A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK
WITH A TWO-SIDED BOUNDARY!

By J. H. B. KEMPERMAN

University of Rochester

1. Introduction. Let {2, , n = 0} be a process of independent increments such
that the increment z,., — 2, has its distribution independent of n. Here, n and &
run either through the nonnegative integers (discrete case) or through the non-
negative real numbers (continuous case). In the continuous case, the process
{2.} is assumed to be separable, normalized in such a way that the sample func-
tions are continuous to the right. Thus, in both cases the process is Markovian.

One has

E(™) = E@E)E @™ 7)" = ¢(s)e™",

say. Let v and v be real and fized such that 6(y) < v < «. We shall be in-
terested in finding explicit formulae for the generating functions

Q: = E({zxt0 = 0} exp [szv40 — oN]), Q2 = E({zwy10 = c} exp [szy4o — vN]).

Here, N = inf {n: 2, £ [0, c]}, while ¢ denotes a fixed positive number. Further,
s denotes a variable complex number with Re (s) = v. In the discrete case, we
shall usually write ¢ ® = ¢ and ¢’¥ = ¢ (s), thus, o (y) < ¢

As will be shown, such explicit formulae can be found in a large number of
important special cases, where the downward jumps of the process {z,} are of
such a simple type that the function ¢ (s) is a priori known up to a finite number
of parameters a; , - - - , a,, (each depending on v or ¢ but not on s).

In order to determine these parameters, we consider

Q) = T CBEN > 1)

in the discrete case, and Qy(s) = [i ¢ ""E(e"*{N > n})dn in the continuous

case.
If B is a given Borel subset of the reals we denote by M (B) the class of all

complex-valued regular Borel measures u supported by B such that the integral
o0
fi(s) = f_ e”u(dy), Re (s) = v,

is absolutely convergent. The corresponding class of transforms 4 is denoted
as M (B). Note that Qy = #, where n(D) = > aot" Pr (2, ¢ D, N > n) in the
discrete case, similarly for the continuous case. Because N > nimplies 0 < z, = ¢,
we have that the measure 7 is supported by the interval [0, ¢], in other words
Qo e M (0, c])-
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A GENERAL RANDOM WALK 1169

It turns out that Qo (s) can always be expressed in terms of Q(s). Thus,
Qo € M ([0, c]) is a condition on @, which in many cases leads to a non-singular
system of r linear equations in the r unknown parameters a; mentioned above;
see Section 7.

In this approach, the main problem is to derive useful explicit formulae for
Qo in terms of @, . In principle, this is done by means of the following Wiener-
Hopf type technique. (As Professor Kesten kindly pointed out, a related method
was employed by Widom [9] in handling the symmetric stable process with a
two-sided boundary.)

It follows from the Markovian character of the process {z,} that

(1.1) 6(s)R(s) = Qo(s) + (Q1(s) + Q:(s))R(s) when Re (s) = 1.
Here, R(s) 5 0 is defined by R(s) = (1 — to(s)) " in the discrete case, and by
R(s) = (» — 6(s))™" in the continuous case. Now suppose that we can find

functions U~ (s) and UT (s) (not depending on ¢ or ¢) defined for Re (s) = ¥,
such that

(1.2) U (s)UT(s) = R(s), Re (s) =),
and '
(13) QO/U_‘(:M((—OO, C]), Q2U+€M((C, 00))

Dividing (1.1) by U (s) and using (1.2), we have Q/U -+ QU =
(6 — Q) U™. Invoking (1.3) this gives

(1.4) Q/U =[(¢ — @)U ™,

which is the desired expression of @, in terms of @; . Here, if 4 = [A(s) is the
transform of a measure p then for any Borel set A

(814 = )1 = [ e"utay);

in other words, [£]* denotes the transform of the A-truncation of p.
The U* which we shall construct satisfy not only (1.2) and (1.3) but also

Q/U*e M (0, »)), QU eM((—=,0)).

Dividing (1.1) by U™, one obtains QU™ = [(¢ — @)U, Q/U* =
[(6 — Q)U1“. For the case of a one-sided boundary (¢ = «, @ = 0), this
yields the explicit formulae @, = (1/U)[6U 177, @ = U'sU 1", which
were already employed in one form or another by Andersen, Baxter, Cramér,
Donsker, Pollaczek, Spitzer, Tacklind, Wendel and the author, see [6]. The
approach of the present paper is probably closest to the one of Wendel [7].

Let us first consider the discrete case. Then the required pair U* is given by
U (s) =@ Ut) = ¢~ with L as in (3.11), (3.12). Invoking the
condition Qo £ M ([0, ¢]), (1.4) leads to the central Theorem 3.1.

If the distribution function F (y) of the jumps X, = 2, — znyisfory < 0
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of the exponential type (6.2) or (6.6), (X, integral valued in the latter case),
then a simple formula for U™ is furnished by the auxiliary results of Section 6.
Moreover, in these cases, @i (s) is a priori known up to a finite number of pa-
rameters. The resulting implications of Theorem 3.1 are discussed in Section 7.

In Section 4, proceeding directly from Theorem 3.1, we derive in full detail
the explicit formulae for the @; in the special case that F (y) = de® for y < 0,
(d and 8 constant, F (y) arbitrary for y = 0). This illustration should be a
sufficient guide for a reader interested in some of the other cases covered by our
method.

As to the continuous-time case, we have restricted ourselves to the Poisson
process of independent increments as defined by (5.2). Then 8(s) = ¢s +
M (s) — 1), where ¢ is the so-called trend of the process, while ¢ (s) = E ™)
determines the distribution of the jumps X of the process {z,,0 < n < }.
In this case the required functions U~ (s) and U* (s) (witho = a — \) are given
by (5.13), (5.16), (5.19) and (5.20). In this way, (1.4) leads to the central
Theorem 5.2 for the continuous case.

As shown in Section 7, exact formulae for the Q; are easily obtained when the
distribution function F (y) of the jumps X is for y < 0 of the exponential type
(6.2). Full details are given at the end of Section 5, for the special case of a
downward trend (¢ < 0) and positive jumps X .

2. Preliminaries. In this paper, except for Section 5, {z,} will denote a given
random walk on the reals with a discrete time parameter n = 0, 1, - - - . Thus,
the increment X, = 2, — 2,_1 is independent of the 2z, with m < n — 1 and
has its distribution

2.1) v(B) = Pr (X,¢B)
independent of n, (n = 1, 2, --- ; B denoting any Borel subset of the reals).
Here, » is a probability measure, thus, its Laplace transform
+o0
(2.2) o(s) = f_ v (dy)

is defined at least for Re (s) = 0.
In the sequel, ¢ will denote a fized real and positive number. We shall assume
that there exists a real number vy such that

23) ely) < o, toly) <L

If t < 1 one can always choose vy = 0. The case ¢ = 1 is of particular interest;
here, we require that ¢ (y) < 1 for some real number 1.

In the sequel, ¥ will denote a fized real number satisfying (2.3). Further,
unless otherwise stated, s will denote a variable complex number satis-
tying Re (s) = v. Finally, M denotes the collection of all complex-valued regular
Borel measures p on the realssuch that ||| = [*% ¢™|u(dy)| < ».Onehas ||»]| =
¢(y) because » is nonnegative. Further, |[uxus] = |lmll[luell, (2 star denoting
convolution), thus, M is in fact a Banach algebra.
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To each u ¢ M we associate the function (transform)
+o0
(24) f=i() = [ eutay), (Re(s) = 7).

Further, we introduce
2.5) M = {p:pe M.

As is well-known, (2.4) establishes a 1:1 correspondence between M and M
such that (m*us)” = fufls .

Let B be a given Borel measurable subset of the reals and let B’ denote its
complement. Then M (B) will denote the set of all measures u ¢ M which are
supported by B, (that is, satisfy u(D) = 0 for each Borel subset D of B'),
similarly M (B'). Each p ¢ M admits a unique decomposition as a sum u =
W + W with [u)®eM (B), [u]” e M (B'). Here, [u]”(4) = u(4NB) is
precisely the restriction of u to B, similarly [u]® "

Let further M (B) = {fi: u ¢ M (B)}, similarly M (B). Then, correspondingly,
each /i ¢ M admits a unique decomposition as a sum

(26) A=A + @ with [2)° 0 (B), [&]” & M (B).
Here, if £ is the transform of the measure p ¢ M then
(27) = [ euay),

similarly, [4]®". The truncation (2.7) will be frequently used in this paper. As
an important illustration,

(28) lfae = [[ @ u@ym(ae).

2+y-+2e B

In the sequel, when we say that a function f(s), defined on a subset H of
the complex s-plane, is analytic in H, we shall mean that f(s) is continuous at
each point so ¢ H and analytic at each interior point s, ¢ H.

Thus, if 4 & M (B) and B is bounded on the left then (2.4) defines a unique
extension of 4(s) to an analytic function in the closed half plane Re (s) = +.
This extension is bounded if B < [0, ) and tends to 0 (as Re (s) —» — ) if
Bc (0, »).

LEmMA 2.1. Let u ¢ M be given. Then p ¢ M([0, ©)) as soon as the function
f(s), Re(s) = v, can be continued to a bounded and analytic function in the half
plane Re(s) < v. One has p ¢ M((0, «)) if, in addition, 4(s) tends to 0 as Re(s)
tends to — .

Proor. Consider the function of bounded variation defined by

F@) = [ ' ey (dy) + e*u((2))/2.
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It follows from the Lévy inversion formula that
+iT
F(&) = F(y) = limpw (2r) ™ [ iy + 6)(™ = &™) /s ds.
—iT
On replacing the latter integration path by the arc: |s] = T, Re(s) = 0, one
easily obtains the stated assertion.
3. A two-sided boundary. Consider the random walk {2,} defined by
(3.1) Zn=ZO+X1+"'+Xn; (n=071y"');

where 2, X1, X, , - - - are independent random variables such that (2.1) holds.
The distribution of z, will be denoted as

3.2) oc(B) = Pr(z ¢ B).

Thus, the random walk {z,} is completely specified by the pair of probability
measures » and o.

Choose further a fixed positive number ¢, and let N denote the smallest
integern = 0, 1,2, - -+, such that z, £ [0, ¢]; (the following method would work
just as well if [0, c] is replaced by (0, ¢), [0, ¢) or (0, ¢]). One has N < « with
probability 1, except for the trivial case X, = 0.

We may and will assume that 2 ¢ [0, c], that is,

(3.3) e M ([0, cl).
In most applications, zp = z is non-random, thus, ¢(s) = €¢* with0 = z = ¢.

Let ¢(s), v and ¢ be as in (2.2) and (2.3). We shall be interested in finding
explicit formulae for the generating functions

(34) Q(s) = z%t”E(e””{N >n,0= 2. =¢}),
(actually, N > n implies 0 < 2z, =< ¢), and

(3.5) Q) = L CEEN = n, 2z < 0}),
(3.6) Q:(s) = z; {"E ("N = n, 2, > ¢});

(in view of (3.3), N =0 does not happen). By (3.1), one has ¥ (") =
é(y)e ()", thus, by (2.3), the above series are absolutely convergent for
Re (s) = v. Moreover, letting

(3-7) BO = [O; C], Bl = (_°°, 0); B2 = (0, °°);
one has
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Finally,
3.9) I —tp)=6—C— Q.

For, if Q» denotes the coefficient of {" in the expansion of @; then, by 2z, =
2n—1 + X, , where X, is independent of z,—; and the event N > n — 1,

Qo + Qun + Qoo = E(™{N >n — 1}) = 0(8)Qona if n >0,
= é(s) if n=0.

Multiplying by ¢" and summing over n = 0, one obtains (3.9).

Let us now show that the relations (3.8) and (3.9) together determine the Q;
uniquely.

For, suppose they hold with ¢ replaced by 0. Then the right hand side of (3.9)
is in M (By), thus, ffeQo]® = [Ql*° = Qo = #, say. Hence, by (2.2), where »
is nonnegative, [[u] = tllvaull = to ()llull. But to(v) < 1, thus, @ = 0, thus,
@ = Q= 0by (3.8) and (3.9).

Returning to the original relation (3.9), note that here @y, @, and é are in
M ([0, ©)), (see (3.3), (3.7) and (3.8)). It follows that

(3.10) Q1 = [teQu] ™", where Qo & M ([0, «)).

In many cases, see (6.5) and (6.11), this implies that @, (s) is known up to a
finite number of parameters.

In order to express @ and @ in terms of @, let us introduce, (as we may by
to = ()", lvl] = to(v) < 1),

0

3.11) L~ =L (s) = Zl @"/n)le" ",

and

(3.12) L¥ = L) = 2 ("/m)le"1™".

Clearly, L™ & M ((— «, 0)). Hence, (— «, 0) being a semigroup under addition,
(3.13) T — 1= 213 (£L7)"/nle M ((—,0)).

Similarly,

(3.14) & e M ((— 0, 0]), € e ([0, »)).

Finally, adding (3.11) and (3.12), we have the fundamental relation

(3.15) 1 —tp(s) = exp [-L (s) — L7 (s)], Re (s) = 7.

As a consequence,
e — 1+ tee” =" — 1M (0, »)),
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by (3.14). Hence, by (3.13) and (3.14),
(3.16) e — 1 = [—tpe” 77, where ¢ & M ([0, «)),

which is of the same type as (3.10) and often permits us to derive a simple
formula for ¢~ and hence for

(3.17) e = (1 — tp)e””
Multiplying (3.9) by ¢*" and using (3.15), one obtains
(3.18) Qe 4+ Q" = (6 — Q"

Here, by (3.8) and (3.14),
Qe e M ((—w, ), Qe el ((, ).
Consequently, (by (2.6) with B = (— =, c]), these must be equal to
[ — Qe 17 and [(¢ — Q)e* 1,

respectively, in other words,

(319) Qo = eL_[ (¢ — Ql)eL‘*‘](-oo,cI
and .
(3.20) Q=" — Q)e" 1.

TraroreM 3.1. The function @1 = Qi(s), (Re(s) = v), defined by (3.5), may
be characterized as the unique function Qi (s) e M ((— o, 0)) with the property
that the function Qo(s), defined by (3.19) for Re (s) Z v, can be extended to o
bounded and analytic function in the half plane Re (s) = .

Proor. Necessity. If Q; is defined by (3.5) then the function o defined by
(3.4) satisfies (3.19). Moreover, @ ¢ 7 ([0, c]), thus, Qo (s) is an entire function
which is bounded in each left half plane.

Sufficiency. Let @y € M (— »,0)) have the property mentioned. Define further
Qo by (3.19) and Q: by (3.20). Thus (3.18) holds which, by (3.15), is equivalent
to (3.9). By (3.14) and (3.20), one has Qe e M ((c, oo)) Further, by (3.14)
and (3.19), one has Qo ¢ M ((—, ¢]), in fact, @ ¢ M ([0, c]) as follows by
Lemma 2.1. In other words, the Q; satisfy (3.8) and (3.9) and must therefore
coincide with the functions defined by (3.4), (3.5) and (3.6).

4. An illustration. In this section, we assume that the distribution function
F(y) = »{z: 2 £ y} of the X, satisfies

4.1) . F(y) =dé” if y<o,

with d < 1 and B as positive constants; (the behavior of F (y) for y = 0 remains
unrestricted). As before, let  real and ¢ > 0 be fixed such that

4.2) —B<7y oly) <t'< .
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Here, by (4.1),
(43) o) = 1+ /)7 + [ e dF(y).
This formula yields an extension of ¢ (s) to an analytic and bounded function

in Re (s) =< v with the exception of a simple pole at s = —g@. Also note that the
last term in (4.3) is in absolute value smaller than ¢ (y) < ¢ throughout

Re (s) = v.
Finally, let § = £(t) denote the unique real number such that
(4.4) o) =t7, —B<E<7;

(ift=1then -8 < &<y <O0when0 < E(X,) < ,while{ =0andy > 0
when £ (X,) < 0).

As follows easily by (2.8), if AeM ([0, ©)) then [(s + B) 4™ =
4(—B)(s + B)7, thus, by (4.3), [eA] ™" = di(—8) (1 + s/8)7". Conse-
quently, by (3.10) and (3.16),

4.5) Q(s) =a(l +5/8)7"
and e “"®@ = (s + b) (s + B)”", where

(4.6) a=Q0) = Z_)t" Pr (N =n, 2, <0),

(cf., (3.5)), and b are as yet unknown constants, (depending on t). By (3.15),
(1 — tp)7%¢™™ = ¢""; here, ¢“"@ is analytic for Re (s) < v. Using (4.4), it
follows that

4.7) eV =(s—-H6E+8"

and

(4.8) O = [(s — £)/(s + B — to(s)) " e M ([0, »)).

For convenience, let us assume that 2o is nonrandom, thus,
4.9) 2 =2, where 0=z =c.

Further, ¢ = ¢, thus, by (4.5) and (4.6), (3.19) reduces to

(—,¢]
Qus) =2 + g [{ e — s———(fﬁ} eL+(‘)] .

By (4.8), this may be written as
(4.10) Q(s) = €*[(s + B)/ (s — El(rlec — 7, s) — apr(c, 9)),

where

e SN S
(4.11) miu,8) = ¢ [(s+ﬁ>f1—w<s>] ’

G=12).
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By Theorem 3.1, the constant @ is uniquely determined by the condition that
Qo (s), as defined by (4.10), is analytic and bounded in Re (s) = . In view of
BT = 4 — [4“, (4.8) and (4.11), we have that in (4.10) both ¢, (c —
z, s) and €*72(c, s) are analytic and bounded for Re (s) < v, (except that the
latter has a simple pole at s = —@; however, in the product (4.10) this pole is
canceled by the factor s + ). In view of the factor (s — £) ™" in (4.10), it follows
that the constant a is uniquely determined by the condition that 7 (¢ — z, £) —
afBry(c, £) = 0. Therefore, 75(c, £) 5 0 and, moreover,

(4.12) a=pF"rnC—=z§/nk).

By the way, in the present case, where ¢ is real and positive, 7, (c, £) # 0 also
follows from the fact that £ is real and that 7, corresponds to a nonvanishing
nonnegative measure, compare (4.8) and (4.11). On the other hand, the above
type of reasoning easily carries over to complex values of ¢, 0 < [t| < ¢(y)7.

It remains to derive more explicit formulae for the 7;(u, s). First, as follows
easily by (2.8) and Re (8) + v > 0, we have for each 4 & M that

“.13) €a/(s + B = (s + B)He WU — LU,
thus, ’
@14) /G + OIT = (s + BT + P

These formulae will be used frequently.

Now takein (4.14) 4 = (1 — #(s))™, Re (s) = v, (which is the transform
of the measure p = 2 uot"»" ¢ M, with »" as the distribution of X; + -+- +
X,). Writing (s — £)/(s+8) =1 — (¢4 B8)/(s + B), we have from (4.11)
that

—ws—E[ 1 )T g4
m(u,s) = ¢ L[ :I xu(—8)
1—1t
(#15) Hf 1 ) £ 8+Bs+3
— U S — s — _
=e 8+ﬂl—t¢ ST 8 u() Xu( 6)
Here,
o) w6 = [ 2] =S e [ @y
. xu(8) = T~ % =2 u+e v (dy).
Combining (4.11), (4.14) and (4.15), one further obtains
e 8 1 "°°'“1 s — +8
Tz(u, 8) =€ (8+ﬂ)2 [1 — t¢:| (8 ¥ 6)2 u( ﬂ) BXu<_ﬁ)a

where

x(=8) =2 0 [ (= we? ().

u+t
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It follows, cf., (4.4), that
i, £) = {—t £) ¢ + B)e™} ™ — xu(—B),
(&) = {—to' (£) (¢ + B)%™} ™ — xu(—8).

Together with (4.12), these yield the desired explicit formula for the quantity
Q1 (0) defined by (4.6).

Finite expressions for the 7;(u, s) can be given in the important special case
that (4.1) is strengthened to

4.17) F(y) =dé® if y<e

where € is a positive constant. We are only interested in the cases u = ¢ — z
or 4 = ¢, thus we may assume that v = 0. Now write 7; as defined by (4.11)
in the form

N(u)

4.18) 7i(u, s) = Eat"e"s“{[(s - 8/6+ Bl ™" + R;,

where

s—E (tp)N@H]cma
(s+B)Y 1—tp ]

and N (u) = [ue']. Notice further that (4.17) implies |p(s)| = Kle®| if

Re (s) = v, s+ 8 = 6 > 0, K denoting a constant depending on §. Hence,

by v < (N (u) + 1)¢, the following lemma will yield a finite expression for R; .
Lemma 4.1. Let u e M be such that the integral (2.4) is absolutely convergent

for —B < Re(s) = v and defines a function {i (s) which can be extended to a single

valued and analytic function in Re (s) =< v except for a possible singularity at —p.
Suppose further that there exist real constants g and 6 > 0 such that

(4.19) R; = e_“‘[

(4.20) 4) = 0(™) for Re(s) < ls+6] 2 6.
Then
4.21) e [A] 7" = —Res {i(w)e ™™/ W — $)}u-s,

whenever u < q, (Res = residue).

Proor. Let s be fixed, —8 < Re (s) < v, and put G () = [*% e"u (dy) +
¢“u({2})/2. Then [Z.e”dG (@) = [Z0 e %u (d2) = 4@ + s), when —8 <
Re (v + s) < . Hence, cf., Widder [8] p. 242,

= vo+iT _ dv
G(z) = —limg,, (277) ilo + s)e™ —,
vo—iT v
whenever Re (») < 0, —8 < Re () + s) = «. Substituting » + s = w, this
yields
wo+iT
G(2)e™ = —limg.., (27)7" f i(w)e™ dw

wo—iT — 8
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whenever Re (wo) < Re (s), —8 < Re (wy) =< ¥. On the other hand, using
(4.20), the latter right hand side is equal to zero whenever Re (wy) < —8 — &
and z < ¢. Consequently, if z < g then

G(e)e™ = —Res {Aw)e " (W — ) }ums .

Here, the right hand side is a continuous (in fact entire) function of z. Observing
that the left hand side of (4.21) is equal to G'(u + 0)e¢ ™, one obtains (4.21).
Combining (4.19) and Lemma 4.1, one obtains

w—t (to(w))VWH }
(w—+B) 1 —to(w) w— sfu—s’

R; = —Res{
Introducing
(42)  jw) = @ + Ho(w) = dgs* + (w+p) [ o an(y),
and writing

N(w)+1 N(%)

1— to tf(w) — (w + 8)’
this in turn yields
(423) RJ' = Rf(u: S) = R;(u) + (3 - E)R;’ (u) S), (.7 = 1: 2)1
where

, N(u)+i—1 " B n
@24) Rjw) = 2 ("/m){@/dw)"e" @) fums
and
N(w)4i—1

(4.25) Rj (u,s) = Zo @/ m){ @/dw)"[ €™/ w — ))f @)™} s
Here, N (u) = [ue ]

The sum in (4.18) can be handled by means of (4.14), (compare (4.15) and
subsequent formulae). Using (4.23), one obtains

(4.26) mi(u,8) = A@W) + (s — £)C(u,s)
and

(4.27) 72(u, ) = Bw) + (s — £)D (u, s),
where

A(u) = Ri(w) — Gu),

(4.28) ,
B(u) = R:(u) — H(u).

Further,
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C(u,s) = Ri(u,s) + (s+ B)"'M(u,s),

4.29) ! .
D(u,s) = Ry (u,8) + (s + B8) "M, s) + (s+ B)H ).
Here,
N(u)
G = 2 & [ e @),
N(u)
(430) Hw = 2 6 [ (v = 0 @),

M, s) = G(u) + Zo . f S (dy).
Finally, N (u) = [ue ).
Using (4.6), (4.10), (4.12), (4.26), and (4.27), it now follows (assuming
(4.17)) that

"Pr (N =mn,2, <0) =g"4(c — 2)/B(c),

Ms

(4.31) a =

I
-

while, for all s ,
(4.32) Q(s) = €“(s + BIU[B)C( — =z, 8) — A(c — 2)D(c, 8)I/B(c)}.

Here, B(c) # 0. Notice that these expressions for a and @, are rational functions
in t, which do not involve ¢ at all. In view of (3.9), @; may be obtained from
Q+ Q=€ — (1 — tp)Qy . Also note that, by (3.5) and (3.6),

(4.33) EN) = [(@d/dt) (@1 + Q2)]i=1,6=0 = [Q0(0)]¢=1 -

More precisely, one must have that, for ¢t = 1, B(c) = 7a(c, £()) # 0, which is
true provided there exists a real number v such that ¢ (y) < 1 = ¢ . In most
applications, the latter holds if and only if £ (X,) # 0.

Considerably simpler is the special case of (4.17) where

F(y) = Y9 if y = e
=1 if y=e

Here, ¢ (s) = Be(s + B)7", f(w) = Be”. Further, if n £ N (u) = [ue ] then
" e M ((— », u]), thus, G(u) = H(u) = 0 and

|
=

(4.34)

N(u)

(4.35) M (u, s) = Z B)"e™ " (8 4 8) ™"

Finally, by (4.24), (4.25) and (4.28),
N(u)

(4.36) A) = Z [(8) /n|] (ne — u)n (u-—nc)ﬂ

N(u)

(4.37) R (u,s) = *,,Z;a A —ne) (B)"B + )™,
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and B(u) = B) 7A@ + ¢), Rs (u, s) = (B) 'Ry (u + ¢ s). Thus, (4.31)
beeomes‘

4.38) a = "Pr (N =mn,2, <0) =1Ad(c — z)/A(c + ¢).

n=0

Further, the above formulae together with (4.29) and (4.32) yield a rather
explicit formula for @, (s) and for E (N), ef., (4.33).

REMARK. As is to be expected, a formula as simple as (4.38) can also be
obtained in a more straightforward fashion. Namely, let the function A4 (u)
be defined by (4.36) when 4 = 0, while A () = 0 for v < 0. Then A (u) is
continuous for » % 0, differentiable for v % 0, u 5 € and satisfies

(4.39) BtA (w)e ™ = — [@d/du)[e ™A w + )] (u#=0,u = —¢).

On the other hand, the sum in (4.38) defines a function o = a(x)
satisfying a(x) =1 for £ < 0, a(x) = 0 for z > ¢ and further a(z) =
tfiwa@ + y)é =98 dy, thus, a(x) = Btfi7 a@)f ™ de + te?*, for
0 =< z = c¢. The latter relation together with a(x) = 0 for x > ¢ determines
a (z) uniquely, 0 = z < «. Finally, the above properties of A (1), in particular
(4.39), imply that these same relations are satisfied by the right hand side of
(4.38).

As is well-known, the special case (4.34) is of importance in sequential analysis.
Namely, let U be a random variable whose distribution function has a derivative

equal to
g, (u) = pe ™ if u>0,
(4.40) ’ .
=0 if u <0,

with p > 0 unknown. One wants to test the simple hypothesis H, : p = po against
the simple hypothesis H; : p = p1, where py < p; are given. In doing this, one

takes independent observations Uy, U,, - -- and considers
Xn = 10g [gs, (Un) /90, (Un)] = log p1/p0 — (o1 — po) Un .
Its distribution is of the form (4.34) with ¢ = log p1/p0, 8 = p/ (o1 — p0). Next,

one considers the random walk z, = z + X; 4+ - -+ + X, with absorbing bound-
aries {z < 0} and {z > ¢}. Here,

z=1log B ¢c—2=1ogAd, where B =8/(1 — ), 4 = (1 — Bo)/e,

with ap = By = .05, say. If zy < 0 one accepts H, ; if 2y > ¢ one accepts H; .

The above formulae now yield an explicit finite expression for the probability
Q1 (0) of accepting Hy and for the duration £ (N) of the sequential test, both
depending on p.

5. The continuous case. A random walk analogous to the case (4.34), but with
a continuous time parameter n, arises in the so-called sequential life test, see

2], (3], [4] and [10].
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Here, we consider items (say, light bulbs) whose random life time has the ex-
ponential distribution (4.40) with p unknown. At time n = 0 one draws my items
at random and places them on a life test; every time an item fails it is immedi-
ately replaced by a new item.

Let 7(n) denote the (random) number of failures up to time n and consider the
stochastic process defined by

(6.1) z(n) = x + r(n) log pi/p0 — mo(pr — po)n.

As soon as z(n) < 0 one accepts Hy, as soon as z(n) > ¢ one accepts H; ; here,
z = log B 'and ¢ — = = log A with A and B as before.

Exact formulae for this absorption problem were first given in [2] pp. 261-
263. Let us now show how this and more general problems can be handled by
our Wiener-Hopf type method.

Consider the more general process defined by
(5.2) i) =z+@m+ Y X,

1<k<M(n)

(k = 1,2, ---). Here, {M (n)} is a simple Poisson process of independent in-
crements taking integral values j = 0, 1, 2, - - - , with M/ (0) = 0 and such that,
conditional on M (n) = j, one has M (n + h) = j with probability 1 — \h +
o(h) and M (n + h) = j + 1 with probability Ax + o (h), (h small and positive,
\ a positive constant). Further, the X;(k = 1, 2, ---) denote real-valued
random variables, independent of each other and independent -of the process
{M (n)}, and with a common distribution »(B) = Pr (X; ¢ B). Finally, 0 =
z < ¢ and ¢ = 0 denote given real constants; (the case ¢ = 0 would be largely
equivalent to the discrete-time problem considered in Section 3).

As usual, let » = ¢, and let v be a fized real number with ¢ (y) < . For
Re (s) = v, one has

BE@) = 5 M0m) o 6) = exp (2 + n(as + Mo6) = ).
Thus,

(5.3) fw E(e*™)e® " dn = ¢¥/(a — gs — Me(s)).

. 0

Here, and in the sequel, @ denotes a fixed real number such that
(54) a>qy + M), a> 0.

In what follows, many quantities depend on « even if this is not shown by the

notation used.
Now, consider the random variable

(5.5) N = inf {n:n > 0,2(n) [0, c]}.
Then either z(N+) < 0 or 2¢(N+) = c¢. In fact, 2(N+) = 0 happens with
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a positive probability if and only if ¢ < 0. Similarly, z2(N+4) = ¢ happens with
a positive probability if and only if ¢ > 0.
We shall be interested in finding explicit formulae for the quantities

(556) - [ " BN > n))e® " dn
and
(5.7) Q = Bl +) = 0jeY),
(5:8) Q= E@“Pe@+) z ™).
Each of these belongs to M, in fact,
(5.9) Qe M (0, ¢)),
and
(5.10) Qleﬂf((—w, o) Tf q<0,
eM((—=,0)) if ¢>0,

and

QeM((c, ) if ¢<0,
(5.11)

eM(le, ©)) if ¢>0,

compare the remark following (5.5).

Since (5.2) implies (5.3), (whatever the real number z), it follows easily from
the Markovian character of the process {z(n)} that, for Re(s) = =,
¢/ (e — gs — Mp(s)) = Qo(s) + (@i(s) + Q(s))/(« — gs — Ne(s)). This is

equivalent to

(6.12) 1 — )Y@ = (@ — )7 (€7 — @ — @),
where
(5.13) ¥ =va=[a/ (@ — qs)lp(s) e M.

By (5.4), a/(« — gs) is the transform of a nonnegative measure (with density
la/q| € *'%) carried by (0, ©) or (—, 0) depending on whether ¢ > 0 or
¢ < 0. Thus, also ¢ is the transform of a nonnegative measure such that

(5.14) Y @) < /A,

hence,

(1~ O/a)y)™ = 3 (/)" e I,

We further assert that
(5.15) (@ — ¢8)Qo & M ([0, c]).
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For, let the left hand side of (5.15) be denoted as fo ; this is a legitimate nota-
tion, since fip ¢ M by (5.12). Further, by (4.14) and (5.9),
0= (¢ — g™ = (@ — g9)[(@ — ¢9) 78] ™" = [2] ™7 + K,
where K denotes a constant. Clearly, K = 0 thus fe M ([0, «)). Similarly,
from a (¢, o )-truncation, fio & M ((— «, c]). This proves (5.15).
Because of (5.14), we are allowed to introduce
L™ = Lo = 2, (1/n) /)",
(5.16) -
L* =L{= X (1/n) \a)" "1
n=1

They satisfy (3.14) and
(5.17) 1— Va)y =¥,
Consequently,
(5.18) [a—gs— N (®)] 7 = (@ —gs) [l — W)Y ()] = U (s)U(s),
when Re(s) = v, where '
5.19) Ut@s) = (a — qs)_le"+(s) if g > 0,
. = (L@ if ¢ <0,
and

U (s) = e @ if ¢ > 0,
(5'20) —1 _L™(s) :
= (a—gs) ¢ “ifqg<O.
It follows by (3.14) that
(5.21) UteM ([0, ©)), U e M ((= «,0]).

Also note that U™ corresponds to an absolutely continuous measure when ¢ > 0,
similarly, U~ when ¢ < 0. Using (3.14), (56.9), (5.10), (5.11) and (5.15), it
follows that

QU e M ((— ©,0)), RUT e M ((c, »)),
Q/UT e M ([0, ©)), Q/U” e M ((— =, c]).

In view of (5.18), (5.12) can be written as QU™ + Qo/U* = (¢° — Q) U™ and
also as QU + Q/U™ = (¢ — Q) U™. Using (2.6) and (5.22), this yields the
following fundamental result.

TaEOREM 5.1. One has the following relations:

(5.23) QU™ = [(¢* — Q)U™",
(5.24) Q = U™ — @)U,

(5.22)
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(5.25) QU = [(* — @)U,
and
(5.26) Q = UT(e® — @)U,

If ¢ = o (thus @; = 0) then (5.23) and (5.24) yield explicit expressions for
Qo and @, . A different proof and further applications of this special case may be

found in [6], chapter 19.

TurorEM 5.2. The function Q1 (s) defined by (5.7) may be characterized as the
unique function Q. satisfying (5.10) with the property that the function Qo (s) de-
fined by (5.26), for Re(s) = v, can be extended to a bounded and analytic function
in the half plane Re(s) = «.

For the proof of Theorem 5.2 we shall need:

Lemma 5.3. The Q; (2 = 0, 1, 2) are uniquely determined by the relations (5.9),

(5.10), (5.11) and (5.12).
Proor or Lemma 5.3. It suffices to show that
(5:27) 1= M) = (¢ — g8)7 (= — @),
together with (5.9), (5.10) and (5.11), imply that the @; are all zero. Here, the
Q: do not necessarily correspond to nonnegative measures.
Putting
(5.28) fiu(s) = (@ — ¢)Q(s) = —(1 — Va)¥) ™ (@ + @),
by (5.27), it follows from (5.9) that &y & M ([0, c]), compare the proof of (5.15).
By (5.13), ¢ corresponds to an absolutely continuous measure, hence, by (5.10),

(5.11) and (5.28), we have that fiy is of the form f = 6¢™ + fi,
where g1 ¢ M ((0, ¢)), while 0 is a constant. Further, &, = 0 if ¢ < 0,

xo = cif ¢ > 0.
Using (5.10), (5.11) and (5.28), we have
0= —[Q + Q" =[A — M/a)¥)i]"
= fin — M)Wl — 0/ a) [y .

It follows that {; = 6, , thus,

(5.29) Q = (@ — gs) o = 6(a — gs) 7 (€™ + i),

where fi; denotes the unique solution of the “integral equation”
i = /)l = Oale™ ],

(s € M ((0, ¢))). The uniqueness of j, follows by (5.14) and the fact thaty = 7,
is the transform of a nonnegative measure » . Representing fi, as the usual
Neumann series, and using o > 0, we see that {; and hence ™ + [, are trans-
forms of nonnegative measures, the latter being non-vanishing. Invoking (5.9),
it follows from (5.29) that 8 = 0, thus, @y = 0, thus, @ = @, = 0, by (5.10),

(5.11) and (5.27).
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Proor or THEOREM 5.2. The necessity of the stated conditions follows by
(5.9), (5.10) and (5.26).

Sufficiency. By (5.26) and Lemma 2.1, the stated conditions imply that
Qo £ M ([0, c]). Because of the factor (« — g¢s)™" in U™ or U*, Q corresponds
to an absolutely continuous measure, thus, Qo € M ((0, ¢)). Defining Q, by (5.25),
we obtain a triplet {Q, , @1, @2} satisfying (5.9), (5.10), (5.11) and (5.12); (in
verifying (5.11) for ¢ > 0 one uses (4.13) and ¢ eI (0, »))). Now apply
Lemma 5.3.

In a number of important applications, ; or @, are a priori known up to a
finite number of parameters. More precisely, if the distribution function F (y)
of the jumps X, satisfies (6.2) then @, is of the form (6.5), except for an additive
constant when ¢ < 0. The resulting implications of Theorem 5.2 are discussed
in Section 7.

Let us here restrict ourselves to the important special case that

(5.30) Xy =20 and ¢ <0.

Then Q is a constant, that is, independent of s. Further, o (s) = [& ¢”» (dy) is
a bounded and analytic function for Re(s) = . Moreover, by (5.13), the
distribution function corresponding to y satisfies (4.1) with

(5.31) B=—afg>—y, B>0,
(see (5.4)). Further, by (4.7), the function ¢ * given by (5.16) is of the form
(5.32) e = G—HG6+/T

Here, £ denotes the unique real number satisfying (4.4), with ¢ and ¢ replaced
by ¥ and M\ a, respectively; that is,

(5.33) ¢ + N (§) = cand o/qg < £ <.
By (5.17) and (5.19),

+_s—& 1 __—q(s—%
s+B1—(Naly a—a5— hls)

Finally, by (5.20), (5.26) and (5.32),
Qo = g™ (s — H[e7e" 17 — Qule™ 1.

(5.34) Ut = ¢

Thus,
(5.35) Q(s) = lg| 7/ (s = Olirilc — 2, 8) — Qunle, 9)},
where

(5.36) m1(u,s) =e

is precisely the same function as the one defined by (4.11), provided that in
(4.11) we replace t by A/a and ¢ by ¢, see (5.34).
By ¢ e M ([0, »)) and (5.36), 1(u, s) is clearly an entire function of s. It

—su [6L+] (—o0,u]
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follows from (5.35) and Theorem 5.2 that 71 (c, £) # 0 and
(5.37) Q= E({zW+) = 01> ) = r1(c — x, £)/ni(c, §).

A somewhat more explicit formula than (5.36) for 7; is given by (4.15), (4.16),
with ¢ and ¢ replaced by M/« and ¢, respectively. Using (5.13), (5.33) and
(5.37), this yields @ = {¢¥ — K(c — 2)¢*}{1 — K (c)e*} ™", where

() = (1+ (/) (6) 3 0a) [ a5t (dy).

u+

Here, 3 = —a/q, while »; is such that », = ¢.
Finite expressions can be obtained when

(5.38) X2 >0, g <0,
where e denotes a constant. For, then we have by (4.26) that
(5.39) ri(u,s) = Aw) + (s — £)C(u,s).

Here, A (u) and C (u, s) are defined by (4.24), (4.25), (with j = 1), (4.28),
(4.29) and (4.30), where ¢, f(w) and » are to be replaced by M e, (—a/q)e (w)

and v, respectively. .
It follows by (5.35), (5.37) and (5.39) that

(5.40) E({(zN+) = 0™ ") = @ = A(c — 2)/A(c)
and
* A(c)C(c — x,8) — A(e — 2)C(c, s)
(541) (s) = = ’ 8
@l =y 10

where A (¢) # 0. Each of these expressions is a rational function in ¢, not in-
volving £.

Finally, consider the still more special case that X, = e is constant (and
g < 0). In fact, (5.1) is of this type with A = mp; ¢ = —mo(o1 — po) < 0;

e = log pi/po . Now, A (u) is given by (4.36) and C (u, s) is given by (4.29),
(4.35) and (4.37), (with 8 and B¢ replaced by —a/q and —\/q, respectively).

For this special case, Dvoretzky, Kiefer and Wolfowitz [2] already proved
(using (4.39)) the case « = X of (5.40) and the case s = 0 of (5.41), while
Woodall and Kurkjian [10] proved (5.40); Baxter and Donsker [1] p. 83 dis-
cussed the case Xy = ¢ ¢ = . Note that, even in the general case
(5.2), B ") = @u(0) + &0) =1 — (a = N&(©), by (5.7), (5.8) and
(5.12).

6. Auxiliary results. In the Sections 4 and 5, we derived useful explicit formulae
for the Q;, in certain special cases where @ is a priori known up to a single
parameter. An analogous procedure yields explicit formulae for the Q;, see
Section 7, whenever ¢(s) = E(¢’**) is such that there exist finitely many \; ,
oo, X\, in M ((— e, 0)) spanning the manifold [o} ([0, «))]"™?. In other
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words, if for each % £ M ([0, «))
(6.1) X700 = Z bR (s),

where the b;{x} are independent of s.

Moreover, in the discrete-time case of Section 3, if the X are integer-valued
we need to require (6.1) only for the transforms x of the measures x ¢ M carried
by the nonnegative integers.

As usual, v real and ¢ > 0 will be fixed and such that (2.3) holds. Further,
M, M and M (B) will be as in Section 2, L™ and L™ as in Section 3.

As was shown in [5], Section 9, a relation (6.1) holds (for all x ¢ M ([0, »)))
if and only if the distribution function F (y) of the X; is such that, for y < 0,
the derivative F’ (y) of F (y) exists and is of the special form

? kp
(6.2) F'(y) = }; eﬁ“’; enilyl* (y < 0).

Here, the cu, and B, denote complex constants with cie, #Z 0 (1 = h = p),
Bi, - ,Bp distinet, Re(8,) > max(0, —'y) We shall allow p = 0, that is,
F(y) = 0fory < 0.

Note that (6.2) implies

63) o) =33 2 (k= Dlasls+ 0™ + [ e ar(y),
which defines ¢ (s) as an analytic function in the half plane Re(s) = max (0, v),
except for the poles —@;, of order k, (h = 1, -+, p).

LemMa 6.1. Given (2.3) and (6.2), the equation ¢ (s) = t has precisely r =
> ky roots n1, -+, m, in the half plane Re(s) < v, (a root of multiplicity m
counted m times). Moreover,

(6.4) “*)—H(ﬁ +8)"H(8—m -

Finally, if % € M ([0, ©)) then
kp

(6.5) lex] =" = 20 > ans(B + 8)7F,
o

where the a; denote complex constants depending on X.

The proof of this lemma may be found in [5] and [6]. The assertion (6.5) is
easily proved directly.

Next, let us turn to the case that the distribution » of the X is carried by
the integers. Let p; denote the mass of » at 7 = 0, £1, £2, -+, thus, p; = 0
and > p; = 1.

As was shown in [5], a relation (6.1) holds for all x ¢ M carried by the non-
negative integers if and only if there exists a nonnegative integer m such that,
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for j < —m, p; is of the special form
? .k
(6.6) p; = }; 6, 1; Ch,kljlk_l, (G < —m).

Here, the ¢, and 6, denote constants with cie, = 0 (1 = h = Pp), 01, ,0p
distinet and 0 < |6, < min(l, 7o), where vo = ¢’ > 0. We shall allow that
p = 0, that is, p; = 0 forj < —m.

In the case on hand, ¢(s) = ¥ (¢°), where

©6.7) vw) = X pw) (jw] = 70).
Thus, (2.3) is equivalent to

(6.8) Yip) < ' < oo

Also note that (6.6) implies

j=—m

p  kp —1 3 0 i
(69) () = 2 D dualw — )" = 2w’ + X piw

with dy and e; constants, dyi, # 0 for 1 < h = p.Thus, ¥ (w) is analytic for
|w| < 70, except for poles 6, of order ki, h = 1, -+ -, p, and for a pole at w = 0
if m > 0. The proof of the following lemma may be found in [5] p. 303.
LevmA 6.2. Suppose that (6.8) holds and further (6.6) for j < —m, where

m = 0 is minimal. Then the equation ¥ (w) = ' has precisely r = m + >k
roots & , -+ , & n the circle |w| < yo . Moreover,

v r
(6.10) e =" J]l: (w — 6,)" II1 (w — &),

p g

where w = ¢°.
Finally, if x € M ([0, )) is carried by the nonnegative integers then

» kp —1 .
(6.11) [eR1 70 = 2 > ana(w — 07" + 2 biw,

j=—m
where the ax x and b; denote constants depending on x; further w = e

7. Explicit formulae. In this section, we assume that the distribution function
of the X, satisfies (6.2), except that, in the discrete-time situation of Section 3,
we shall also allow that, in stead, X; is integral-valued in such a way that (6.6)
holds. In the latter case, as is natural, we shall further assume that ¢ and 2 are
integers, to the effect that exp (=L*(s)), 6 (s) and the Q;(s) are all series > baw®
in integral powers of w = ¢’, (lw| = v0).

We claim that, under these assumptions, useful explicit formulae for the Q;
can be derived by using either Theorem 3.1 or Theorem 5.2, and further the
auxiliary results of Section 6.

Let us first consider the discrete-time problem of Section 3. If (6.2) holds then

(7']-) {3\;‘(8),]. = 17 e 77'}
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will denote the collection of the r = Y, k, functions
(7.2) B+ )™ h=1 p;k=1,- k.

If in stead of (6.2), X is integral-valued and such that (6.6) holds (withm = 0
minimal), then (7.1) will denote the collection of the r = m 4+ _ k, functions

(7°3) {(w_eh)~k1w_g;h=1)"',p;k=1,'“’kh;g=1:"',m}'

Here, w = ¢'.
Let ¢ and y be as in (2.3) and let @, be defined by (3.5). It follows by (3.10),
and by (6.5) or (6.11), that @ (s) is necessarily of the form

(7.4) Qi(s) = Z_:,ajij(s).

Here, the a; are as yet unknown constants, (that is, independent of s). Because
the functions (7.1) are linearly independent, the constants a; in (7.4) are
uniquely determined by @ .

Let L™ and L™ be as in (3.11) and (3.12), and define

(7.5) 2i(s) = [Ae™ 1o, j=1,-,r
' ’

and

(7.6) 2(s) = [6e"T]7 = [g¢¥)0,

where ¢ ¢ M ([0, ¢]) is given by ¢(s) = E (™).

TuroOREM 7.1. The constants a; in (7.4) are uniguely determined by the condition
that each finite zero of the function 1 — to (s) in the half plane Re (s) < v, (that s,
each pole of e"" @), must also be a zero of at least the same multiplicity of the function

@.7) #(s) — Z:lajms).

Proor. By Theorem 3.1, @, (s) and thus the constants a; are uniquely deter-
mined by the condition that the function @, (s), as defined by (3.19), that is,

(7.8) Qs) = & (5 (s) — ; ai%; )},

(by (7.4), (7.5) and (7.6)), can be continued to a bounded and analytic fune-
tion in the half plane Re(s) = «.

Here, by (6.4) or (6.10), ¢ is bounded as Re (s) — — . Further, by (7.6),
#(s) is clearly an entire function bounded in each left half plane. Moreover, by

@.5),
2:(8) = Ai(s)e™" ¥ — ™1,
which is analytic and bounded in Re (s) = v, except for singularities of the same

type as those of A;(s), (that is, compare (7.2) and (7.3), at the points s, with
s = —pBrore® = @ ore® = 0). But in the product (7.8) these singularities are
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completely canceled by the zeros of the factor

(7.9) 7 = (1= tp) e,

(cf., (8.17)), as follows by (6.3), (6.9) and also by (6.4), (6.10).
Consequently, the a; are uniquely determined by the condition that, in the

product (7.8), the finite poles of (7.9) in Re(s) < v are to be canceled by the

zeros of (7.7). This proves Theorem 7.1.
If (6.2) holds then, by Lemma 6.1, Theorem 7.1 leads to a nonsingular system

of r linear equations in the r unknowns a;, -+, a,. More precisely, let ¢,
-, ¢, denote the distinet roots of ¢ (s) = ¢ *in Re(s) < y and let my, - - - , My

denote their multiplicities. By Lemma 6.1, m; + --- 4+ m, = r. Put

(710) Ty = {(d/ds)kfj(s)}-?#h ) (7'7.7 = 17 Tty 7‘),

and

(7.11) Ai = {(@/ds)"(s)}omts G=1--,1),

where £ = k(Z) and h = h(¢) are defined by ¢ = m; + -+ + mpg + &k + 1,
0 < k < my — 1. It follows by Theorem 7.1 that the a; are uniquely determined
by the system

(7.12) > Tia; = As, i=1 -,
j=1
In particular, |T';;| = det (I';;) # 0. Moreover, using (7.4), it follows that
0 M) A(s) -+ As)
A1 P]] F12 tot Flr
(7.13) Ql(s) = —lPijl-l
Ar Prl FrZ A Prr

is an explicit formula for the function @, (s) defined by (3.5). Having found the
a;, Q and Q. may be obtained from (3.20), (6.4), (7.8) and (7.9). The case
t = 1 is presumably of most interest.

As in Section 4, the major problem in this procedure is to derive useful ex-
pressions for the functions %;(s) and #(s) defined by (7.5) and (7.6). Finite ex-
pressions can be obtained if (6.2) holds for y < ¢, e denoting a positive constant,
namely be employing the immediate extension of Lemma 4.1 to the case of
several singularities, compare the proof of (4.26) and (4.27).

An analogous procedure holds if X is integral-valued and (6.6) is assumed.
Here, {\;} stands for the system (7.3). Further, %;(s), #(s) etc. are series in
w = ¢ and, thus, have period 2r(— 1)} in s. Let ¢, - - -, &, denote the roots of
¢ (w) = ' in the circle |w| < yo = ¢" and let m, , - -+ , m, denote their multi-
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plicities. By Lemma 6.2, my + - -+ + m, = r. Replacing (7.10) and (7.11) by

(7.14) Ty = { (@/dw)*R; ()} wets » Gj=1,,7)
and
(7.15) A: = {(d/dw)*% ()} wtn > G=1,---,7),

one again has (7.12) and (7.13). Having found the a; from (7.12), @ and @;
may be obtained from (3.20), (6.10), (7.8) and (7.9).

Let us now turn to the continuous-time problem of Section 5. Here, we assume
(for definiteness) that 2y = z is nonrandom, (0 = z = c), and further that the
distribution function of the jumps X} satisfies (6.2).

Let « and v be real and fixed such that (5.4) holds, (y > —Re(8), h = 1,

-, p). Let Q:(s) (: = 0, 1,2; Re(s) = v) be defined by (5.6), (6.7), (5.8),
and let ¢, L*, U™ be defined by (5.13), (5.16), (5.19) and (5.20).

Explicit formulae for U* can be obtained from Lemma 6.1. If ¢ > 0 then, by
(5.13), a relation of the type (6.3) holds for ¢, therefore,

— T p
(7.16) U =¢" = I_Il (s — m)"lg (B + )",
where {7, - - - , n,} denotes the set of all numbers 5 such that

(7.17) gn +M(n) =a, Re(n) <n,

(a root of multiplicity 7 being counted m times).
If ¢ < 0, we have in a similar fashion, by (5.13) and (6.3), that

r41 b4

(718) U = (a—gs)7'e" = g™ I:Il (s —n)7" hI==Il (B + ),

where {n;, -+, 7, , 7,41} denotes the set of all numbers n satisfying (7.17), (one
of them & a/q if ¢ is small and negative). Using (5.18), we have from (7.16)
and (7.18) that

(119)  UH6) = K/(a = g5 = 2o TT (s = 20 T (8 + 9075

Here, K = 1if ¢ > 0, K = |g| if ¢ < 0. Further,
(7.20) =7 if ¢>0; r=r+1if ¢<O0.
By (5.9), (5.10), (5.11), (5.12) and (6.2), (compare (6.5)), it follows easily
that Q;(s) is of the form
(7.21) Qi(s) = Zlajs\j(s)-
=

Here, {\;, ---, A} denotes the system (7.2), while Ap1(s) = 1 (in the case
g < 0). Further, the a; denote as yet unknown constants.
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By Theorem 5.2, Q1 (s) and thus the a; are uniquely determined by the con-
dition that

(7.22) @) = UHETT™ — 3 afh, 0~

defines a function which can be extended to a bounded and analytic function in
the half plane Re(s) = v. Exactly as in the proof of Theorem 7.1, using (7.16),
(7.18) and (7.19), it follows that the a; are uniquely determined by the condition
that each root n of (7.17) is also a root of at least the same multiplicity of the equation

rr

2. a\ U™ = [ U,
j=1
(where both the left and right hand sides are functions of s).
In the usual way, compare (7.10) and (7.11), this condition leads to a non-
singular system

(7.23) Z Tie; = As, @=1,--, 7‘,),
=

of + linear equations in the " unknowns a,'~. For instance, if all the 7’ roots of
(7.17) are distinet, one has

Pij = [i\jU_F].g;:,o{c],
A = [FUTT,
G, j = 1,--+,7"). Substituting the solution of (7.28) into (7.21), one obtains
the explicit formula (7.13) for @, (s), (where r is to be replaced by 7’). Similarly,
(7.22) yields an explicit formula for Qo (s).

Finite expressions for the quantities (7.24) can be obtained when (6.2) holds

for y < ¢, with € a positive constant, namely, by using (7.19) and the obvious
extension of Lemma 4.1 to the case of several singularities.

(7.24)
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