ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Western Regional Meeting, Monterey, California,
January 29-31, 1964.)

1. Variances of Estimates of Variance Components in a Three-Way Classifica-
tion. Warrace R. Briscaxke, TRW Space Technology Laboratories,
Redondo Beach, California.

Methods of estimating the fixed effects and the variances of the random effects in a
three-way classification components of variance model including a fixed factor, two random
factors and a random interaction have been given by Henderson for the case of unbalanced
data (Henderson, C. R., Estimation of variance and covariance components. Biometrics 9
(1953) 226-252). The purpose of this paper is to compute the variances of the estimates of
the variance components obtained by Henderson’s “Method II,”” under the assumption
that all random effects in the model are normally distributed. The technique used is that
which was developed by Searle and which was earlier applied in a two-way classification
(Searle, S. R., Sampling variances of estimates of components of variance. Ann. Math.
Statist. 29 (1958) 167-178). The results given here include as special cases some of Searle’s
results as well as the case of a two-way mixed model without interaction.

2. Non-Parametric Maximum Likelihood Estimation. G. B. CrawForD and
S. C. SAUNDERS, Boeing Scientific Research Laboratories, Seattle, Wash-
ington. (Invited)

The asymptotically optimum properties of the maximum likelihood estimates of param-
eters which lie in finite dimensional Euclidian space are classical results and the connection
of these estimates with the concepts of sufficiency and efficiency are well known. It is pos-
sible to formulate a definition of maximum likelihood which agrees with the usual definition
on finite dimensional parameter spaces such that in several non-parametric cases (infinite
dimensional parameter spaces) the maximum likelihood estimate exists and is consistent.
The possible extension of certain other properties such as asymptotic normality, the con-
struction and calculation of several of these estimates, and their advantages and application

is discussed.

3. Linear Regression of Adjacent Order Statistics. Tuomas S. FErGusox,
University of California, Los Angeles.

Let Xy < X(2 < -++ < X(n be the order statistics of a sample of size n from some con-
tinuous distribution. If E(X (m) | X +1)) is linear, then the parent distribution function is,
except for change of location and scale, either F(z) = e for z < 0, or F(z) = (— )= for
z < —landa <0,0r F(z) = 2z for 0 < z < 1 and « > 0. This generalizes a result of G.

S. Rogers (Amer. Math. Monthly, (1963) 857-858).

4. Max-m Distributions in the Theory of the Type II Particle Counter and the
Infinitely Many Server Queue. JosepH L. GastwirrH, Stanford Uni-

versity.

The max-m distribution is the distribution of m i.i.d. exponential random variables.
Assume that particles arrive at a Type II counter according to a recurrent process and
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produce i.i.d. dead times. We determine the mean time between consecutive registrations
when the dead times follow a max-m law, using the techniques developed by L. Takédcs
(Acta. Math. Acad. Sci. Hungar. 1958, Ann. Math. Statist. 1961). The related queue size
problem is discussed when the service times obey a max-m law or an Erlang law. The results
of the paper indicate that, mathematically speaking, it is better to assume that the dead
time distribution is a max-m law rather than an Erlang one.

5. Tolerance Limits for a Class of Distributions. D. L. Hansox and L. H.
Koormans, University of Missouri and Sandia Laboratory, Albuquerque,
New Mexico. (Invited)

Let X1, X2, --- , X be the order statistics of a sample from a population with a con-
tinuous distribution function F. Upper tolerance limits of the form Uy,x o = Xy-k_j =
b(Xy-r — Xwn-_k—j) are derived which are distribution free for the class § of distribution
functions F for which — log (1 — F) is convex. § coincides with the class of distributions
with increasing hazard rate (studied by Barlow, Marshall, and Proschan in the Ann. Math.
Statist. 34 (1963) 375-389) and contains most of the common distribution functions. Suppose
0 < P, < 1. In the non-parametric case, making the statement “1 — F(Xy_x) < P with
probability at least 1 — v for all continuous F” imposes a condition on N of the form
N = N(k, v, P). If we restrict ourselves to F’s in § we can obtain tolerance limits of the
above form (with Uw ;b replacing Xy_x) for all N = 2. Thus, what amounts to imposing
an exponential rate of decrease on 1 — F makes it possible to obtain tolerance limits for all
sample sizes (excluding one). '

6. Fiducial Expectation Identities for Distributions With Group Structure
(Preliminary report). R. B. Hora and R. J. BueHLER, University of
Minnesota.

Let P® be a family of distributions satisfying Fraser’s (Biometrika 48 (1961) 261) as-
sumptions for applicability of fiducial theory. Essentially: (i) G = {g} is a continuous group
defined on both the sample space & = {z} and the parameter space @ = {w}; (ii) G is exactly
transitive on €; (iii) a Haar measure exists on the space G; (iv) the identity (*)P (9X) =
P®(X) holds. This formulation includes the case of an ancillary statistic which labels the
orbit of any = under G. Let E; denote fiducial expectation and Er denote conditional ex-
pectation given the ancillary. It is shown that (++)H (9z, go) = H(z, ) is a sufficient (but
not necessary) condition for validity of Pitman’s (Biometrika 30 (1939) 391) identity
EH = EgrH. The identity has been applied for example to give ‘‘best” invariant estimators
in the case of families of distributions closed under rotation. In a more general model
z = (y, 2) where y and z are “past” and ‘“future’” observations. Here it is shown that some
assumptions including (*) and (**) imply an expectation identity in which E; relates to an
appropriately defined joint fidueial distribution of z and » and Eg is conditional expectation
given the y-related ancillary. This generalizes results of Ramsey and Buehler (Ann. Math.
Statist. 34 (1963) 1114) on ‘‘best’ invariant predictors. For both identities special cases
include multiple location and scale parameter families.

7. Pseudo Inverses in the Analysis of Variance. PErer W. M. Jonn, University
of California, Davis. (Invited)

We consider a linear model & ™") = X0 where Y is a vector of n observations, 8 is of a vector
of p unknown constant parameters and X is the design matrix. X is of rank p — m. There
exists a matrix D of order p X m with rank m such that XD = 0. The normal equations
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X’X* = X'Y are consistent. Let P be any matrix such that PX’XP = P and X'XPX'X = X'X;
then P is a pseudo inverse of X'X. Under the set of linear constraints H0 = 0, where H is
a matrix of order m X p such that [HD| # 0, the estimates 8 are unique. The pseudo in-
verses are not unique, and the relationships between them are discussed. In particular, the
variance covariance matrix C and the matrix (X’X + H'H)™! are pseudo inverses and it is
shown that C = (X'X 4+ H'H) — D(D'H’HD)'D’. For the reduced intrablock equations
A% = Q, His a row vector (h;) and (A 4+ H'H)™1 = C + 117/ (X_: h:)2.

8. Differentiable Distribution Function Processes. CHARLEs H. Krarr, Uni-
versity of Minnesota.

Processes, F, in the unit interval, which have, with probability one, distribution func-
tions as sample functions can be constructed by various interpolation procedures. If the
interpolations are made with independent, identically distributed random wvariables,
Dubins and Friedman have shown that such processes generally produce sample functions
which are singular with probability one. We show that if interpolations, at the nth stage,
are made at the points k/2", k odd, with independent random variables Z (k/2"), sufficient
conditions for the sample function of F to be absolutely continuous are (i) E{Z (k/2")} = %,
and (ii) X n [Supoci<en i oaa o{Z (k/2%)}] converges.

9. On Optimum Estimates of Parameters of Continuous Distributions. Nancy
R. ManN, Rocketdyne (Division of North American Aviation, Inc.),
Canoga Park, California. ‘

Consider any specified linear function ¢ of a location parameter u and a scale parameter
o from any absolutely continuous distribution. I is shown that among estimates which
are linear in the observations and which have location-invariant expected squared error,
the uniformly best is a linear function of the best linear unbiased estimates of x and o.
Furthermore, it is proved that among location-invariant-risk estimates which are linear in a
complete sufficient statistic, the uniformly best (§) can be expressed as a function of the
best unbiased parameter estimates & and &, the variance of &, and the covariance between
£ and 6. Whenever the best unbiased estimate of ¢ is efficient (in the Cramér-Rao sense),
¢ is the unique admissible minimax estimate of ¥. Next we consider any parameter ¢ > 0
with uniformly minimum variance unbiased estimate ¢ having variance of the form Cg?
(where C is independent of observed sample values). It is shown that ¢, the uniformly
best among estimates which are linear functions of a complete sufficient statistic and which
have location-invariant risk, is a function of € and §. If $ is efficient, ¢ is the unique ad-
missible minimax estimate of ¢.

10. Reversal of Lyapunov’s Inequality and Other Inequalities for Means. ALBERT
W. MagrsHALL and INgraM OLKIN, Boeing Scientific Laboratories, Seattle,
Washington and Stanford University.

Lyapunov’s inequality asserts that if X is a non-negative random variable with
EX™ = p,,thenpy ™ < py "ue ™, 0 < u < v £ w.Under the restriction P{m = X < M} =1,
m > 0, we find the largest constant ¢ for which py ™™ = cuu sw - (the case u = 0 was ob-
tained for discrete random variables by Cargo and Shisha, J. Res. Nat. Bur. Standards,
66B 169-170). Our result is obtained from more general results, which specialize also to
yield generalizations of Diaz and Metcalf’s extension and improvement (Bull. Amer. Math.

Soc., 69 415-418) of the Kantorovich inequality. As a special case of a more general in-
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equality, we obtain an upper bound for Eg(X), (g convex) in terms of EX, which may be
regarded as a reversal of Jensen’s inequality.

11. Explicit Results for the Probability Density of the First-Passage Time for
Two Classes of Gaussian Processes. C. B. MEnr and J. A. McFADDEN,
I.B.M. Research Laboratory, San Jose, California; Purdue and Stanford
Universities.

Let {X (t):t = 0} be a real Gaussian Markov process, with E[X (t)] = 0 and Rx (4 , t2) =
EX ()X (¢)],0 =t < t. Then Rx(t , t2) = f(t)g(t2), 0 S & < t2. Let a(t) = f(t)/g(?).
Let {W(t):t = 0} be the Wiener process; then X (t) = g(t)Wla(t)],0 < t. [Doob, Ann. Math.
Statist. 20 (1949) 393]). Let Tx(fo , %o ;to+ ¢,0) = sup {t:X(s) >0, =s St + t; X(b) =
2o > 0}. Using the above transformation, the density function frx of T x is obtained for all
G. M. processes {X (t)} from the known density of Tw(t , %o ; to + t, 0) [Fortet, J. Math.
Pures Appl. 22 (1943) 177]. Let {Y (¢):t = 0} be a stationary Gaussian process, with
E[Y(®#)] = 0and Ry(t: — &) = E[Y ()Y (82)], 0 S &1 < t». Let {Z(¢):t = 0} be the con-
ditional process obtained by taking ¥ (0) = y . A functional equation is solved for Ry,
giving the whole class for which {Z (¢)} is Markovian. The density function of Ty is ob-
tained for {Y (t)}. Included is the solution given by Slepian, Ann. Math. Statist. 32 (1961)
610.

12. Admissibility of Monotone Decision Functions. JosepH M. MOSER, San
Diego State College.

In curve fitting one sometimes tests the hypothesis Ho : F = U, where U is the uniform
distribution on the unit interval, against the alternative hypothesis H;: F < U. This
paper considers the case where F belongs to a class of cpfs., §, which has the following
properties; (1) F =0,z < 0; F = U, 0=sz=<1;F=12>1 (i) Fis continuous and
has a positive second derivative everywhere. The class, D, of decision functions considered
is the class of all monotone decision functions,i.e. d € Dif 6(z1, --- , xs) < sz, -, zn)
whenever z; < 27 , ¢ = 1, --- , n. It is then shown that a sub-class, I, viz. the class of
non-randomized monotone decision functions, is admissible for the given hypothesis.

13. Estimation of Bivariate Probability Density. V. K. MurTaY, Douglas Air-
craft, Inc., Santa Monica, California.

Given a random sample of size n from a distribution F (z), the author has earlier estab-
lished the consistency and asymptotic normality of a class of estimators for estimating the
density at every point of continuity of the distribution F (z). In this paper the problem of
estimating the density of a bivariate distribution F(z, y) at every point of continuity is
considered. Based on a random sample { (X, , Y1), (X2, Y2), .-+ (Xa, Ya)} of size n from
the bivariate distribution F (z, y), a consistent class of estimators is obtained for estimating
the bivariate density at every point of continuity of the distribution F (z, y) and they are
shown to be asymptotically normally distributed. The results for the bivariate case es-
sentially imply those of the multivariate situation, in that, the procedure reveals in an
obvious manner how one obtains the corrseponding results for higher dimensional dis-
tributions.

14. Nonparametric Upper Confidence Bounds for Pr{Y < X} and Confidence
Limits for Pr{Y < X} When X and Y Are Normal. D. B. Owen, K. J.
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CraswerL and D. L. Hanson, Sandia Corporation, Albuquerque, New
Mexico. (By title)

Birnbaum and McCarty give a distribution-free upper confidence bound on Pr {Y < X}
when X and Y are independent and have continuous cumulative distribution functions. In
this paper the restriction to a continuous distribution function is removed. The same
problem is then considered where X and Y have a joint bivariate normal distribution func-
tion. The distribution of the estimator of Pr {Y < X} is noncentral ¢. Upper confidence
limits on Pr {Y < X} are examined for sample sizes n = 10(10)100 in two cases—where X
and Y are independent and where observations are taken in pairs and X and ¥ may be
dependent.

15. An Application of a Generalized Gamma Distribution. GEraLD S. ROGERs,
University of Arizona.

Let {zi1, «+- ,Zin;},0=1,2, -+ |k, k = 2,n; Z 2, be randont samples from stochastically
independent Gaussian populations with unknown means u; and unknown variances o;-.
To test the hypothesis Ho: 65 = --- = o = o2, unknown, one may use a likelihood ratio
test wherein H, is rejected if A < Ao, P{A < X | Ho} = e is the mgmﬁcance level and
A = H'-l [N ZJ-I (X'J - X )2/"4 Z'-l ZJ=1 (X,, - X )2]"'/2 = ZI:-I ni, Xi =
D%, Xii/n: . The distribution of A under Hy is obtained via the convolutlon theorem for
Mellin transforms. The details are presented for the case k¥ = 3 beginning with the general-
ized gamma distribution introduced by E. W. Stacy [A generalization of the gamma dis-
tribution, Ann. Math. Statist. 33 (1962) p. 1187-1192]. The general case then follows by
induction.

16. Some Aspects of Density Fluctuation Under Diffusion Equilibrium. H.
RuseN, University of Minnesota. (Invited)

Smoluchowski’s classical analysis of the temporal fluctuation, under diffusion equi-
librium, of the number of particles in a fixed geometrically well-defined region, R, of space
is generalized to a set of disjoint regmns specifically, the single Smoluchowskl region
is divided into a finite set of nonmtersectmg subregions. This generalization allows a more
rigorous test of some of the consequences of the classical Einstein-Smoluchowski theory of
Brownian motion to be carried out, and at the same time enables the fundamental Avo-
gadro constant to be estimated with greater precision than is possible with the single region.
In particular, the reversibility paradox of Loschmidt and the recurrence paradox of Zermelo
are reexamined from the point of view of the fluctuation of configurations (a configuration
being defined as the complex of occupation numbers for the component subregions), rather
than that of total concentration for the single region.

A fundamental notion in Smoluchowski’s original analysis was that of ‘‘probability
after-effect”, 1 — pgr(t), pr(t) being (in modern stochastic process theory terminology)
the autocorrelation function of the scalar stochastic process represented by the total con-
centration in R. The corresponding notion in the present generalized analysis is that of
the covariance matrix of the vector stochastic process represented by the configuration
relative to the specified subregions.

The mean speed of pedestrians has.been estimated by Fiirth with the aid of an empirically
observed probability after-effect. The precision of the latter estimate can (as for the
Avogadro constant) be increased with the aid of an empirically observed covariance matrix
of the process.
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17. Approximations to the Distribution of Quadratic Forms. M. M. SippIqQui,
Boulder Laboratories National Bureau of Standards, Boulder, Colorado.
(Invited)

Let Q=3 > %, a;X; , where0< a1 S a2 < --- < agrand X, , +++ , Xar are independent
N(0, 1) variates. Let F(z) = Pr (Q > z). Let Q. = % D ¥ asj1(X3j1 + X3j), @ =
1 Zf a»;(X3;_1 + X3;) and F;(z) = Pr (Q; > z),7 =1, 2. F;(z) can be exactly evaluated
as a linear combination of gamma distribution functions. Noting that @ < Q@ < Q. almost
surely, we have F,(z) < F(z) < Fa(z) if £ > 0. An approximation to F (z) is obtained by
minimizing d(F, ) where F is a linear combination of F; and F, and d(-, -)is the distance
function of the metric space L2(0, » ). Other approximation techniques are also briefly dis-
cussed and some numerical examples have been worked out.

18. Optimum Classification Rules. M. S. SrivasTava, University of Toronto.

Let z;,7 = 0, 1, --- k be a p dimensional random vector which is distributed inde-
pendently in 7; as multivariate normal with mean u; and covariance matrix A. Let Z;’s be
the sample mean vectors from random samples of sizes n, and let S independent of z;’s be
distributed as Wishart with n’ degrees of freedom and mean n’A. The problem is to select
one of the &k decisions D; : po = p; (s = 1, 2, --- k). For simple loss function, it is proved
that the rule, to take the decision D if 7 is the smallest integer for which the minimum of the
statistics (F — %)’ (A1 + W)~} (& — £o), where W = S+ (28 + 1)1 D 5, (% — %0)(%; — Z0)’
— @+ D)1+ 1) (kL @ — £0)) (ke (Fi — %)), 8 = —4and 4 a known positive
definite matrix, is attained, is admissible in the class of translation invariant procedures.

19. Asymptotic Independence of Certain Statistics Connected With Extreme
Order Statistics in a Bivariate Distribution. O. P. SrivasTava, Seton Hall
University. (By title)

Let (X:,Y:;)71=1,2, --- , n ben independent observations from a continuous distribu-
tion with distribution function F (z, y) and marginals F; (z) and Fa(y). Let Z{® < z® <
- =2 and Wi” = Wi < .- £ W' be the ordered values of X’s and ¥’s respec-
tively. Further let a, , ba , ¢» , and d. be siutably chosen constants which ensure the con-
vergence of Un(z) = nFi(anx + b,) and V. (y) = nFai(cny + dn) to U(z) and V (y) respec-
tively where U(z) and V (y) are non-negative, non-decreasing functions of z and y
respectively satisfying the conditions U(—®) = V(—w) = 0; U(x) = V(0) = ». In
this paper it has been proved that a necessary and sufficient condition for the asymptotic
independence of Z{™ and W™ is F(awx + bn, cay + dz) = 0(1/n). Under the same con-
dition with the help of a recurrence relation it is proved that Zi™ and W{") are asymp-
totically independent for any £ > 1, I > 1, lim,,, k/n = lim,,, !/n = 0. Further the
distances Zs” — Z{™ and W{™ — W{™ between two order statistics in both components of
the distribution, are also asymptotically independent under the same condition mentioned
above.

(Abstract of a paper to be presented at the Annual Meeting, Amherst, Massachusetts, August 30
to September 4, 1964. An additional abstract appeared in the December, 1963,
1ssue, and others will appear in the June and September, 1964, issues.)

2. A Symmetric Stopping Rule and Its Applications to Probability Sampling.
P. K. Paraxk, University of Illinois. (Introduced by J. L. Doob)
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Let (2, S, P) be a probability measure space. Let X (w), X2(w), - -+ , Xn(w), - - - be inter-
changeable random variables defined on (2, S, P). Let M (w) be an inter-valued random
variable defined on (2, S, P) with essential infimum at ¥ > 0 such that Plw: M (w) =
m| Xi(w), -+, Xm(w)] is a symmetric function of X,(w), Xa2(w), -+, Xm(w). M(w) is
called a symmetric stopping rule. Then the following assertions hold: (1) X (0), X2(w), +-- ,
Xm(w) given M (w) = m are interchangeable; (2) If f(z;, --- , 2,) (0 < p =< k) is a Baire
function on R? such that E[|f (X1 (w), - -+ , Xp(w)|] < « then

E [(M:)w)>_l Z/f(Xu(w)’ cee, X.'p(w))] = E[f(X1(w), . Xp(w))]

where Y’ extends over all combinations of Xy (w), + -+ , Xip(w) from X (@), <+« , Xn(w).
Applications of the above results to fixed cost sampling schemes and inverse sampling with
unequal probabilities are given.

(Abstracts not connected with any meeting of the Institute)

1. The Martin Boundary for Pélya’s Urn Scheme. Davip BrackweLL and
Davip G. Kenparr, University of California, Berkeley, and Churchill
College, Cambridge.

Let Pdlya’s urn init;ally contain k differently colored balls, and let each ball drawn from
the urn be returned to it together with a fresh ball of the same color. If we consider the
contents of the urn after the 1st, 2nd, --- , nth, - -- replacement we have a discrete-param-
eter Markov chain whose state-space consists of all ordered kads of positive integers. The
Martin boundary is calculated and is shown to be homeomorphic with a standard Euclidean
(k — 1)-cell Ur_; (the portion of the hyperplane > 7; = 1 cut off by the closed positive
cone in Ry). If the fractional composition of the urn after the nth replacement is denoted
by f*= (fi, -+ ,f¢), then the martingale {f»:n = 1,2, --- } converges with probability one
tor = (m1, -+ , 7&) which can be identified with the Doob limit on the Martin boundary M;
moreover, r is uniformly distributed over the simplex M = U,_; . Applications to moment
problems and to microbiology are sketched, and a connection is established with a classical
argument due to Bayes and Crofton.

2. The Estimation of Variance Components I: One-Way Models. Bruce M.
Hirn, University of Michigan.

Estimation of variance components in the one-way random model is considered from a
subjective Bayesian point of view: the situation in which the classical unbiased estimate of
the between variance component is negative is explored in some detail, and exact and ap-
proximate posterior distributions for the unbalanced case are obtained.

3. Recurrent Events and Completely Monotonic Sequences. J. F. C. KINGMAN,
Pembroke College, Cambridge.

Let {u,;n = 0,1,2,---} be any completely monotonic sequence with ue = 1. Then
there exists a recurrent event & such that w, is the probability that & occurs at time n. Let
h(t) be any function continuous and completely monotonic in ¢ = 0. Then there exists a re-
newal process with renewal density A(t).

1. Sharp Bounds for Two Measures of Skewness. C. L. MarrLows and DoNALD
RicuteER, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.
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Suppose X is a random variable with distribution function F (z), mean u, and variance
a2, We distinguish two conventions regarding the definition of the median of X, as follows:
m is any number satisfying F(m; — 0) < 3 < F(m), while m; = % sup {z:F(z) < }}
+ % inf {2:F (z) > }}. The quantities s; = (u — m;)/o(j = 1, 2) are measures of skewness.
Hotelling and Solomons (Ann. Math. Statist. 3 141-142) showed that |s;] < 1, and Majindar
(Ann. Math. Statist. 33 1192-1194) has obtained the bounds |ss] < 2(pg)*(p + ¢)~* where
p=F@u—0),g=1— F(u). We prove the following Theorem. Sharp bounds are:s; = s; = 0
f0<p,¢g<3%0=s=2¢01+29*tif0<qg=13%=0p;0<s:<2¢( + 2¢)tif
0<g<3}<p;0=<s:= (1 +2¢)Fif0<g<}=p;and|s;] £ 1,|s] <}ifp=¢g=13%
The equalities are attainable if and only if p = }.

5. Exact Distributions of Extremes, Ranges and Mid-Ranges in Samples From
a Multivariate Population With Applications to Normal and Pareto Type
1 Populations (Preliminary report). K. V. Marpia, University of
Rajasthan, Jaipur (Raj.) India. (Introduced by B. D. Tikkiwal)

Let (1, ** , Zkr), 7 =1,2, --- n, be a random sample of size n from a k-variate con-
tinuous population having the probability density function (p.d.f.) f(z:, -+ , 2x). Let the
ith range be R; = Y; — X; and 4¢th mid-range be V; = (Y; + X;)/2, where Y; and X; are
the maximum and minimum observations of the ith variate,? = 1,2, --- , k. The p.d.f. of
X1, -, Xk, Y, -+, Yy is obtained and utilized to derive the exact distributions of
Ry, -+ ,Re)and (V1, -+, Vi). In particular, the joint distribution function of the ranges
is given by

+00 -+ 00 (—9)* Cy Cg n

f / (aXI K, f ...j;k f@i, -+, m) dos - - doey )dXy, - ,dXe,

Ci=X:+ Ri,i=1, -+, k. These distributions simplify considerably forn = 2and n = 3.

They further simplify for the normal and the Pareto Type 1 populations (Mardia, Ann.
Math. Statist. 33 (1962) 1008-1015).

6. Some Distribution-Free k-Sample Rank Tests of Homogeneity Against
Ordered Alternatives. MapaN L. Puri, New York University.

For testing homogeneity against ordered alternatives on the basis of % independent

random samples of sizes m; ; ¢ = 1, ---, k; the test statistics of thq form S =
> 3 i<imimshi;are considered. Here hij = mi' D wix By[V (sij,00)] — m 7t D wis BylV (s, )
where $;j,k1, -+ , 8ij,kmg , (k = ¢, ) denote the ranks of Xg1, -+, Xgmg , (K = 1, j)

in the combined (¢, j)th sample, and where V(1) < --- < V(m; 4+ m;) denote an ordered
sample of size (m; + m;) from a distribution y. Under suitable regularity conditions, the
asymptotic normality of the class of S statistics is established. These results are specialized
to the Sy statistic and the S statistic obtained by taking for ¢ the standard normal dis-
tribution and the rectangular distribution on (0, 1) respectively. The asymptotic relative
efficiencies of the Sy and the S tests for translation alternatives are shown to be the same
as those of the two-sample normal scores test and the Wilcoxon text (cf. Hodges and Leh-
mann, Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 (1961) 307-318). Under the
assumptions of normality and for some k’s the asymptotic power comparisons are made
between the S tests and some of the existing tests in literature.

7. On a Problem of Servicing a Poisson Flow of Demands (Preliminary report).
D. N. SuansHAG, Karnatak University, Dharwar, India. (Introduced
by B. R. Bhat)
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Downton (J. Roy. Statist. Soc. (1962) 107-111) has considered the problem of ‘servicing
a flow of demands with (i) the inter-arrival time distribution X exp (—A¢) dt(0 < t < «);
(ii) the service-time distribution dB(f) (0 < ¢ < «); and (iii) an unbounded number of
servers. For an infinite sequence of ordered random variables Wy > Wy > --- | where W, is
the rth largest unexpired service time at an arbitrary instant during the steady state, he
proved that ¥(z, ) = D2 Pr (W, < z)2r(0 < 2 < , |2| < 1) satisfies the equation
Wz, x)/ox = (1 — 2){1 — B(x)\(2, z) and is given by (2, z) = 2z(1 — 2z)7!
exp [—A(1 — 2) [i2. {1 — B(y)} dy]. Now it is proved that if W, (¢) is the rth largest un-
expired service time at t, ¥ (2, 7, t) = D w1 Pr (W.(t) < 2)27(0 < z < =, |2] < 1) satisfies
the partial differential equation oy (z, z, t)/dt — ¢ (2, z, t)/ox = — (1 — 2){1 — B(x)}\y
(2, x, t). In fact ¥(z, z, t) equals 2"1(1 — 2z)~lexp [-A(1 — 2) [ {1 — B(y)} dy] for
We(0) < t + 2 < W,(0) and equals z(1 — z)~texp [-A(1 — 2) [3s {L — B(y)} dy] for
t + = > W1(0). Further P,(t), the probability that exactly n servers are busy at ¢, equals
{(n —r)}~exp [ fi—0 {1 — B(y)} dylI\ fy=0 (1 — B(y)} dy]~ for W,11(0) < t < W,(0),
and equals (n!)"lexp [—\ fe=0 {1 — B(y)} dylix fo=0 {1 — B(y)} dy]» for t > Wi(0).
lim¢,, Pr (W, (¢) < z) and lim;,, P.(t) coincide with those given by Downton.

8. On a General Class of Contagious Distributions and Pascal-Poisson Dis-
tribution. K. SuBrauMaNiaMm, The Johns Hopkins University.

In this paper we discuss the method of fitting the Pascal-Poisson distribution of which
the p.g.f. is given by H(z) = [1 — (u/ac) {exp c(z — 1) — 1}]~=. This distribution arises
as a limiting form of a very general class of contagious distributions defined by the p.g.f.
1Filo, a + 8, {m1 exp N(z — 1) — mi}], where ,F; stands for Kummer’s form of the confluent
hypergeometric series [Whittaker and Watson, A Course of Modern Analysis, (1962)]. This
general class of contagious distributions is the outcome of a modified approach to the
Neyman type A distribution. The classical approach is discussed by Gurland (Biometrics,
1958). Following Gurland’s notation (Biometrika, 1957), we can summarize this approach as
P(m) V [B(n; p) Ax P(\)] = Neyman type A [exp m {exp p(z — 1) — 1}]. Upon changing
the order of operations, [B(n; p) V P()] An P(m) = Neyman type A [exp mp-
{exp (z — 1) — 1}]. By a process of compounding this resulting Newman type 4 on a
Beta distribution for p, we obtain the general class of contagious distributions defined
above. We have studied the various limiting forms of this distribution. A method for fitting
the Pascal-Poisson is devised by using a reduction formula for the derivatives of H(z)

atz = 0.



