ON THE ASYMPTOTIC BEHAVIOR OF BAYES’ ESTIMATES IN THE
DISCRETE CASE!

By Davip A. FREEDMAN

University of California, Berkeley

1. Summary. Doob (1949) obtained a very general result on the consistency
of Bayes’ estimates. Loosely, if any consistent estimates are available, then the
Bayes’ estimates are consistent for almost all values of the parameter under
the prior measure. If the parameter is thought of as being selected by nature
through a random mechanism whose probability law is known, Doob’s result
is completely satisfactory. On the other hand, in some circumstances it is neces-
sary to identify the exceptional null set. For example, if the parameter is thought
of as fixed but unknown, and the prior measure is chosen as a convenient way
to calculate estimates, it is important to know for which null set the method
fails. In particular, it is desirable to choose the prior so that the null set is in
fact empty.

The problem is very delicate; considerable work [8], [9], [12] has been done on
it recently, in quite general contexts and under severe regularity assumptions.
It might therefore be of interest to discuss the simplest possible case, that of
independent, identically distributed, discrete observations, in some detail. This
will be done in Sections 3 and 4 when the observations take a finite set of possible
values. Under this assumption, Section 3 shows that the posterior probability
converges to point mass at the true parameter value among almost all sample
sequences (for short, the posterior is consistent; see Definition 1) exactly for
parameter values in the topological carrier of the prior. In Section 4, the asymp-
totic normality of the posterior is shown to follow from a local smoothness as-
sumption about the prior.

In both sections, results are obtained for priors which admit the possibility
of an infinite number of states. The results of these sections are not entirely
new; see pp. 333 ff. of [7], pp. 224 ff. of [10], [11]. They have not appeared in
the literature, to the best of our knowledge, in a form as precise as Theorems 1,
3, 4. Theorem 2 is essentially the relevant special case of Theorem 7.4 of Schwartz
(1961).

In Sections 5 and 6, the case of a countable number of possible values is
treated. We believe the results to be new. Here the general problem appears,
because priors which assign positive mass near the true parameter value may
lead to ridiculous estimates. The results of Section 3 (let alone 4) are false. In
fact, Theorem 5 of Section 5 gives the following construction. Suppose that under
the true parameter value the observations take an infinite number of values
with positive probability. Then given any spurious (sub-)stochastic probability
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distribution, it is possible to find a prior assigning positive mass to any neigh-
borhood of the true parameter value, but leading to a posterior probability which
converges for almost all sample sequences to point mass at the spurious distribu-
tion. Indeed, there is a prior assigning positive mass to every open set of pa-
rameters, for which the posterior is consistent only at a set of parameters of the
first category.

To some extent, this happens because at any stage information about a finite
number of states only is available, but on the basis of this evidence, conclusions
must be drawn about all states. If the prior measure has a serious prejudice
about the shape of the tails, disaster ensues. In Section 6, it is shown that a
simple condition on the prior measure (which serves to limit this prejudice)
ensures the consistency of the posterior.

Prior probabilities leading to posterior distributions consistent at all and
asymptotically normal at essentially all (see Remark 3, Section 3) parameter
values are constructed. Section 5 is independent of Sections 3 and 4; Section 6
is not. Section 6 overlaps to some extent with unpublished work of Kiefer and
Wolfowitz; it has been extended in certain directions by Fabius (1963).

The results of this paper were announced in [5]; some related work for con-
tinuous state space is described in [3]. It is a pleasure to thank two very helpful
referees: whatever expository merit Section 5 has is due to them and to L. J.
Savage.

2. Notations and definitions. We use the following notation throughout the
paper. The letter 2 denotes an abstract space and F a o-field of subsets of Q. The
letter I denotes a countable set and {X,:n = 1,2, - - -} is a sequence of I-valued
random variables (“the observations”) on (2, ). Let S be the space of functions
from I to [0, 1], in the product topology; S is compact and metrizable. Let
L ={x|xeSand X ir\(() < 1}, in the relative topology. Then L is compact.
Let “the parameter space” A = {\ | A e L and Qs A () = 1}. If I is finite then
A is closed and nowhere dense in L; but if [ is infinite then A is a dense G in L,
so L — A is of the first category. Suppose that for each A ¢ A there is a proba-
bility P, on & under which the {X,} are independent with common distribution
Piw|weQ, Xo(w) = 4} = N([), 2el. We define Py only for A ¢ A. Let u be a
probability (‘“the prior”’) on the Borel o-field ® of L. For technical reasons, it is
convenient to allow u(A) < 1. If 6 ¢ A is the ‘“true parameter value,” we will
often project u onto the subspace spanned by A — {A(Z):6(Z) > 0}. Even if
w(A) = 1, the projection of 4 may assign positive mass to sub-stochastic vectors.
The reader should draw a picture for an I of three points and a 6 vanishing at
one of them. Let C(u), the topological carrier of u, be the smallest compact
subset of L of u-measure 1, so that A ¢ C'(u) if and only if A ¢ L and every
L-neighborhood of A has positive u-measure.

The “posterior distribution” u,,, of A given X; (w) - -+ X, (w) is defined by

1) ald) = [ [IDexwa /[ ﬁx[&(@h(dx)]
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for A ¢ ® and nonzero denominator. When defined, u,,, is a probability on &
dominated by u. If 6 & C (), or more generally if 6(:) > 0 implies [ A (7)u (dA)
> 0, then u,, is defined a.s. [Pg]. If 6(z) > 0 and fL A@)u(d\) = 0 for some
2 & I, then for Pe-almost all w, the denominator in (1) is eventually 0.

If the loss L (), 0) caused by estimating A when the true parameter value is 6
satisfies L(\, ) = Y wra(G)]AN(E) — 6()]° where a ¢ A is fixed, then the Bayes’
estimate B, () of 4 is

(2) NOR RXGRCN)

The weak * topology is assigned to the space of probabilities on ®, meaning
un — u if and only if f f dun — f 1 f du for each continuous f on L. Point mass
at A\ is written 6, . The u,-measure of each L-neighborhood of A converges to 1
if and only if u, — & .

Let n;(w) be the number of #’s among [X;(w), 1 £ j < n], so that

I @1 = T 6™,

Here and throughout we understand that 0° = 1; an empty sum is 0; an empty
product is 1. :

DErINITION 1. If u 7s a probability on B and 0 & A, we say (0, u) s consistent
if and only if pa,. — 8 for Pe-almost all w.

If (8, u) is consistent, plainly lim,.«B..(Z) = 6(z) for Ps-almost all w.

We will summarize here the main facts known about consistency, for finite I
and priors u concentrated in A. Theorem 2 of Section 3 implies: (6, 1) is consistent
exactly for 6 in the topological carrier of u. Doob (1949) and a standard argu-
ment gives the weaker result: (6, u) is consistent for u-almost all § ¢ A. Blackwell
and Dubins (1962) imply, via a different standard argument, a result which is
not comparable: if u and i are equivalent probabilities on ® concentrated in A,
then for u-almost all A ¢ A, the variation norm of u,,, — fin,. converges to 0 asn
tends to « for P,-almost all w.

For countable I, the results of Doob and of Blackwell-Dubins still hold. Ac-
cording to Remark 6 of Section 5, Doob’s exceptional null set may be much
larger than the largest open set of prior probability 0.

Miscellaneous conventions. Unless noted, N ¢ L and A (z) is its ¢th coordinate,
1 & I. The letter j indexes the random variable X ; , and ranges from 1 to n, the
number of observations on hand. The letter 6 is reserved for points of A. Loga-
rithms to base e are written log; logarithms to base b are written logs .
If{Z,:1 = m < «} are random variables on (2, %, P) and {an : 1 £ m < «}
are real numbers, phrases like “Z,, is bounded by a. eventually a.s. [P]” mean:
there is a P-null set F ¢F and a natural number valued random variable r
defined on @ — E such that if weQ — E and m = 7(w) then Z, (v) = an .

If u is a measure on & and ¢ is a measurable vector function on (L, ®), phrases
like “the distribution of ¢ under u” signify the measure u¢ .
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3. Bayes’ estimates are consistent. The principal result of this section is

THEOREM 1. Suppose 0 ¢ A and {1 | 6(Z) > 0} s finite. Let u be a probability
on ®. Then (0, u) is consistent if and only if 6 is in the topological carrier of .

Proor. The “only if”’ part is clear from discussion of (1). If the {u..} are
defined a.s. [Ps] they and all their subsequential limits concentrate on C'(u).
If 2 C(u) either {u,.} is eventually undefined a.s. [Pg] or {u...; is always de-
fined a.s. [Ps] but & is not a limit point of the sequence. The other implication is
nontrivial, and will be deduced from Theorem 2.

Let A and p be in L. The entropy of M\ relative to p is H(\ |p) =
— D ierp (@) log A (2), withlog0 = —w and0 - — = 0. Thus0 < H(\ | p) <
o, and

3) H(ah + oo | p) £ asH (M [ p) + aH (N2 | D)

for ey and o, nonnegative, &1 + as = 1; A1, A2, p in L. Moreover, if p ¢ L and
p(7) > 0 for some ¢, there is a unique positive ¢ with ¢p ¢ A; then

(4) H(\|p) =Z H(ep|p).

These facts are well known and follow easily from Jensen’s inequality and the
concavity of the logarithm function. We write H (6 | 8) = H (9).

THEOREM 2. Let 0 ¢ A have H(0) < . Let u be a probability on ® with the
property that for any neighborhood U of 6 in L and any 8§ > 0, p{A | A e U and
H(\|0) < H(@®) + 8 > 0. Then (6, u) s consistent.

ReMark. By example, the condition is not necessary.

Proor. Let I, = {¢|<el and 6(z) > 0}. Let Sy, Ly, Ay, B4 be defined
as before with I, in place of I. Let » and »,, be the projections of u and ga,.
on B, . We still have

pond) = [ [ TDNxb@ / [ T e ]
A j=1 Ly j=1

for A ¢ B, . Enumerate I so that if I, is finite then I, = {1, 2, ---, N}, and
if I, is infinite then I, = {1, 2, ---}. In the second case, we choose N large.
Precisely, let 3 be positive but less than 1. Write 7(k) = 2 5441 6(7). Choose
N so large that

@) rVN) < 49,

(i) 29 00) log 6() < —H(0) + 6.

Define z* = 2,2 = 0; = 0,z < 0 and let

= X 65N — 6())
(5) V= {)\ [Ne Ly and ; OESOREIO, < 165}.

The crucial fact to establish is
6) liMpaw vne (V) =1 a.s. [P,
which is equivalent to

) limyaew vnw@iy — V)/vme (V) =0 a.s. [Po).
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By discarding a Ps-null set, suppose limy.. # 'n:(w) = 6(), 1 < ¢ < N for
all w. We will begin the proof of (7) by establishing

(8) SUPAeL,—v Zl: 2" ni(w) logA(0) < —H(6) — 25
for large enough n; compare (2.12) on page 892 of Kiefer and Wolfowitz (1956),
an inequality they attribute to Wald. Let dV be the boundary of V in Ly .
The left side of (8) is bounded by the left side of

N N
9) suprer,—v > 0 ni(w) log A(E) = maxngy D0 ni(w) log A (7),

=1 =1

an equality holding for large n. To see this, consider the points 6y and 6, of
A, defined as

On(@) = [1 — r(N)700), 1<i{=<N,
= 0, elsewhere;
N
bnw(@) = n"ni(w) / 20 n7ni(w), 1<i=<N,
7=1

= 0, elsewhere.

Now OyeV by (i), so for n sufficiently large, 6,., ¢ V. But the function
A— 2.0 n ni(w) log A (2) is concave by (3) and has amaximum at 6., by (4).
This proves (9) by an easy argument. The right side of (9) may be estimated
using the obvious inequality: log (1 + z) < z — 3(1 + z)™%? valid for
x 2 —1. Indeed, if A €9V,

il 0(7) log A(z) — i 6(7) log 6(7)

2

= 2003 log [1 4 6(:) 7 (A(5) — 6(:))]

i=1

8()N(E) — ()]
< 230 - Zo(z) Z B O = 6T < 4

the first two terms together being bounded by r (N) < 44, and the last being
exactly 86 since A £ dV. Using Condition (ii),

|Mz

N
(10) maxyoy 2, 0() logA(5) < —H (6) — 3.
=1
It is routine to deduce from (10) that eventually
N
maxaey 21 ni(w) log N(G) < —H (8) — 28,
=1

proving (8).
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From (8) follows
(11) fL L, :1 MX;)v(dN) < exp {—n [H(0) + 26]}.

Let Vo = {N|XeV and H(A|0) < H(9) + 8. Then »(V,) > 0 by hy-
pothesis. For any particular A &€ V,, the strong law implies

(12) lim infp 7 'Y log N[X;(w)] > —H(®6) — &
j=1

for Ps-almost all w. The exceptional Pe-null subset of @ depends, of course, on A.
By Fubini’s theorem, there is a Py-null set E ¢ F such that if w2 £ then (12)
holds for »-almost all A ¢ V. Here the exceptional »-null subset of L, depends
on w. By Fatou’s lemma,

(13) liminf,e , [ﬁ A(Xj)] exp {n[H(8) + 8]} v(d\) > »(Vy) as.[Pol,

Jj=1

s0 eventually a.s. [Py

(14) [ TINX)(@0) 2 5(V0) exp (=nH©) + 8],
0 7=

A fortiori, (14) holds with V, replaced by V on the left side; comparing this with

(11) leads to

(15) vna(Lr = V)/vna(V) = (Vo)™ exp (—né)

eventually a.s. [Ps], which implies (7). This completes the proof of (6).

Now let 6, — 0 as k — . Apply this argument with § = &, tosecure an L.-
neighborhood V, of 6% defined by (5) with 6 = & , and a Py-null set Ej such that
w# B implies liMpoe vmo (Vi) = 1. For weg Uiy Er, limpaw 2o (Vi) = 1
for all k. If X e L, let A" be its restriction to I, . Since {Vi:1 < k < «} isa
basis for the L ,-neighborhoods of 6%, therefore v, — 8+ . If I — I is empty,
the proof terminates. Otherwise, this standard reasoning is needed.

Let J be a finite subset of I disjoint from I, ; V is an L.-neighborhood of
6t and 6 > 0. Then W = {\ |\ ¢ L, maxi; A(¢) < 6, \" ¢ V} is an L-neighbor-
hood of 8, and by varying J, V, § we get a basis for the L-neighborhoods of 6.
If o — 8o+ then pne (W) = vawfN i NeLy ;A e Vi Dar M) > 1 — 38} — 1,
SO fin,o (W) — 1, and pn,. — 8 . This completes the proof of Theorem 2.

Remarxk 1. For future use, if (15) holds for V, it holds for any superset of
V—since expanding V decreases the numerator and increases the denominator
of the left side. But (15) has been established for a countable basis of the L.-
neighborhood system at 6% (with & depending on V). Hence, for » outside a
Py-null set, for any L. -neighborhood V of 6% there is a 6 > 0 depending on V
but not w for which (15) holds eventually.

Proor or Turorem 1. If I, is finite then A — H (A | 8) is a continuous func-
tion from L to [0, ] and H () < <. Thus 6 £ C' (u) implies the condition of
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Theorem 2. More careful arguing shows that .. — & exactly for w where
n i (w) = 0(), el

RemaArk 2. If I, is infinite, then A — H(\|6) is identically -+ when
H(0) = «.When H(f) < o, it is lower semi-continuous but not continuous,
being + © on a dense (5. This function p — H (p) on L is also lower semi-
continuous but not continuous, being 4 « on a dense G; .

4. The posterior is asymptotically normal. In this section, we assume (i)
6 e A and I, is finite, enumerated as {1 --- N}. We suppose (ii) 6 is nonde-
generate, implying N = 2. We use the notation of Section 3, as well as the
symbols A; and Ly , which are A and L of Section 2 with I = {1 --- k}. Thus
Ly = Ly.If Ne L or Ly then A« is its restriction to {1 --- N — 1}. Let R* be
k-dimensional Euclidean space; y ¢ R* has components y; - - - yr . Define
s(y) = 205 ys and h(y) = 3205 93/0G) + 3s(y)’/6(N) for ye R
Abbreviate the function A — {n’A(Z) — n 'n, (@], 1 =4¢= N — 1} from L,
Ly_ior Ly to R as¢,,, . Wecall »(Ay) = 1 Case A and v(Ay) < 1 Case B.
In Case A, we assume (iii) the distribution of A — A* under x has a continuous
positive density f (i.e., with respect to Lebesgue measure) in an Ly_;-neighbor-
hood T of 6%. In Case B, we assume (iv) in an Ly-neighborhood T of 6% the
distribution of A — A* under u has a density f which is positive and continuous
at 67. The results of this section are:

TuEOREM 3. In Case A, for Py-almost all w, the distribution of ¢n,. under uy ., ,
when restricted to any fixed compact subset of R, is eventually absolutely con-
tinuous with continuous positive density converging uniformly to

(16) y—[0(1) - 6@V @)V exp [—h(y)].

In Case B, for Pgalmost all w, the distribution of ¢n,. under u.. converges in
variation norm to the distribution with density (16).

Remark 3. If (ii) does not hold, meaning 6(1) = 1, suppose the distribution
of A — A (1) under u has a continuous positive density at 1. If n; (w) = n for all
n, the asymptotic distribution of X — n[l — \(1)] under u,, is exponential.
See the proof of Corollary 2.

ReMARK 4. In Case B, there is no regularity condition on the u-distribution
of N — A guaranteeing the asymptotic normality of ¢, under y,,. For any
probability distribution on Ly_; which has a continuous, positive density in a
neighborhood of 8x, there is a probability u on & giving A — A* this distribution,
and assigning positive mass to any L-neighborhood of 6; but for which ¢,
has a limiting distribution under u.,, for Ps-almost no w.

The Bayes’ estimates B.,,(¢) were defined by Equation (2).

THEOREM 4. For Py-almost all wand 1 < ¢ £ N, limyee 2}[Bn .0 (6) — 1 '0i (w)] =
0.

CorOLLARY 1. Theorem 3 continues to hold with ¢, (\) defined as {n%[)\ () —

CoROLLARY 2. Along almost all sample sequences, the posterior distribution,
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when centered at its mean and rescaled by n%, converges to a limiting normal dis-
tribution; this is precisely the limiting joint distribution of the maximum likeli-
hood estimates, when centered at its mean and rescaled by nt.

This striking and mysterious fact is true in a wide variety of situations; see
LeCam (1957). Of course, the Bayes’ estimates and the maximum likelihood
estimates have the same asymptotic distribution under Py by Theorem 4.

The proofs of these results are computational; we hope that the notation to
be introduced here will simplify the reading. Let M be the closed, solid sphere of
radius m about the origin in RV ". Define

f Nl A G)™ @ (d0)

N 1=

ba,w
. N
tne =1 "V OT] InMa (0) ]
=1

dnw =[(n + N — 1)!]‘111 [ni(w)!]
Mn,w = {)\ l NeLyy ;¢’n,w(>\) € M}

Una (¥) = 07w (@) — 078 (y)
@) = = X n:(w) log [1 + nni(@) "y

—ny (0) log [1 — nhny (@) s (y)]
fow®@) = fIn 7 ni(w) + 0y, 1S { <N — 1] CaseA

Jre(;2) = f[n_lni(w) + n_éyi; 1=<=7=N —1;2] CaseB,

with f(\) = O0forAeLy — T.
Let ¢ be a positive number so small that
(i) |z| < eimplieslog (1 + z) < x — 27,
() if V={ANNeLva; N@) — 0@)] <261 =¢=N — 1}
then V. T N {A|XN e Ly1; 3f(6x) < f(A) < 2f(6%)} in Case A and
(MAeLy;aeV) € TN N NeLy; 3f(6F) < f0) < 2f(6%)} in Case B.
Let

D,={y|yeR" |yl < et i< i< N —1;]s(y)| < en’}

un,w(y)
Fuul9) = 1,u3) ™ exp (<o) [ folyi) a0 d
: Un,wl(y)—¢€

“n.w(y)
Tn,w(y) =n'LLn,w(y)_nN(w)f an(w) dx.
Un,o(y)—€

By discarding a Pg-null set, we suppose throughout the proofs: n " ni(w) — 03),
1 <4< N;and (15)—so (7)—holds for all Ly-neighborhoods V of 8%, with &
depending on V. See Remark 1, Section 2.
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Proor or THEOREM 3, CASE A. For large n, the set M,,., C T of Condition
(iii), so the u, .-distribution of ¢,,. , restricted to M, has density

17) brssCrofno () €XP [—huw (¥)].

From (7), b,,, is asymptotically equivalent to f(6*) times

(18) f [hl x(i)”“‘”] 1 — s d\ = d,,..
Ly_; Li=l

Finally,

(19) limnsw fro(y) = f(0%);

(20) limnse b (y) = B (¥);

(21) liMsce Cnw/dnw = [0Q1) -+ BN 2r) TV,

Here (19) and (20) hold uniformly over y ¢ M; (20) may be verified by con-
sidering Taylor’s expansion of log (1 + z); (19) follows trivially from assump-
tion (iii); and (21) is a consequence of Stirling’s formula. This completes the
proof of Theorem 3, Case A.

Proor or TurEOoREM 3, CAsE B. The u,,.-distribution of ¢, is the sum of
two measures: the first, p,.., is the distribution measure of ¢, under v, re-
stricted to T'; the second, o, , is the distribution measure of ¢, under »,,,
restricted to Ly — T. Of course, on,o(R"™") — 0 by (7). The density of pn,,
is brn YIS 0 s () 4 n 7y times

Un,w(y)
(22) f fuo(y; z) 2™ da.
0

If0 < a < B8 < 1, then lim,.« fﬁ““ " dx/fg_.a 2" dx = 0; from this and
regularity Condition (iv) it follows easily that (22) is asymptotically equiva-
lent to f(6%) [om® 2™ dz, uniformly on M. As usual, b, is essentially
£ [rx TTi=i A (@)™ d\. By a trival modification of the argument for Case
A, the density of p,,, converges to (16) uniformly on compact subsets of R,
which completes the proof of Theorem 3.

Proor or TarorREM 4, Case A. Let V; and Vs be Ly-neighborhoods of 67.

Then (15) implies

H 2@) TI X )w(@n)
=% lims ' | == — Buu() | = 0.
I M(X5)w(dr)

Vo j=1
Hence (23) holds when V; and V, are replaced by {\|AeLy; A(G) —
)| < 61 4= N — 1; D275 N@) — n7'ni(w)| < ¢. With this sub-
stitution, the first ratio in (23) is eventually

- [ 0e5uo(3) exp [=haul(3)] dy
n ngw) + 0t 2 ;

j;) fn,w(y) exp [_hn,w(Y)] dy
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to see this, use Condition (i) on e and change variables in the obvious way.
In view of (19) and (20), the denominator of the last fraction has a positive
lim inf. The theorem follows, therefore, from

(24) limseo /D Yi fn,o(¥) €xp [—ha,o(y)] dy = 0.

For large n, we have M C D, . Write the integral in (24) as an integral over M
plus an integral over D, — M. By (19), (20) and symmetry, the first integral
converges to 0. Eventually, nn(w)™" = [20(:)]™"; then by Condition (i) on e,

(25) b (¥) Z th(y).

Using Condition (ii) on ¢, the integral over D, — M is eventually bounded in
absolute value by 2f (6%) [y |vs| exp [—1h (¥)] dy, which can be made arbitrarily
small by choosing m sufficiently large. This completes the proof of (24), and so
of Theorem 4, Case A.

Proor or TueorEM 4, CasE B. Equation (23) holds with V; and V', replaced

by

{)\IkeLN;]k(i) ) [ < elSiS N —1;

N—1 N
Zl Az) — n_lni(w) < ¢ z; ANE) > 1 — e}.
Using regularity Condition (iv), Condition (ii) on ¢, and changing variables,
we see that the first ratio in (23), after the indicated substitution, is eventually
@) + 7 o, YFao(¥) dy/[p, Faw(y) dyl. We will prove that the
numerator of the last fraction converges to zero, and omit the easier proof that
its denominator has a positive lim inf. Split the numerator into an integral over
M and an integral over D, — M. As in estimating (22), limy.e Tho(y) = 1
uniformly on M, so that lim,.. Fro(y) = f(67) exp [—h(y)] uniformly on M
by (20). Hence the integral over M converges to 0 by symmetry. Using (25)
and Condition (ii) on ¢, eventually the integral over D, — M is bounded in

absolute value by

(26) 206" [ 1l exp [~ h(¥)] Taaly) dy.

Changing the lower limit of integration in its definition to 0 implies T . (y) =
1 — nt(x(w) + 1)7's(y), so (26) is bounded by 2f (0") times

[ vl expl = 1h()]dy +ntnne) + 1)
y¢M

[, 1 sl exp =2 A1 .

The lim sup... of (26) may therefore be made arbitrarily small by choosing
m sufficiently large, completing the proof of Theorem 4.
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Proor oF CoroLLARY 2. In Case A, this merely summarizes the previous work.
In Case B, we must prove that for any & > 0: (i) pnu{X | 2NGE) — Buw(@)] =
8) > 0fori < 0and¢ > N;and (i) gnofr:|n D i (AGE) — Bnw(@))]| = 8 — 0.
Because of the inequalities

i<0,i>N

and

N
2 MO S 1= 3@,
10,2 1=1
it is enough to prove the sharper estimate limn.. uzo{h|1 — SYAE) =
Ty} =¢ ¥ 0 <y < ».Inview of (15), the left side coincides with the limit of

f TT \)™® i / f H)\(z)"'("’) dn.

ADeLyZY M) S1-n~1y) i=l N =
1=

Changing variables in the numerator, this fraction becomes

1 —=n y)NH (1 — n7y)™,

which does converge to e”*.

5. Bayes’ estimates are inconsistent. Surprisingly, Theorem 1 is false without
the assumption “{7 | 8(¢) > 0} is finite.” A large class of counter-examples will
be constructed in Theorem 5, but here is one relatively easy to visualize. Let
I =1{0,1,---} and let M map [}, %] into A by assigning to 2 the geometric
distribution with parameter x, truncated at f(z). More precisely, let f(3) =
f(&) = oo; elsewhere on [}, ], the function f is natural number valued. It 1s
nondecreasmg in [}, 1) and in (3, 2); nonincreasing in (%, %) and in (3, 7]
Thenlet M (x) @) = (1 —z)a’,0 <4 < f(x);=0,¢> f(x) + 1. Forz unequal
to % or £, choose M (z)[f (x)] and M (z)[f (x) + 1] so that M (z) ¢ A and x — M (x)
(%) is continuous (or Cs , if it seems relevant) for 4 < z < fand 0 = 7 < .
Since M is a homeomorphism of [}, Z] into A, its range is an arc containing

= M%) and ¢ = M (2) as interior points (i.e., in the relative topology).
Let 4 be the image by M of the uniform distribution on [3, ], so that u is a
continuous probability on the arc and assigns positive mass to each neighborhood
of 6. If f grows quickly at ¢ (e.g., lim,; f(z)|x — 4| = 1) and slowly at { (e.g.,
lim,.; f(x)/{logs logs (Jx — %|™)} = 1), then (6, u) is not consistent. Indeed,
if U, = max (X;---X,), then u,, concentrates in the M-image of
{z|3 =22 =% fl®) = Un(w) — 1}. For large n, the last set consists of two
intervals. The first contains 3 and has width approximately 4 . The second
contains 2 and has width approximately (logs n)". The posterior mass in these
intervals can be estimated, and indeed limy.. pn,. = 8, for Ps-almost all w.
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We omit the details, since they parallel the proof of Theorem 5, and mention
only that U, is essentially logs » under Py . Of course, the example can be modi-
fied so that x — M () (¢) is positive and analytic on [}, Z] for all 7.

It is helpful to notice that if A is given the ;-metric, then M distorts distance
near § and §. Indeed, if [x — %| is small, both the distance and the arc length
from M (z) to M (;) are of the order [logs (Jx — %[™)]™, rather than |z — %|.
We know very little about arcs free from such distortion. Suppose the probability
u concentrates in a smooth arc 4 in A of finite length, and has a continuous
positive density with respect to arc length. By Theorem 7.6 on page 48
of Schwartz (1961), limye Bn,o = 0 in Ps-probability for all ¢ A. It is unknown
whether (0, u) is consistent, or even whether lim. Bn,o = 6 a.s. [Pg], for all
ecA.

THEOREM 5. Let 0 € A and let {7 | 6 () > O} be infinite. Let q e L — {6}. There
exusts a probability u on ® with

(i) w(A) = land 6 C (u);

(i) f A eCu) — {glthenNeAand § K\ K 0 + ¢;

(i) limne pn,e = 8, for Po-almost all w.

Proor. We begin by outlining the program. The probability u will assign
mass om t0 Om e A and Bn to gme A, for 1 < m < o ; with am > 0 and 8. > 0
eventually, and > o, (am + Bn) = 1. The vectors 6,, and ¢, will be chosen so
that 0 K 0, K 0 + ¢; 0n— 0; 0 K g K 0 + ¢; gn — ¢. Then u will satisfy
Conditions (i) and (ii). To secure (iii), g will assign small probabilities (by
comparison with ) to remote states. Each ¢,, will have one fewer small coordi-
nate than ¢ui1; as 6 is sampled and the corresponding state observed, ¢m.41
will become progressively more plausible than ¢, . The posterior mass in
{gn: 1 = m < o} will therefore shift toward the tail, that is, toward ¢. Each
0 will also assign small probabilities to remote states, which, when observed,
make 6,, unlikely; but a,, will decrease so fast that the tail of {6,, : 1 < m < o}
will also become unlikely. Over-all, posterior mass will transfer from
{0n:1 =m < o} t0o{gn:1l = m < o}, making u,,, — 8, a.s. [Py).

We will now give the details, beginning with the 8,, and ¢, . As usual, we
enumerate I so that 6(¢) > 0 for 1 < 7 < o while §() = 0 for ¢ < 1. The
latter index set may be empty or finite. We distinguish two cases: in Case A,
g e A;in Case B, g 2 A.

In Case A, let mo be the least integer m = 1 for which E,-gm q(@) > 0. Write
Ko =2/ icmqG). If m < mgoput fn = 0; if m = my, the 8., are arbitrary
subject to ‘

(cl) Bn >0, m = myg,

(62) Doy Bm < 1.

Write 8, = 1/(m2""); then supmsm, (Om/0ms1) < 4 For ¢ = mo let ¢(7) be
arbitrary, subject to

(c3a) 0 < e(s) < 27U,

(cda) [e()) /6. ” = (Ko 4+ 4)7".
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For m = my, equation (c3a) implies md, + D rmire(@) < 27™ < 1; hence

there is a unique ¢, satisfying

¢m_<2 q (@) + mén + ;1 e(@) = 1.

Then limm.w ¢ = 1; and for m = my ,

[%;q(i)]_l S on = [;z;nq(i)]"l,

implying ¢n/¢m = Ko .
Forl = m < mglet gm = @m, - Form = my, let

gn (@) = emq (1),
= ¢onq (1) + om,
= e(i))

It is easy to verify that gned; 0 K gn K 0 4 ¢; limyu.e gn = ¢. For
each m = mo, for Ps-almost all w, eventually n,41(w) = $n6(m + 1); and

1

%

then, by (c4a),
Unol@mt})  Bmtr sl Lom+1 ¢(2) + 6mt
[ e(m + 1) ]nm+1(w)
(278) emt1 q(m + 1) + Spa
< _Bﬂ {ImI [fl + _‘Sﬁ_]ni(w)} [e(m + 1)]nm+1(w)
T Bmt1 Ul Lomt1  Omnr m+1

< Br(Ky 4+ 4)" (Ko 4+ 07

6m+1
which converges to 0 as n — . This completes the discussion of 8, and 6,

in Case A. ‘
1. Let 8, be arbitrary, subject to (c1) and (c2). Let

In Case B, let my =
A=1-— qu(i) > 0. For 7 = 1 let e(¢) be arbitrary, subject to:

(e3b) 0 < e(2) < A2™Y;

(cdb) [26e (D) /AP = (1 + 4477
By (¢3b), X i<mq@) + D rmse(@) < 1, and there is a unique §,, satisfying

2 q(@) + mém+ 2 e@) = 1.
1<m 1=m+1

Again by (c3b), 27'Am™ < 6, < m ™, and 6,/0mp < 4475 Let

= q@) + om, l=si1=m,
= e(1), izm+1

Then gn e A; 6 K g K0+ ¢; g — ¢.
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When 7,41 (0) = 3n6(m + 1), by (c4b)

ﬂn,w{q”z.} — -ﬁ_m { ki [Q(i) + b ]ﬂi(w)}l: e(m + 1) ]nm+1(w)
tnolgmir}  Bmtt () F dwia M+ D T omna

(27b)
= Pro( a4 aa )™,
Bm-i-l
which converges to 0 as n — . This completes the discussion of 8, and g
in Case B.

We turn now to the 6,,. For each n, the function Y m; ,BmH}‘,,l gn (X;) is
positive a.s. [Pg]; consequently, there is a real-valued function h on the natural
numbers with & (n) decreasing to 0 as n increases, and D w—y Bm [ [ 1=t gm (X;) >
h(n) eventually a.s. [Pg]. Moreover, if U, = max [X; --- X,],thenl1 < U, T «
a.8. [Pe]—because {¢| (i) > 0} s infinite—and there is a nondecreasing, un-
bounded natural number valued function g on the natural numbers for which
U. > g (n) eventually a.s. [Pg]. Then we construct a sequence {e(7) : 1 < 7 < o}
arbitrary, subject to:

(c5) e(z) | Oasz T w;

(e6) 271 e(@) < 0();

(©7) dg(n)] < 3h(n)".

We determine c,, uniquely from the relation c, + 21z 0 (6) + Droms1 (@) = 1,
so that ¢, is positive and converges to 6(1) by (¢6). We define

0m (@) =0, 10

= Cn, 7 =1

= 0(z), 2=14=m,

= €(7), tzm+1

Then On e A; 0 K 0, K 0 + ¢; 0, — 0. We take a, positive and arbitrary,

subject to:

(08) Zm—l (am + 6m) =1;

(c9) Zm_,(n) om = th(n)? eventually

This completes the construction; (i) and (i) of the theorem certainly hold,
and we will now verify (iii). Let C = {6, : 1 = m < 0o;gn:1 = m < o;¢}
and C; = {gm : m = k; ¢}. Then C is the topological carrier of u and u,, for
Pg-almost all w. Because the C; are compact, Condition (iii) holds provided
limy e tn,0 (Cr) = 1 a.s. [Py] for all k. But

Z BmH an(X;)

I-lm,w( Cmo ) " n Kl

gl am_IIlom(X) + m;. ﬁmH an(X; )

Hence uy,o (Cmy) — 1 a.s. [Py] provided
(28) limy o E am H 0 (X ;) Z Bm H gn(X;) = 0 as. [Py

m=mg
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Now the denominator of this expression ultimately exceeds i (n) a.s. [Pg]. On
the other hand, we have chosen the parameters so that the numerator
is eventually bounded by ()% a.s. [Pg]. To see this, write the numerator as
(o0t 4 32 o) am [ 0 (X5). But Doy, am [] 71 0 (X;) is even-
tually bounded by D sty @tm , 8.8. [P], and this sum is (c9) in turn eventually
bounded by 3k (n)®. Finally, 2 ori' am [0 (X)) £ 2ot  ame(U,) =
dg(n)] £ 3h(n)® eventually a.s. [Ps]. Here the first bound comes from the
definition of 6., ; the second from (c8) and the definition of g; and the last from
(¢7). This proves (28), and lima,ew pin,e (Cmy) = 1 a.s. [Pg]. Estimates (27a, b)
imply limg.ew tn,o(Cn, — Cn) = 0 a.s. [Pe] for m = mo, completing the proof.

A number of conclusions can be made by slight modification of the example.
For one thing, there is a second probability 4 on ® satisfying (i), (ii) ; equivalent
to u and agreeing with u when restricted to a neighborhood of 6; but for which
(8, ) is consistent. It is obtained by making the 8, decrease much more quickly.
We conclude:

Remark 5. For infinite state space (as opposed to finite) consistency is not a
local property, nor does it depend merely on the null sets of the prior.

Point masses were used to simplify the computation. Because A is convex,
they can be eliminated without difficulty: join 6, to Omi1, 1 < m < « by a
line segment, and let u assign mass an to that segment, distributed uniformly
over it. Join 6; t0 qm, by a line segment carrying mass Bn, in a uniform way;
join @m t0 gmi1, Mo = m < o by a line segment of total uniform mass Bm41 .
Thus 6 has been joined to ¢ by a polygonal arc (with an infinite number of
corners) which carries u. By constructing more 6,’s and g.’s, we can continue
the arc past ¢ and past 6, if desired. The theorem continues to hold, with sub-
stantially the same proof. Of course, the arc can be made smooth.

If ¢ = 6 (ie., ¢(¢) > 0if and only if 6(z) > 0), by modifying the construc-
tion slightly it is possible to have the carrier of u precisely {\ | X e L and X < 6},
while (i) and (iii) hold. If also ¢ ¢ A, then all the ¢, may be replaced by gq.
If ¢ € A, is equivalent to 6, and H () < «, an easy argument shows that 0,
and ¢., can be chosen to have finite entropy relative to 6. Of course (see Theorem
2), H (8. | 8) does not converge to H (). If Condition (ii) is dropped, then e (7)
and e(¢) may be put equal to 0, and the estimates are simplified.

Using substantially the same ideas, we proved:

ReMARK 6. There is a continuous probability u on & concentrated in A and
assigning positive mass to every open subset of A, for which {6 | 6 € A; (6, p) is
consistent} is of the first category in A. Even the larger {660 ¢ A; Bn,o — 0
in Py probability} is first category.

6. Tail-free measures. In this section we develop a very simple condition on
priors ensuring that the results of Sections 3 and 4 go over to the countable
case. The effect of this condition is to insist the prior be open-minded about the
tails of the {A |\ € A}. The condition depends on the ordering of I; let us sup-
pose, therefore, that I = {1, 2, ---}. Let Si(\) = SENG,1 £k < o,
ANelL.
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DerFiNITION 2. The probability u on ® is called tail-free provided:

@) wA|NeL; Sc(\) <1} = 1forall k;

(ii) there is a natural number N = [u] such that the function A — {\(¢):
1 < ¢ < N} and all the functions A — [1 — Sy s M)AWN + k), 1 £k <
are mutually independent under u.

Condition (i) is not essential, and is imposed for expository convenience.

The u-distribution probability of A — [A(¢): 1 < ¢ £ N] will be denoted
u™; the p-distribution probability of A — [I — Sywes QA)TAW + k) will be
denoted u"*™, 1 < k& < . Thus p™ Ly — Ay) = 1; s%™[0,1) = 1,1 =
k < . Conversely, given an N and probabilities m™**, 0 =k < « with
m®™ (Ly — Ay) = 1and m?“*™]0,1) = 1,1 < k < o, there is a unique tail-
free probability u on ® for which: [u] = N; m®* = 4@ 0 <k < .

As an easy consequence of Condition (ii), for each k = 0 the functions

A= {\@) 1 1=7= N+ K
A=l = Sy MITAN +k+49) 1S40 < o)

are independent under u. The second funetion maps L into L, so maps u into a
probability fi. Of course, /i is tail-free with [2] = 1 and 4© = ¥ %9 1 <4 < .
Letk =2 0,nn 20, N+ k+1=mZEZ M;si= D dwpiim, b +1=7=
M — N. Let C, denote the class of functions G on L of the form
G(\) = g]A(@) : 1 £ ¢ = r], where g is a real continuous function on L, .
It is almost obvious from the previous remark that if G ¢ Cy4r then

M

L6 IT amy =@

(29) o
=[ / SV — )y W“’(dx)] f GOV — Swas(WN)*u(dN).

i=k-+1

By trivial manipulations,

[ o0 [TT @ |t = sa0r @y
LT 2@ 1 = satr=m @y

1=1

30) [ GOl =

in the sense that, if the left side exists so does the right, and they are equal.
In particular, if u is tail-free so is wa,, , with [u] = [us,.] = N, and uF® s ab-

solutely continuous with respect to u *® . having density proportional to
d:-—>an+k(w)(1 _ x)n—E{V:l"m(w)

on [0, 1) when & = 1; and density proportional to

- I:INI )\(i)""(“”:l[l _ zz: )\(i):ln—z{vsln,(m

=1

on Ly when k = 0.
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For a further interpretation of (30), observe that u(A) = 0 or 1 according as
> f s 2u¥(dz) converges or diverges. In the latter case, define the usual
joint distribution D, for {\; X;: 1 = j < =} by requiring X\ to have D,-dis-
tribution probability u, and {X; ;1 = j < «} to have the D,-conditional distri-
bution given \: the { X ;} are independent with common distribution A. Naturally,
no is the D,-conditional distribution of A given { X;(w) : 1 < 7 < n}. The validity
of (30) for all G & Cyyx says: If u is tail-free, and [u] = N, the D,-conditional
distribution of (N(Z) 11 = ¢ < N + k} gwen {ni(w) : 1 = ¢ = N + k} s
equal to its D,-conditional distribution given {X;(w) 1 1 = j = n}.

The converse s also true. If (30) holds for all k, all G € Cyyx, all m, then u
is tail-free, [u] = N. We omit the proof.

THEOREM 6. Let u be a tail-free probability on & and 0 ¢ A. Then (0, u) s
consistent if and only if 0 is in the topological carrier of u.

Proor. The necessity is clear. For sufficiency, remember that C} is separable
and Ujg, C, is dense in the set of continuous functions on L. Hence it is enough
to prove that fL Gdun,. — G(0) a.s. [Py for each k and each G & Cyyi, where
N = [u]. Evaluate the integral by (30). Then express the numerator and de-
nominator of (30) as integrals over Axyx+1 With respect to the u-distribution
probability of A — (A(z) : 1 £ ¢ = N 4+ 'k; 1 — Sy (M\)}. An application of
Theorem 1 completes the proof.

Let u be a tail-free probability on ® with [u] = N; let u™ have a continuous,
positive density over Ly ; let @ *? have a continuous, positive density on [0, 1],
for1 £ ¢ < o.If e A then (6, u) is consistent by Theorem 6. Much more is
true. Suppose 8 is nondegenerate, and let H be a proper subset of {z | 6(Z) > 0},
with a finite number h of elements. Let ¢,,, map L into R" by the relation

bnw () = {n'NG) — 770 (w)] ¢ < e H.

ForheLor R let s(\) = X im M(0).

THEOREM 7. For Pg-almost all w, the . o-distribution of ¢, , when restricted
to any fized compact subset of R", is eventually absolutely continuous with a con-
tinuous positive density converging uniformly to

y = {1 — s@Liex 6@} @)™
exp {—3 2 inyi/0G) — 337/ A — s(6))}.

Proor. If H = {1, 2, --- , N + k} for some k = 0, the argument of Theorem
6 reduces the proof to an application of Theorem 3, Case A. We omit the general
proof as both routine and tedious.

REeMARK 7. Of course, n n;(w) could be replaced by 8., (¢) in the definition
of ¢n,. without changing the conclusion of the theorem.

Tail-free probabilities are a natural generalization of Dirichlet measures to
the infinite dimensional case; as may be seen by taking [u] = 1 and beta distribu-
tions for the u®. If also u® = u®, 1 £ ¢ < o, Theorem 3.1 of Fabius (1963)
extends Theorem 7 thus. Let {a; : 1 = 7 < o} be a bounded sequence of real
numbers. Then for Ps-almost all w, the u, ,-distribution of A — WY 2 adN@) —
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Bn, (©)] converges in the weak * topology to normal with mean 0 and variance
Z?=1 a?() (2) - [Z?;l af (2)]2 '
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