and u, Write @e; uj = 0uj(Seie), (1 =1, -+ ,n(e);5 =1, -+, n(u)).
Let A., denote the n(e) X n(u) whose (7)th element is @.;,,; . Then from (2.2)

(24) Pu(su, “++ 5 Sunw 5 €) = Pe(Supsy *+* 5 Spnquots t)
= AuPc(sa, -+ 5 Sencor 5 1)-
By induction, we get
Pu(sur, " 5 Suntw ; €& = ° €n€)
= Aquelez ce AwPe(sel y "7 s Sen(e) 5 ).

Let N = > n(e) and let A denote the following N X N matrix.

Aw -+ Aopa
(26) A4 = : : .
Apao - Ap-1pa

We can partition every N X N matrix U exactly in the same way as 4 is. We
will denote by U., the submatrix of U corresponding to A, . Uei,u; Will denote the
(7j)th element of U, . Similarly a vector v of N elements will be written as
v=(vo, "+ ,VUp), Where ve = (Ver, *** , Ven(a))-

(2.5)



FUNCTIONS OF FINITE MARKOV CHAINS 1025

For future use we want equations of a slightly more general form than (2.4)
and (2.5). For s = ¢ -~ emand t = py -+ pn, we will write p(s@*t) =
P[(Yl’ Tt Ym) =98 (Ym+k+l y T Ym+k+n) = t] Using (2'4) we get

Pﬂ(sﬂl y "ty Sun(w) 5 get)
D—1

(2.7) = 5;0 Pu(8uy =+, Sunwy 5 Oet)

; A“5A56Pe(sel y 'ty Sen 3 8) = (Az)uePe(sel y °y Sente) 5 0.

By induction
Pu(su, = 5 Suniwy 3 gko_lelgkl_lfz cr engk”—le)
_ (Ako)pel(Akl)elez Cee (Ak")¢"¢Pe(3¢l sttty Sente) 3 D).

For convenience in stating certain results, we need to choose the s; in such a
way that sq = . That this can be done will follow from the following lemma
whose proof is immediate.

Lemma 2.1. Let &;, (1 =1, , k) be a basis for E, the k-dimensional Euclidean
space. Let n be an arbitrary nonzero vector of E*. Then n, together with some set of
(k — 1) &s forms a basis for E*.

In our problem we have the nonsingular matrix Pc(Sa, ', Sento ;
ter, *°° , bencey). Its rows therefore form a basis for E™°, The vector
(p(Feta), -+ , D(Telentey) ) must be nonzero. If it were zero, then (2.1) implies
that a..(&) = 0, for all <. Then (2.2) implies that p(Fet) = 0, for all ¢. Putting
¢t = &, it follows that p(e) = 0. But p(e) is assumed to be positive. Hence the
above vector is nonzero. From the lemma we therefore conclude that we can
omit some row of the matrix Pe(Se, - - , Sen(e) ; b1, * * * , Leney), r€place it by the
nonzero vector above and still keep the resulting matrix nonsingular. Thus one
of the s.; can be taken to be F. Since the ordering is immaterial, we can con-
veniently take sq = . Similarly we can take t; = &.

We now proceed to study the connection between the limiting behavior of A™
and the probability structure of the process {Y,}. We need to introduce two
matrices. F will denote the N X N matrix such that for each F., , the first column
consists of 1’s and the remaining columns vanish. S will denote the N X N
diagonal matrix such that the (#7)th element in S.. is p(s.ie). Observe that if
p(scie) = 0, then the ¢th row of the matrix P.(Sa, <+, Sente) ; bery *** 5 ben(e))
vanishes. But this matrix is nonsingular. Thus each p(s..e) > 0. This implies
that S is nonsingular.

LemMma 2.2.

(i) p(sF"t) converges as n — o« for every s and t if, and only if, p(scieS " uty;)
converges as n — , for every e, u, ¢ and j.

(i) p(sgd™) — p(s)-p(t) as n — o, for every s and t if, and only if,
D(seie D "uty;) — P(8eie) p(utus) as n — o for every e, u, © and j.

Proor. The “only if”’ parts of both (i) and (ii) are immediate. For the “if”

(2.8)
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parts, observe that there is nothing to prove if either s or ¢ or both are empty.
So let s and ¢ be both nonempty. We can then write s = s’eand t = ut for some
s, t, eand u.
(i) Let p(seie@ "utui) converge as n —  for every e, u, ¢ and j. Then from
(2.2)
. n(e€)
(2.9) P(s@"uly) = p(s'e@ utus) = 2 Gei(8)P(SeieD ulyi),

t=1

which converges because of the hypothesis. Now using (2.3) we have
n (B) .
(2.10) p(s@"t) = p(s'eB"ut’) = ,-;': ai (£ )p(s e "ubus),

which converges because (2.9) does. This proves (i).
(ii) Let p(scieD"uty;) — P(sei€) -p(utyj) as n — =, for every e, u, ¢ and j.
Then (2.9) implies

nie)

(s "utu;) — p(utus) 'Z_l aei(sl)p(seif) = p(sle) P (uitus) -
Then (2.10) gives
n(B)
p(s@"t) — p(s) ,Z=:1 a()p(uty) = p(s)-p(ut’) = p(s)-p(t).

This proves (i) and completes the proof of the lemma.
TrEOREM 2.1.
(i) A™ converges as n — o« if, and only if p(sF"t) converges as n — « for

every s and t.
(ii) A™ — SF as n — « if and only o, p(s@™t) — p(s)-p(t) asn — « for

every s and t.
Proor. Let P be the N X N matrix such that
Peu = Pe(sel, e ,sen(e);td; tet ,ten(e))) if e= My
= 0, if €7 p.

The choice of the s.; and {,; implies that P is nonsingular. Using (2.4) whenever
necessary we get

(AP)e = ; APy = AgPu = APu(suy -+ 5 Sunw sluny, © 0y tun(u))

= Pe(sel y * "y Sen(e) s Mbaay 0y ut,m(,‘)).

(211) (A’P)a = ; As(AP)y = 28: AaPs(ss1y -+ 5 Stne 3 Bbat s =+ * 5 Hhunw)
= ; P.(sa, ", Sente) Outur, - ° 0 5ﬂtlm(#))

= Pe(sel y s Sen(e) ,@Mtul y " gl‘tﬂﬂ(ﬂ))°
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In general,
(A"P)e = P(sa, -+, Senter 5 B Wb+ 5 2 " bun)-
Since P is nonsingular,
A" converges < A"P converges;
< (A"P).. converges for each € and u;
< p(seied "uty;) converges for each e, u, 7 and 7;
< p(sI"t) converges for every s and ¢;

where the last step follows from Lemma 2.2. This proves (i).
Since S, and P, vanish for e & u,

p(sel 6) 0---0
(SFP)ey = See Feu Py = : : Pu(sur, v 5 Suntwy 5 but s =+ 5 buna)-

(Sentey €) 0-+-0

Hence the (47)th term in (SFP). is p(sese)p(uty;), using the fact that s, = .
Thus

A" — SF o (A"P)q — (SFP) ; for every € and u;
© p(scied "utyj) — p(Seie)p(uty;), for every e, p, 7 and 7;
= p(sI"t) — p(s)p(t), for every s and ¢;

where the last step again follows by Lemma, 2.2. This completes the proof of the
theorem.

3. A theorem for mixing processes. We start with a definition of ‘“mixing.”

DEFINITION. The process {Y,} is said to be mixing if for every s and f,
p(s@"t) = p(s)-p(t) asn — . '

Thus part (ii) of Theorem 2.1 says that A" — SF if, and only if, the process is
mixing. The importance of the matrix A is exhibited by the following lemma.
The lemma, is essentially contained in Theorem 2 of Gilbert [4]. But since it con-
tains the crux of the arguments of this paper, its proof will also be given. Recall
that N = > n(e).

Lemma 3.1.

I. Let U be an N X N nonsingular matrix satisfying

Q) Uu=0 4 e=u and
(1) D00P Ueie; = p(Sere), for every e and fori = 1, - -+, n(e).
Let M = UAU. Then

(a) M s a pseudo-Markov matriz; that is, every row of M adds up to 1;

(b) #f ve 1s the first row of Uee and if v = (vo, - - - , Up-1), then v is a stationary
inatial distribution for M ; that is, vM = v;

(3.1) (¢) P(uer -+ ene) = VuMuMeye, -+ Meyeee s

where e. 18 the n(e) X 1 matrix consisting of 1’s.
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II. Conversely, let M be a pseudo-Markov matriz of order N and let v be a station-
ary initial distribution for M such that (c) holds. Then there is a nonsingular U such
that (i) and (ii) are satisfied, v. is the first row of U and M = UAU.

Proor. (I) will be proved first. It is clear that

My = U:elAqumn ”eUe—el = (1, O, Tt 0)7
Uwes = Pu(8a, *+ , Suniwy 5 &), and € = U;:Pu(sul y s Sunte 3 ).
Thus
Xn: M e, = U:el Z AqPu(suy -+, Suntwy 5 &)
M

Ue_el Z Pe(sel s * sy Sente) 5 I-l) [See (2.4:)]
M

= Ue—eIPe(sely c0cy Sen(e) ,g) = €e,

which proves (a). Observe that Y .evMe = [2 (1,0, -+, 0)A]U,, . Since
sa = &, the general term in the bracketed matrix is

Zeaw‘(é) = a;(J) =1 if j=1
o Z0 if g1
Thus X v Mo = (1,0, - -+, 0) Uy, = v, , which proves (b). Finally
WMy, + -+ Mepeee = (1,0, -+, 0) Ay, -+ ApePe(8a, 4 Sencor 5 &)
= (1,0 <, 0)Pu(Sur, ", Suny ; € * * * €n€E)
= p(ue - -+ ere), (since su = ).

This proves (c¢) and completes the proof of I.

To prove I, let ¢e(F) = ve,re(F) = ecandfors = ¢ --- e,and t = u1 - - pa,
let ge(s) = veMeyey - Meye, and ru(8) = Myy, « -+ My,_ pu, - Let Q. be the
n(e) X n(e) matrix whose 7th row is g.(s.;) and let R be the n(e) X n(e) matrix
whose jth column is 7,(¢,;). Then, since (c¢) holds,

P(sa, "y 8em@ sta, ) la) = QeRe.
This shows that @. and R, are nonsingular. Again, since (c) holds,
QMoRy = Pe(sa, =+, Sence) 5 Mlury =+ 5 blunw)
= AalPu(su, * 5 Sun@w s by 0 binw) = AaQuly .

Thus Mo = Q' A0Q, -

Let U = Q. and let U be the direct sum of the U. . Then (i) is satisfied.
Since q.(s)ec = p(se), it follows that (ii) is satisfied. The first row of U, is
¢.(&) = v.. Finally it is clear that M = U "AU. This completes the proof of
the lemma.

Comparing (3.1) with (1.2) we see that if we can find a matrix U, such that
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the first row of each U.. is nonnegative and such that M = U AU is non-
negative, then we would be able to say that {Y,} is a function of a Markov chain
with X n(e) states. That this is in general impossible will be shown later by
means of an example. The situation is the same even if it is assumed that the
process is mixing. It is, however, of interest to find out how far we can go for
processes which are mixing. First we state a lemma which follows immediately
from Lemma 3.1.
LemMma 3.2. Let U, M, v and e. be the same as in part I of Lemma 3.1. Then

(32) p(l‘gko_lelgkl_lez te engk"—le) = vM(Mko)uel(Mkl)em e (Mk")eneee .

Lemma 3.1 says that v is a stationary initial distribution for M. The next
lemma gives a sufficient condition for » to be the only such distribution.

Lemma 3.3. Let U, M, v be as in Lemma 3.1. Let W be an N X N matriz all
of whose rows are equal to w. If M — W, then w = v.

Proor. Observe that sq = & implies that the elements of v. add to p(e).
Hence the elements of v add to 1. Therefore vM = v @ oM™ = v =W = v &
w = 0.

This lemma gives us the only matrix we can obtain as a limit of M" if we want
all the limiting rows to be identical. The next lemma gives necessary and sufficient
conditions that this should happen. We recall that (a) S denotes the N X N
diagonal matrix such that the (¢7)th term in S. is p(se:€); (b) S is nonsingular;
(¢) F denotes the N X N matrix such that for each F., , the first column consists
of 1’s and the remaining columns vanish.

Lemma 3.4. Let U, M, v be as in Lemma 3.1. Let V be the N X N matriz all
of whose rows are equal to v. Then M™ — V if, and only f, the process is mizing.

Proor. U can be written as U = SW, where

(a) Wa=0,if e &= p;

(b) each row of W adds to 1;

(e) W is nonsingular.

(b) and (c) imply that WF = F = W™'F. From Theorem 2.1,

The process is mixing < A" — SF;
© M"— U'SFU = W'FU = FU;
< for every e and u;
(M") o = FoUui = (0, ==+, 9)';
e M-V,

which proves the lemma.
We are now ready to state the main theorem of this paper. Let I be a set of
N = D n(e) points which can be conveniently enumerated as

{eg|i=1--,n(c),e=0,--,D—1}.
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Let f be the function on I onto J defined by

(3.3) f(ed) = e

TrEOREM 3.1. Let { Y, , n = 1} be a stationary process with a finite state-space J.
Let D n(e) < o and let the process be mizing. Let I be a set of N = D n(e)
elements and f the function on I onto J defined by (3.3). Then there exists a positive
integer m* such that for every m = m*, the process {Ypmy1, n = O} is the function
f of a stationary Markov chain with state-space I.

Proor. Let U, M, v, V and e, be as in Lemmas 3.1 and 3.4, with the additional
restriction that each entry of each v, is positive.

(a) Let M™ = 0 and let {Z,, n = 1} be a stationary Markov chain with
state-space I, transition matrix M ™ and initial distribution v. Then, using Lemma
3.2, we have

P[f(Zl): ce ,.f(Zn+2)) = ue -, 5n€] = vn(Mm)uq te (Mm)eneee
= p(uZ" e - B e)
= P[(Yl ) Y'm+1 y "y Y(n+l)m+l) = ue - ene]-

That is {f(Z.), n = 1} has the same distribution as {Ypm+1, n = 0}.
(b) Sinee {Y,} is mixing, Lemma 3.4 implies that M " — V, which has all its
entries positive. Therefore there is a positive integer m* such that for every
m = m”" each entry of M™ is nonnegative. The theorem now follows from (a).
The rest of this section will be devoted to showing that the above theorem is
the best possible in a certain sense. Precisely, we intend to show by means of an
example that under the conditions imposed the whole process {Y,} may still not
be a function of a Markov chain with ) n(e) states—that is, a regular function
of a Markov chain. Using Lemma 3.1 we see that it will be enough to show that
no matter how we choose U satisfying conditions (i) and (ii), M = U AU
will have at least one negative entry. Because U, = 0 for ¢ # u, it will be
enough to exhibit that, for some ¢, A cannot be similar to a nonnegative matrix.
Since similar matrices have the same trace, it will suffice to construct a process
for which the trace of some A.. is strictly negative. We proceed to do this now.

Consider the pseudo-Markov matrix

M 0 0 1—N
vl O —N 0 14+ N
Il 0 —Ns 14+ ’

=N, c(Q4N), —c(l4+N) M+cs—N)

with the stationary initial distribution (.5, ¢ X .5, —¢ X .5, .5). Let us number
the states as 01, 02, 03 and 11. Let f be the function defined by f(0:) = 0,
(¢# = 1,2, 3) and f(11) = 1. Then we will get a 2-state function process for
which we can compute the pseudo-probabilities using (1.5). These will satisfy
all the consistency relations like p(00) + p(01) = p(0), because the rows of M
add to 1, as also does the stationary distribution. We will therefore get a proper
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process as soon as we ensure that all the pseudo-probabilities are nonnegative.
Let ¢" denote the sequence of n ¢’s in succession and let €€ = &, by convention.
Since only one state of the underlying process goes into the state 1 of the func-
tion process, it is enough to ensure that pseudo-probabilities of the form p(0"),
p(0"1), p(1™) and p(10™1) are nonnegative. We have

p(0") = (BT 4+ (=" — M),
p(0"1) = (B)NT(L = N) + e(—=1)" AL+ ) — ML+ M)},
p(1") = (B)M + (s — M)]"7,
p(10"1) = p(0"1) — p(0™"'1)
= (BNT( = M)" + (=D "IN + €M) = N7+ W)L

These expressions show that the pseudo-probabilities will come out nonnegative
if we choose the \’s and ¢ in such a way that

0<M<1,(E=123); M>\N,(6E=223); 0<c<lI;
MAtces—2) >0, (A=MN>cl+N)GE=23k=12).

It is clear that Conditions (3.4) can be satisfied. For example, let \; = .5, \; = 4,
As = .3and ¢ = .06. Then \; + ¢c(As — A2) = 494, (1 — N\) = 5, ¢(1 + \) =
084, c(1 4+ Ag) = .078, (1 — \)* = .25, ¢(1 + A)® = .1176, ¢(1 + \s)® = .1014.
The Conditions (3.4) are thus fulfilled. The values of p(0") forn =1, ---,5
are, respectively, .5, .247, .1271, .06139 and .031775. Numerical computations give
the determinant of Po( ¥, 0, 00; &, 0, 00) as 2.3328 X 10-%, which is nonzero.
Hence n(0) = 3 and n(1) = 1. Now M can be partitioned as

(M 00 M 01)

M 10 M 11, ’

where My has order 3 X 3. From part II of Lemma 3.1 we know that for the
2-state function process obtained above, Ao must be similar to Mg . But the
trace of My is —.2, which is negative. Hence Ay cannot be similar to a non-
negative matrix. What we have done so far shows that the condition > n(e) < o
does not characterize regular functions of Markov chains.

In order to complete the proof that Theorem 3.1 is the best possible in the
sense described before, we only need to show that the process constructed above is
mixing. This will follow from the following lemma whose proof is straightforward.

Lemma 3.5. Let B be a pseudo-Markov matrix of order n. Let 1, \;,
(¢ = 2, ---, n) be the characteristic roots of B. Let [\;| < 1, (¢ = 2, -+, n).
Then B™ — W, where each row of W equals the same vector w.

For the numerical example constructed above computations show that all the
characteristic roots of M, other than 1, lie strictly within the unit circle. The

conclusion of Lemma 3.5, together with Lemmas 3.3 and 3.4, then shows that the
process is mixing. This shows that all the assumptions of Theorem 3.1 are satis-

I

(3.4)
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fied and Ag is still not similar to a nonnegative matrix. Under the conditions
imposed, the m* given by Theorem 3.1 cannot therefore be brought down to 1 in
general. In this sense the theorem is therefore the best possible.
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