POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS

By J. F. C. KinemaN
University of Cambridge

1. Introduction. We shall be concerned in this paper with the properties of
random sequences of events, such as the arrivals of customers at a queue. If T,
denotes the instant of the nth event, then any such sequence, occurring in the
time interval (0, « ), can be identified with the sequence of random variables

1) 3= (Ty,Ts, )
satisfying
@) 0<T,<Ty< -+ - <T, < -

We make without further comment the assumption that only finitely many
events occur in any finite time, so that

3) T,— (n— o).

There are a number of different ways of specifying the distributions of 3, which
are convenient in different contexts. In the theory of queues, for instance, it is
usual to specify the distributions of the process (4 , ¢, - - - ), where

(4) tn = Tn - Tn—l .

(Here and elsewhere, we make the notational convention that 79 = 0.) The
process 3 is called a renewal sequence if the ¢, are independent and identically
distributed; if in addition the ¢, have a negative exponential distribution, J is a
Potisson sequence.

Another way of describing J is in terms of the counts of the sequence in suc-

cessive intervals. Thus we consider intervals (0, a], (a, 2a], - - - , and denote by
C, = (C,(a) the number of events in the nth interval:
5) C.(a) = number of r with (n — 1)a < T, < na.

It is, however, clear that a knowledge of the distributions of the process {C, (a)}
for any one value of a does not suffice to determine the distributions of 3. Again,
if 3 is a renewal sequence, the structure of {C,} is, in general, exceedingly com-
plex. For these and other reasons it seems that the count process {C,} is not well
adapted to describe the sequence of events 3.

Some of the disadvantages of the count process can be avoided by considering
the counts of 3 in intervals of unequal length, and this suggests considering the
counts in intervals of random length. It will be shown in Section 7 that this
apparently arbitrary procedure arises very naturally in the theory of queues, and
it is suggested that the idea of a “randomized count process’ may prove useful
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1218 J. F. C. KINGMAN

in the theoretical analysis of systems involving random sequences of events. We
shall not, however, be concerned in this paper with the use of randomized
count processes in problems of inference.

Suppose, then, that 3 and 3’ are two independent random sequences of events.
We define the count process % = {N, ;n = 1,2, ---} of 3in 3 by

6) N, = number of r with 7,_, < T, < T .

The dual count process SU* = {N¥} is the count process of 3’ in 3, and so 9U** = 9t*.

Notice that the processes 9 and 9* are different ways of describing the rela-
tive configuration of the sequences of points 7', and T', on the line. Thus suppose
that, for each m, n, T, 5 T,, , and let the points Ty, T, ---, T1, Ts, - -+ be
written in ascending order as 7, , 72, - - - . Now define a sequence {£,} by letting
£, = 0 or 1 according as , belongs to 3 or to 3'. Then the sequence {£,}, or
equivalently the binary decimal § = 0.5, - - - , determines uniquely the relative
configuration of 3 and 5’, and the processes 9 and 9t* can be read off from it.
Moreover, the sequence {£,} can be constructed from a knowledge of 9t (or of U*).
We shall not make explicit use of this device, but simply remark that, so long as,
for each m, n, we have T, # T, , the sequence 9 determines the sequence an*,
and vice versa.

2. Poisson counts. The most interesting case of a randomized count process of
the type considered in the previous section is certainly that in which 3’ is a
Poisson sequence. If 3 is a Poisson sequence of rate \ independent of 3, then we
call the count process of 3 in 3’ the Poisson count process (of rate \) of 3, and
denote it by 9t (\) = {N,(\)}, and its dual process by 9*(\) = {N%(\)}. Then
9t (\) and 9U* (\) can be regarded as randomized statistics of 3.

For most of the sequel we shall be concerned with just one value Ao of A, and we
shall then fix the time scale so that Ao = 1. When this is done, 9t (1) and 9t* (1)
will be written simply as 9 and 9t*.

Because of the well-known fact that the numbers of events of a Poisson se-
quence in disjoint intervals are independent Poisson variables, we can readily
calculate the distributions of the dual Poisson count process 9t*. In fact, if
t, = T, — T,._;, then we have at once

(7) PN} =kj;j =12 ,n} = E{g ¢t [k 1}~

Since the T, have absolutely continuous distributions, there is zero probability
that, for any m, n, T, = T, . It follows that the sequence N* determines the se-
quence 9 with probability one, so that (7) enables us, in principle, to compute
the distributions of the Poisson count process 9.

We illustrate this procedure by calculating the Poisson count process for the
very important case of a renewal sequence. The result will be expressed in terms
of “delayed recurrent events”, for which we use the notation and terminology of
Feller ([5], Section XIII, 5).
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TaEOREM 1. Let 3 be a renewal sequence with lifetime distribution function F,
and write

ooe—t tk
(8) ak==.[ ¢ ¥ ap(t).
b k!
Then the Poisson count process 9 (of rate 1) of 3 is given by
9) N, = evn,
where

(1) {e} and {v,} are independent,
(1) e, takes the values 0 and 1 and is such that {e. = 1} is a delayed recurrent

event with first occurrence probabilities a,—y (n = 1, 2, --+) and recurrence time
distribution
(10) f"=an/(1 '_ao) (n= 172) "'))
and

(ii1) the v, are independent and identically distributed, with
(11) Plv, = v} = (I ~ a)ay” =12 ---).

Proor. Equation (7) for the dual count process N* shows that the N7 are
independent, with common distribution P{Ny = ¥} = &, (k = 0,1,2, ---).
Now let ¢, 71, -+, rq, k1, -+, kg be any strictly positive integers, write
R)=n+mrn+ -+r,K@) =k-+k+ - + k,, and consider the
probability p (11, <+« , 7q; ki, -+, kg) that Negwy = ky, 0 = 1,2, --- , ¢), and
that all other N, , for n < R(q), are zero. Then it is clear from the definitions
of N, and N¥ that this event differs by an event of zero probability from the
event that N¥ = 1 — 1, N1 = Tos1, @ = 1,2, -, ¢ — 1), Nepu = 1,
and that all other N , for n < K (¢) are zero. Hence
(12) p(rl, oy, Te kl; Tty kQ) = Qry1lry * " Oy (1 - aﬂ)a(l)((q)-—q'
Summing over the k, , we see that the probability that Nzu) # 0 forv = 1, 2,
-+, gand that N, = 0 for all other n < R (g) is

p(rl y T rq) = a"l—lfrz o 'ffq I}
where the f, are given by (10). It follows that the event {N, # 0} is a delayed
recurrent event with first occurrence probabilities a@,—; and recurrence time
distribution f,, . Thus, if ¢, = 0 or 1 according as N, = 0 or N, # 0, then {en}
has the properties (ii). Furthermore, conditional on the occurrence of {e, = 1}
atn=R@) w=1,2, -+, q), and at no other values of nin n < R (¢), Equa-
tion (12) shows that the distribution of the Nz is given by

q
P(Nrwy = ko ;v =1,2, -+, ¢t = 1 — a)a @ = J] [ — ao)az™].
v=1

This shows that the Nz, are conditionally independent and geometrically dis-
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tributed, and it follows at once that N, can be written in the form (9), where the
vn satisfy (i) and (iii). This completes the proof.
CoROLLARY. If 3 is a Poisson process of rate p, then the N, are independent, with

where B = p(1 + )7
It follows from (9) and (10) by the usual formulas of recurrent event theory
that the probabilities u, = P{e, = 1} are given by

Ulk) = nz=lunx" = Elan_lx”/l — nz_;fnx"

=z4@) (1 —a)/[l —A@)] (=l <),

where

Alz) = i;o Oy 2" = fo e TNAR() = F*(1 — a), (say).

0

Hence, for |z| < 1, we have
(14) U) = a{l — F*(D)}F*(1 — 2)/[1 — F*(1 — )],

which determines, in principle, the probabilities u, . The distribution of N, is
then given by

(15) Pogy =P{N, =k} =1 — u, (k = 0)
= u(1 — ao)as ' k=1).
This may easily be thrown into the alternative form

o wok_ @ z(l—gy{l - FQ)F'Q -2
(16) 2 pasy =y 1= yF* DL — F*1 —2)]

More calculations on these lines may be carried out without difficulty. How-
ever, the important point is that it is possible to specify, in fairly simple and
explicit terms, the Poisson count process of any renewal sequence. This is to be
contrasted with the much more complex problem of finding the joint distribu-
tions of the counts of a renewal sequence in successive intervals of equal lengths.

If, instead of being a renewal sequence, J is a ‘“modified renewal sequence” in
which the distribution of ¢; is different from the common distribution of ¢, , 3, - - -,
then the analysis of Theorem 1 goes through, the only change being that the first
occurrence probabilities become

17) Ple = =+ = e0 =0, &, = 1} = E{tf ¢ "/ (n — 1)}}.

In particular, if g = E(¢;) < o0, and if the distribution of ¢, is chosen to make J
an “equilibrium renewal sequence” (i.e.if P{z < t; £ z + dz} = Plz < t} da/u,
c.f. Cox [2]), then (17) becomes, after a little calculation,

Pla= " =€e1=06=1} = Ef,/;rf,.

r=n
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Hence, in this particular case, the values of n for which ¢, = 1 form an equilib-
rium renewal process in discrete time, and so {e.} is stationary. It follows at
once that the Poisson count process of an equilibrium renewal sequence is sta-
tionary.

3. Bulk renewal sequences. In our definition of a random sequence of events
we have not required that the sequence {7’} be strictly increasing, so that the
definition admits the possibility that several events may occur at the same
instant of time. In the terminology of Khintchine [8], our sequence of events need
not be “orderly”, and for many purposes it is both necessary and convenient to
consider such processes.

Let 3 be any sequence of events, and let m = (m; , ms, - --) be any sequence
of strictly positive integers. Then we define a new sequence 3 X m by replacing
the nth event of 3 by a group of m, simultaneous events. More formally, we

define 3 X m = {T,}, where
(18) T1=T2="’=Tm1=T1,Tm1+1="'=Tm1+m2=T2,’

In general, both 3 and m will be random, and then 5 X m will be a random
sequence of events. :

In particular, suppose that 3 is a renewal sequence, and that the m, are inde-
pendent of 3 and of each other, and have the common distribution

19) b = P{m, = k}.

Then we say that 3 X m is a bulk renewal sequence. If 3 is a Poisson sequence,
then 3 X m is called a bulk Poisson sequence. The distribution {b;} will be called
the batch distribution.

It will be clear that the Poisson count process of 3 X m bears a simple relation
to that of 3. Thus the Poisson count process of a bulk renewal sequence can
readily be computed, and we state the result below, omitting the proof.

THEOREM 2. Let 3 be a bulk renewal sequence with batch distribution {by}, and let
ax be defined by (8) from the lifetime distribution function F of the renewal sequence
from which 3 s derived. Then the Potsson count process 9 of 3 is given by
(20) N, = €nVn ,
where

(1) {ex) and {wi} are independent,

(i) en takes the values O and 1 and is such that {e, = 1} 1s a delayed recurrent
event with first occurrence probabilities @ (n = 1, 2, ---) and recurrence time
distribution fn = @/ (1 — @) (0 = 1,2, ---), and

(iii) the va are independent, with common distribution

(21) Piv, =2} = 2 (1 — a)at b,
k=1
where (b} 1s the k-fold convolution of {b,} with itself.

CoroLLARY. If 3 is a bulk Poisson sequence dertved from a Poisson sequence of
rate p, then the N, are independent, with common distribution
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22) PN, = 4} = (1 — ﬁ)kZ; £,

where B = u(l + p) 7, and b® = 8,

Thus the Poisson count process of a bulk renewal sequence has the same
structure as that of a renewal sequence, except that the geometric distribution of
v, 18 replaced by a more general distribution.

In view of the simple character of the Poisson count process of a bulk renewal
sequence, it is natural to ask whether there are other sequences of events with
similar properties. More particularly, are there sequences of events, other than
bulk Poisson sequences, whose Poisson counts are independent and identically
distributed? These questions lead naturally to a study of the extent to which
the Poisson count process determines the stochastic structure of the sequence,
and to such a study we turn in the next section.

4. The information contained in the Poisson count process. We recall that a
knowledge of the joint distributions of the counts C, of a sequence 3 in successive
intervals (0, a], (a, 2a], - - - is not sufficient to determine the distributions of 3.
The situation, however, is quite different for the Poisson count process, as the
following theorem shows. '

TueoreM 3. Let '3 and ™3 be random sequences of events, whose Poisson count
processes ‘9 and N (for rate A\ = 1) have the same joint distributions. Then the
joint distributions of '3 and *3 coincide.

Proor. For & = 1, 2, consider an event of the form

Na=Fka,(n=1,2,-+-,9),
where k, = 0, k, = 1. As in the proof of Theorem 1, this differs by an event of
zero probability from an event of the form
No=litn=1,2,---,u), Ny 2 1,
where the numbers u, [, are determined by the numbers », k, . Hence
P{°Ns =Fky;n=1,2,---,%}

is independent of «, and hence so is

fieend
—1

This holds for all v = 1, ky, -+-, kv = 0, ks 1, and hence by summation
over k, forall &y, -+ -, k, = 0. Multiplying by 2%* - - - 2 and summing over the
k. , we see that E{] [4—1 exp [*tx (2. — 1)]} is independent of a whenever |z,| < 1,
and hence by analytic continuation

E {exp - Z Onltn} =E {exp — Z 0n 2tn}
n=1

n=1

whenever Re 6, = 0. Hence the random vectors (t;, --+ , %) and Ctr, -+, %)
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and so also (T, -+ ,'T,) and Ty, -+ ,*T,) have the same distribution, and
the proof is complete.

Thus the stochastic structure of a sequence 3 is completely determined by
that of its Poisson count process 9t (\) for any one value of A. This perhaps some-
what surprising result will be examined from a different point of view in the next
section, but before doing this, we apply Theorem 3 to give converses to some of
the results already established.

THEOREM 4. Let 3 be a random sequence of events with the property that its Poisson
counts N, (at rate 1) are independent and identically distributed. Then 3 is a bulk
Poisson sequence.

Proor. Let p, = P{N, = k}, and write Z, = T, — T . Then

E{Z% ¢ " /kY} = P{k events of 3’ occur in (Ty, T.)}

=2 PT, =Ty < Tria, Triw £ T < Thprys)

r=0 -

= > PN, = o Ne=0,N,uZ1,Neyy+ -+ + Ny <

r=0

SN+ -0+ Nejga}
= 2 PPN Z LN+ - Ne <n SN+ - + Niya)

A=po) PNy ZL,Ni+ -+ + Ny <n <Ny + -+ + Niya
=PNi+ -+ Ny <n=Ni+ -+ + N | N1 2 1},
where sums of the type N,41 + --- + N,y are taken as zero when k = 0. It
follows that
$n(@) =E{¢ ™ =1 - 1 —2) 22" PN+ - + Ny <n|N; 2 1},
k=1

and so, by the standard manipulations of renewal theory, we have

= n_ Y _ p(y) — p0) l—x]
(23) :‘:‘1 w2y = 7~ y l:l 1—p0) 1—ap(y)l’
where p(y) = D w0 p»y" This equation holds, in the first instance, whenever
lz], ly| < 1. Now fix y so that |y| < 1. Then ¢, (z) is regular and bounded in
Re z < 1, and the right hand side is regular in z # 1/p(y). Hence, for fixed y,
(23) holds in a domain which includes some half-plane Re z < ¢. Letting
x — — o, 50 that ¢, (z) — P{Z, = 0}, we get

3 ot = Y [1— 2@ —p(0)
2, PlZ. =0}y = 1—y[1 p(y){l—p(on]

Now P{Z, = 0} is a decreasing function of n, taking the value 1 at n = 1, and
tending to zero as n — «. Hence the numbers b, = P{Z, = 0} — P{Z,,, = 0},
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(n =1,2,---), form a probability distribution, with

BG) = Xhy" = b) — /(L — p)p ).

Comparison with (22) shows that the Poisson counts of 3 have the same joint
distributions as those of a bulk Poisson sequence with batch distribution {b},
and so, by Theorem 3, 3 is a bulk Poisson sequence. Thus the proof is complete.

In exactly the same way, the simple structure of 9% given in Theorem 2 is char-
acteristic of the bulk renewal sequence. These results are disappointing from a
practical point of view, for it might have been hoped that a comparatively wide
class of sequences would have simple Poisson count processes.

5. Poisson sampling. Let 3 be a random sequence of events. Then one way of
describing 3 which has been widely used (see for instance [8]) is by means of its
cumulative count process C (t) (t = 0) defined as the number of events of 3 oc-
curring in the interval (0, ¢];

(24) C@t) =max{n=0;T, < 1.

It is clear that the various count processes of 3 can be defined in terms of C (¢);
for instance C, (a) = C{na} — C{(n — 1)a}.
In particular, the Poisson count process 9t of 3 is given by

(25) N, = C(rn) — C(7n11),

where (7o = 0, 71, 75, - - - ) is a Poisson sequence of unit rate independent of 3.
(Thus 7, is what was denoted earlier by T, .) Theorem 3 can then be re-stated
as follows: A knowledge of the joint distributions of C () (n = 1,2, --- ), to-
gether with the knowledge that C (t) is the cumulative count process of some sequence
of events, suffices to determine the distributions of C (t).

The process C (7,) is said to be obtained by Poisson sampling (at rate 1) from
the process C (t). Such sampling is not, of course, confined to cumulative count
processes, and we shall see that the above “determining property” of Poisson
sampling holds for a much wider class of processes.

We must, however, digress for a moment to discuss a peculiar difficulty which
arises when we try to consider sampling of general stochastic processes. Let
X (¢) (¢ = 0) be a real-valued stochastic process, and let 7 be a random variable,
independent of X (¢), with continuous distribution function G. Intuitively we
would expect that X (r) is a random variable with distribution function

(26) PIX() =2} = [ PIX() S o} dGO).

0

However, there is no reason why X (7) should be a random variable at all, and
even if it is, we can alter its value quite arbitrarily without changing the finite-
dimensional distributions of X, or interfering with the independence of X and T,
(since, for any ¢, there is zero probability that ¢ = 7). The difficulty lies in the
fact that independence of uncountably infinite families of random variables is a
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rather weak concept, and this difficulty largely disappears if we make stronger
independence assumptions.

The simplest such assumption seems to be the following. Suppose that X (¢, w;)
is a stochastic process on the probability space (2, @, P1), and that 7 (w.) is a
random variable on a different space (2, @2, Pz). Then X and 7 are also defined
on the product space (2, @, P) = (4 X 2, @1 X @2, P; X Py). Then, if X (¢, w;)
is a measurable process (in the sense of Doob [4]), the random variable Y = X (7)
is defined on (2, @, P) by

27) Y(w) = Y(wr, w) = X{r(ws), wi.

Equation (26) is then an immediate consequence of Fubini’s theorem.

When we talk of a process { X (,.)} obtained by Poisson sampling from a process
X (¢), it will be implicit that the X (r,) are defined on a product space in this
way, the 7, forming a Poisson sequence on (2, @ , Py). Thus Poisson sampling is
only meaningful when applied to measurable processes.

We are now in a position to state and prove the basic theorem on Poisson
sampling, which is the counterpart to Theorem 3. This will be stated for processes
which are continuous in probability, i.e. which satisfy

(28) plim.-, X (s) = X (1);

as is well-known [4], such processes always possess measurable versions.
TrEOREM 5. Let X (), X1 (t) be two measurable, real-valued stochastic processes,
both continuous in probability, and suppose that the processes obtained from X; and
X, by Poisson sampling (at rate 1) have the same joint distributions. Then X, and
X, have the same finite-dimensional distributions.
Proor. Let n be any positive integer, z1 , - - - , Z, any real numbers, and write,
fora = 1, 2,

Fa(tly e ytn) = P{Xa(ti) =z ;j = 172) e ,’I’L}.
Now let k; , - - - , k. be non-negative integers, and set

K(Q) =y + - +kq’£q= TR(Q) 5 Ng = Eq_ Eq—l-
Then, as in (26),
pa=P{X (&) Sz j=1,2---,n)
=E{Fa(£1"" ’En)}

n  kij—1 i
e

[ Fatniymitn, -t A1) TTE— dny -« - .
.l _{ (mym+me, - ym+ +n)j=l(ki'—1)! " !

But p. is independent of «, and hence so is the final expression. Multiplying this
by 25t - -+ 2%, summing over the k; , and writing 6; = 1 — 2, , we see that

fo fo Falni,m+me, o osm+ -+ ) EXP{—Z;Ojnj}dm'“dﬂn
=
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is independent of « whenever |6, — 1| < 1, and hence by analytic continuation
whenever Re ; > 0. But, since X, is continuous in probability, the function
F, is continuous (its arguments being time variables). It follows that F, is
independent of «, and the theorem is proved.

The assumption of continuity in probability (which is in any case fairly weak)
was only used for the final step. However, it seems appropriate to make this
assumption, sinee it enables us to guarantee the existence of a measurable version.
The cumulative count process of a random sequence of events J is continuous in
probability if and only if each of the random variables T, has a continuous dis-
tribution function. Thus Theorem 5 does not quite contain Theorem 3.

The assumption that the processes are real-valued is expendable. The theorem
extends at once to processes taking values in R”, and without difficulty to more
general state spaces.

The results on Poisson sampling obtained here suggest that it might in some
cases be profitable from a practical point of view to sample stochastic processes
at random instants of time. Such a procedure has been suggested by more than
one author (see, for example, [6], p. 58), but we shall not pursue the matter
further in the present paper.

6. Further properties of Poisson sampling. In this section we refer briefly to
properties of Poisson sampling, and in particular to characteristics of stochastic
processes which are preserved under Poisson sampling.

Consider first the Markov property. Let X (¢) be a Markov process whose state
space S we take, for simplicity, to be countable, and suppose that the transition
probabilities

(29) pij(t) =P{X(s+1¢) =7]|X(s) =4}
are independent of s. Suppose moreover that X (¢) is standard, i.e. that
(30) pi; (t) — 8ij, t—0).

Then a trivial calculation shows that the process X (7.) obtained from X ()
by Poisson sampling is a discrete time Markov process on S with stationary
transition probabilities

(31) Py = P(X(ru) =1 X(ra) = 1) = [ " (D) d

In the special case when the original process is g-bounded, i.e. where
(32) supies [—pii (0)] < o,

and in particular when S is finite, the transition matrix P ({) = (p:;(¢)) can be
written in the form

33) P(t) = exp (Q1),
where Q = P’ (0), and then the transition matrix P of X (r,) is just

(34) p= " e exp (Q) di = (I — Q)™
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This may be inverted to give
(35) Q=1-P7,

so determining P (¢) in terms of P.

Equation (31) shows the close connection, for Markov processes, between
Poisson sampling and the ‘“method of collective marks” of van Dantzig [3].
If X (¢) is a Markov process, then X (7,,) is a ‘“‘derived Markov process’ in the
sense of Cohen [1]. Notice also that P is a value of the “resolvent” of the semi-
group {P (¢)}, and for processes which are not ¢-bounded @ must be replaced
by the “infinitesimal generator” of the semigroup.

The main point, however, is that a process obtained from a Markov process by
Poisson sampling is itself Markovian. This result holds for more general state
spaces, but we omit the precise formulation and proof. Theorem 5 leads us to
expect a converse result, that if X (r,) is Markovian, then so is X (¢), and such
a converse is given by the following theorem.

TuaEOREM 6. Let X (¢) (¢ = 0) be a stochastic process on the countable state space
S, continuous in probability and measurable, and let Y, = X (1,) be the process
obtained from it by Poisson sampling. If Y, is a Markov process with stationary
transition probabilities, then so is X (t).

Proor. Let p;;(t) = P{X (¢) = j| X (0) = <}. Then p;; () is continuous, and
the n-step transition probabilities 5}’ of {¥,} are given by

P =PYa=j|Yo=1d} = f pii(8) 77 € dt/(n — 1)L
0

Substituting this in the Chapman-Kolmogorov equation

_ (m+ _
P = PR,

we get

fopij(t)tmﬂ_l etdt/(m+n—1) = mepik(u)um_l e “du/(m — 1)!
0 keS Jo

f ()" e dv/(n — 1)1,
0
which can be written

fo/o {pis(u +v) — Ig par(w)prs(0)} w7 0" e du dv = 0.

mlnl/

Multiplying by (m — 1)!(n — 1)! and summing over m, n = 1 shows

that, for all |z|, [y| < 1,
L[ {pij(u +v) — ,;; par(w) pri(v)} € ™Yy dy = 0,

and so, using the continuity of p;; (), we get p;;(u + v) = > kes i (W) prj ).
Moreover, the continuity in probability shows that (30) holds, and hence there
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exists a Markov process X; (t), continuous in probability and measurable, with
stationary transition probabilities p;;(t). An application of Theorem 5 to X and
X, now completes the proof.

Another property preserved by Poisson sampling is that of stationarity. Thus
let Y, = X (.) be obtained from X (f) by Poisson sampling, and write, for any
real numbers z;, -+, Tn, F(t, -+, t) = P{X@) £ 2,55 =1,2,---,n}.
&, = P{Y,y; S ;55 =1,2, .-+, n}. Then X (¢) is stationary if and only if
(for all choices of n, t; ,2;)F (i, - - - , t.) depends only on the differences t; — t;-1,
and Y, is stationary if and only if (for all choices of n, ;) ®. is independent of m.
We shall show that these two conditions are equivalent.

We have, in fact, &, = E{F (Tmt1, =, Tmsn)}. Now write TP = Tmii — Tm-
Then

E{F(Tm+7'{,"‘ ,7'm+7,-:l«)}

= fm E{F(T+ 7, -, T+m)} T e dT/(m — 1)!

0

2

Il

- /” E{F(T 41, ,T 4+ )} T ¢ dT/(m — 1)1,
A |

It follows, by a now familiar argument, that ®,, is independent of m if and only if
E{(F(T + 71, --+, T + )} is independent of T'. That is, Y, is stationary if and
only if the process obtained from X (T 4 t) by Poisson sampling has distribu-
tions independent of T. Hence, by Theorem 5, Y, is stationary if and only if
X (@) is.

A rather similar theorem, proved in the same way, states that a random se-
quence of events is stationary (in the sense that its cumulative count process has
stationary increments) if and only if its Poisson count process is stationary. A
special case of this theorem is the remark made at the end of Section 2 that the
Poisson count process of an equilibrium renewal sequence is stationary.

We have so far only considered Poisson sampling at one fixed rate N = 1.
To conclude this section we discuss briefly the relation between processes ob-
tained by Poisson sampling at different rates. Let X (¢) be a measurable stochastic
process, and let {r.} be a Poisson sequence of rate A independent of X (in the
strong sense described in the previous section). Now let us pick out at random a
subsequence {o.} of {7}, the probability of 7, being chosen being p, independ-
ently of the other 7, chosen. Then it is clear that {c.} is a Poisson sequence of
rate Ap.

Tt follows that, if Y = X (r,) is obtained by Poisson sampling at rate X,
then we can obtain a Poisson sample of rate A\p by choosing a random subsequence
of {¥}}, in the manner described above. In particular, if we know the joint dis-
tributions of { Y%}, we can deduce those of { Y7} for any u < \. For example,

(36) PIYE <o = 3 (1= (/) /NPT S 5.



POISSON COUNTS FOR RANDOM SEQUENCES 1229

There does not seem to be any analogous probabilistic procedure for going back
from {Y%} to {Y’}, although there is of course a formal procedure based (as in
the proof of Theorem 5) on analytic continuation.

7. Poisson counts in the theory of queues. In this section we indicate the way
in which the Poisson count process arises in the theory of queues, and the conse-
quences for that theory of the results established in the preceding sections.

Consider a queueing system at which successive customers €, (n = 1,2, --- )
arrive at instants 7, . Then the input process is specified by the random sequence
of events 3 = {T,}, about which we make no specific assumptions. Let the cus-
tomers be served by a single server, and suppose that, if s, is the service time of
@, , then the s, are independent of each other and of 3, and are exponentially
distributed with unit mean. In terms of the notation introduced by D. G. Kendall
[7], this model might be denoted by X/M/1, the letter X indicating that no
assumption has been made about the stochastic nature of the input process 3.

It has been pointed out by Winsten [9] that the service time mechanism in this
queue can be regarded in the following way. Let {7,} be a Poisson sequence of
unit rate, independent of 3. Then at each instant 7, at which the queue is non-
empty, the server completes a service period and a customer leaves the queue.
In other words, the time-instants at which customers leave the queue form a
subsequence X of a Poisson sequence {7,}, 7, belonging to T if and only if the
queue is non-empty immediately prior to 7, .

We remark in passing that this procedure can be modified for a many-server
queue, and that all our remarks about the queue X/M/1 can be carried over,
with only slight modifications, to the queue X/M/k (where k is any positive
integer).

The usual method of analyzing queues with exponential service-time distribu-
tion is to consider the queue size at the instant T', of the arrival of €, . Here, how-
ever, we adopt the reverse approach, and look at the length of the queue at the
instants of service, or more precisely, at the “potential service instants’ 7, .
Thus let @, be the number of customers in the queue, including the one being
served, immediately prior to 7, . Then it is clear that

37) Qn = Nn + max (Qua — 1,0),

where N, is the number of customers arriving in the interval [7,_;, 7). We see
that {N,} is exactly (except for an event of probability zero) the Poisson count
process of the input sequence 3. Hence, so far as the process {Q,} is concerned,
the input process enters through its Poisson count process 9. In fact, from (37)
we can express {Q,} explicitly in terms of 9t; if @y = O this expression takes the
form

(38) Q. = max [i N, — (n — lc):l.

1<kZn r=k

Suppose that, in some practical situation, we were faced with the problem of
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analyzing a queue of the type X/M/1, the input process being of some complex
type. Then the above considerations suggest that one should try to fit a model
for the input whose Poisson count process had a fairly simple structure, rather
than to concentrate on the interarrival time process. Indeed, there are important
cases in which the Poisson count process is easier to deal with than the inter-
arrival time process. For example, Winsten [9] has considered a situation in
which customers are scheduled to arrive at regular intervals, but are subject to
delays. He finds that, if the delays are sufficiently long to allow customers to
arrive in an order substantially different from the scheduled one, then the inter-
arrival time process becomes unmanageably complicated. The Poisson count
process does not consider order, but only the number of arrivals in different
intervals, and it is in fact possible to compute the Poisson count process of an
input of the Winsten type in several cases of interest. Similar remarks hold for
inputs obtained by superposing several independent sequences of events.

The fact that the input process affects {Q,} through 9t suggests that we should
look for sequences whose Poisson count processes have simple stochastic strue-
ture. Obviously the very simplest case is that in which the N, are independent
and identically distributed, and this, by Theorem 4, implies that 3 is a bulk
Poisson sequence. In the language of queueing theory, this means that the input
consists of batches of independent random sizes, arriving in a Poisson process.
This result is disappointing; it might perhaps have been expected that more
general inputs would have independent Poisson counts.

Notice that, if the input is a bulk Poisson sequence, with batch distribution
{bi}, then we can regard the batches as arriving in a Poisson sequence, and having
total service time with probability density

(39) é bt/ (b — 1)L

Thus, in a sense, this queue is equivalent to a queue M/G/1, in which the service
time distribution has the form (39). Conversely, a queue M/G/1 in which the
service time distribution is given by (39) can be converted into a queue of the
form X/M/1 whose input is a bulk Poisson sequence.

More generally, if we have any queue X/G/1 whose service time distribution
has density of the form

(40) e atz cktk’
k=0

where @ > 0, ¢ = 0, then we can convert it into a queue X/M/1 by regarding
the customers as made up of a random number of units, each having an ex-
ponentially distributed service time with mean 1/a. This device has been used
by a number of authors (see the paper of Wishart [10] for references). It may be
shown that any service time distribution whatsoever can be approximated by
distributions having densities of the form (40).

Finally, let us consider the case in which the input process is a renewal se-
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quence, ie. the queue GI/M/1 studied by Kendall [7]. Then, according to
Theorem 1, the Poisson count process takes the form

41) N, = evn,

where {¢, = 1} is a delayed recurrent event, and the », are independent and
geometrically distributed. It has long been known that the limiting distribution
of @, as n — o is geometric, whatever the interarrival time distribution; it is
no accident that the geometric distribution also arises in the distribution of », .

In regarding {@.} as a discrete time process, we are effectively considering a
new (discrete) time n related to true time by n <> 7, . Then (37) can be regarded
as exhibiting {Q,} as a discrete time queueing process, in which groups of cus-
tomers Gi, G, - - arrive at the instants of a (delayed) recurrent event. In
terms of this discrete time, the groups have a service time which is geometrically
distributed (having the same distribution as the »,). Thus we have a discrete-
time analogue of the queue GI/M/1 with which we started. This ‘“discretization”
effect is a general property of the Poisson count process, and is one which might
be useful from a computational point of view. Unlike most procedures for turning
a continuous time process into one in discrete time, it is exact.

We have seen that the customers @ are naturally collected into groups G,
each group containing a random number of customers having a geometric dis-
tribution on 1, 2, 3, - - - . By repeating the procedure we can collect the groups
into second-order groups G, each G containing all the groups which arrive
during the service period of a given group. The number of groups in any second-
order group will have a geometric distribution, and hence, by a well-known re-
producing property of the geometric distribution, the number of customers in
each G will have a geometric distribution. Proceeding in this way, we obtain
an infinite hierarchy of groups of customers G, g, g®, ..., and each g will
contain a geometrically distributed number of customers. A fairly simple proba-
bilistic argument shows that the limiting distribution of @, as n — o« is exactly
the same as the limit, as r — o, of the distribution of the number of customers in
g, and is thus geometric. This accounts, not only for the occurrence of the
geometric distribution in the solution of the queue GI/M/1, but also for the close
formal connection of the theory of this queue with the theory of branching
processes.
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