ON CONTINUOUS SINGULAR INFINITELY DIVISIBLE DISTRIBUTION
FUNCTIONS!

By Howarp G. Tucker
University of California, Riverside

1. Introduction and summary. A probability distribution function F is said
to be infinitely divisible if, for every integer n, there is a distribution function
F, such that F is the n-fold convolution of F, . If F is infinitely divisible its
characteristic function can be written in the Khinchin-Lévy canonical form:

(1) f(u) = exp {z"yu + [: <e““" -1 - 1_%) 1__'_:?9”_ dG(x)},

where v is a constant and @ is a bounded, non-decreasing function. Hartman
and Wintner [2] proved that if G is discrete, then the distribution function F is
pure, i.e., it is either absolutely continuous or discrete or continuous singular,
and an example was given of each of these types of pure distributions which was
determined by a discrete G. In the example of a discrete @ producing a continuous
singular F, G was given jumps of size (1/N)* at +1/N?,j = 1,2, ---, where N
is a positive integer =2. It was first proved that F must be continuous; then it
was proved that f(u) does not converge to zero as |u| — <, thus violating the
conclusion of the Riemann-Lebesgue lemma.

The main purpose of this paper is to give sufficient conditions that a continuous
singular F be obtained from a discrete G. These conditions are not too broad;
for example, they do not include the example cited above. However, these con-
ditions should be of considerable interest in that they are obtained by purely
probabilistic methods, there being no use made of the Riemann-Lebesgue lemma,
and thus supply more insight into the structure of continuous singular infinitely
divisible distributions. In Section 2 a lemma is proved which might be of inde-
pendent interest. This lemma is used to prove Theorem 1 in Section 3, which
gives sufficient conditions that F be continuous singular. In Section 4 a theorem
is proved, giving sufficient conditions that every m-fold convolution of F, F*™,
be continuous singular.

2. A lemma. The following lemma turns out to be a very useful device in
Section 3.

LEMMA. Let {X,} and {Y,} be two sequences of discrete random variables which
are tail equivalent, i.e., D> w 1 P[X, # Y. < o, and assume that D> e 1 X, con-
verges almost surely (which implies that Y w_y Y, converges almost surely). If F
and G are the distribution functions of X = S i Xeand Y = Y u YV, re-
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spectively, if Fq, Fy and Fo, are the discrete, continuous singular, and absolutely
continuous components of F, and if Gy, Gs and Go. denote the corresponding com-
ponents of G, then (1) Var G4 = Var F,, (ii) Var G = Var F, , and (iii) Var Gy, =
Var F,., where Var denotes “total variation of.”

(It should be noted that no assumptions of independence are made here.)

Proor. Let M be the module generated by the values that the X,’s and Y,’s
take with positive probabilities. One easily observes that M is countable. Tail
equivalence of the two sequences, discreteness of the X,’s and the Y,’s, and the
Borel-Cantelli lemma imply that if B is any Borel subset of (— o, 4 «), and
if B 4+ M denotes {b + m | b ¢ B and m £ M}, then the two events > 1 X.eB
+ M) and [2 5., Y. e B 4+ M] differ only by a set of probability zero, and
therefore their probabilities are equal. In particular, let B denote the set of
points at which F is not continuous, i.e., Var Fqy = P[X ¢ B]. Then B C B + M,
and the countability of B implies that B + M is denumerable. It is easy to
verify that

VarFy; = P[XeB] = P[XeB + M]=P[Y B+ M] = VarGy.

By a symmetrical argument, one may obtain Var G4 < Var Fg, which establishes
(i) in the theorem. The proof of (ii) is accomplished by proving that
Var(F, + F;) = Var(G, + G4). The proof of this equality is the same as that
of (i) except for the following changes: the set B is a set of Lebesgue measure
zero which carries the discrete and continuous singular part of the measure de-
termined by F, and M + B in this case turns out to be a set of Lebesgue measure
zero. The assertion (iii) follows from (i) and (ii).

3. Conditions for continuous singularity. In (1) the value of v has nothing to
do with the question under consideration, so we may assume that v = 0. In
reference to the notation of Section 1, let us denote

x 2
M(z) =[_w1+7 dG(r) i =z <O0.

72

and

© 2
N@ = -[ 15T a6¢) it o> 0,
Clearly, @ is discrete if and only if both M and N are discrete. Let b, > 0 for
n=0x1,+2 -+ leta, >0ifn=20,1,2,---,let a, <0 forn = —1,
—2, --+, and assume a, # a, if ©  m. We consider a discrete G for which
M (z) takes a jump of size b, at * = a, when n < 0, and N(z) takes a jump of
size b, at £ = a, when n = 0, and where G(4+0) — G(—0) = 0. In order that
G be a bounded function (i.e., f be a characteristic function) the condition
(2) > alb, <

{nllon] <1}

must be satisfied.
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TuEOREM 1. If, for eachn, k., = 1 1is an integer such that

0

(3) D (1 — @™ —bpe™ — oo — ek, 1) < o,
b = o,
(4) {nliani<1) *
and
(3) (H (1+kj)) > kila]—0 as n— oo,
i==n 1715+

then F 1s continuous singular.
Proor. We may write the characteristic function, f, of F by

0

f(uw) = TI exp {ba(e™™ — 1) — tua.bn/(1 + a2)}.
Let {---, X_1, Xo, X1, ---} be a sequence of independent random variables
where the distribution of X, is Poisson with expectation b, ,n = 0, 1, £2, - - - .
Let {Y,} be a sequence of (independent) random variables defined by

(6) Y, = aanI[x,,gk,,] ) n = 0, :|:1, :|:2, LRI

Hypothesis (3) implies that {a,X,} and {Y,} are tail-equivalent. One observes
that F is the distribution function of

(7) X = 3 (aXu — aiba/(1 + ab)).
Since the series (7) of independent random variables converges in distribution
(to (1)), it converges almost surely. For n = 0, since 0 < Y, < k,a,, then
D =0 Y, converges almost surely since it is a monotone non-decreasing series
bounded above by D _no kxan <  (by (5)). Similarly D »%_« Y, converges
almost surely, and thus D n_ « Y, converges almost surely. Since {a,X,} and
{Y,} are tail equivalent, we obtain that the series D wr @, X converges almost
surely. Hence D o . |@n|ba/(1 4+ aZ) < o, and the distribution F is con-
tinuous singular if and only if the distribution of ) w__a,X, is. By the lemma
in Section 2 we need only prove that the distribution of ¥ = D 7__, Y, is
continuous singular. Hypothesis (4) implies that the distribution function of
new (@:Xn — ayba/(1 + al)) is continuous; this follows from a result due
to Blum and Rosenblatt [1] and also due to Hartman and Wintner [2]. Hence
the lemma, in Section 2 implies that the distribution functionof ¥ = > u__ .V,
is continuous. The distribution of ¥ can be proved to be continuous singular if
one can find a set S of real numbers of Lebesgue measure zero for which
P[Y £ 8] = 1. In order to do this, for each positive integer n let s,1, Sp2, - ,
Sn.m, denote the set of all possible distinct sums of numbers of the form
Dienvia;, 0 S v; < kj. It is clear that m, < [[7——n (1 + k;). Let Jos =
[an.k y ﬁn,k]; where
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—(n+1)
Uk = Sax + 2 ko
j=—00
and

Brk = Snp + Z kja; ,
j=n+1
where 1 £ k < m, . Thenlet S, = Up~ J, . . Each set S, is a closed set, and it
is easy to verify that P[Y £8,] = 1 for all n. Further, one can verify that
8n D Sut1 for all n. Hence if we let S = () 7-1 8., we have that S is closed, non-
empty and P[Y ¢S] = 1. However, for every n

meas S < meas S, < (H 1+ k,')) > kilasl,
i==n litZn+1
and, because of (5), one obtains that meas S = 0, thus concluding the proof of
the theorem.

4. An application. In the example of Hartman and Winter cited in Section 1,
it is easy to see that any m-fold convolution of F with itself, F*™, is also continuous
singular. Indeed, if the G-function of F is discrete, then it follows that the G-
function of F*™ is discrete. However, since F is continuous, then F*™is continuous.
The theorem of Hartman and Wintner then implies that the distribution F*™
is pure. Since the characteristic function f of F' satisfies

lim SUP|u|->0 ,f(u)l > 0’

then f~(u) satisfies the same assertion. Hence by the Riemann-Lebesgue lemma,
F*™ is not absolutely continuous, and, since it is pure and is continuous, it must
be continuous singular. The purpose of this section is to obtain conditions on a
discrete G which are sufficient for F*™ to be continuous singular for all .

Let {a,, n = 0, =1, 2, ---} be a sequence of distinct numbers such that
a, <0ifn <O0anda, >0ifn = 0,let {b,,n =0, =1, &2, - - -} be a sequence
of positive numbers, and assume {a,} and {b,} satisfy (2) and (4). Again, let
F be an infinitely divisible distribution function whose M- and N-functions
take jumps of size b, at a, .

THEOREM 2. If, for each n, k, = 1 is an integer such that

(3) 2 (L= — by ™ — o — bire "/kal) < o,

and ‘

(5") (H (1 + kj)'“) > kilaj] —0 as n— o,
j=—n lilzn+1

then F*™ is continuous singular for every m = 1.
Proor. Because of (1), it is easy to see that F*™ has discrete M- and N-
functions which take jumps of sizes {mb,} at points {a,}. In order to prove the
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theorem we need only show that the sequences {a,}, {mb,} and {mk,} of this
theorem satisfy requirements (2), (3), (4) and (5) of Theorem 1. We first note
that (2) and (4) are trivially satisfied. In order to prove that these three se-
quences satisfy (3), it is sufficient to prove that, for every n,

1— "”""Z(mb Y/jl S m{l — e Zb’/J

Toward this end, let Uy, U, - - -, U, be m independent, indentically distributed
random variables, each of whose distributions is Poisson with expectation b, .
If V= "U+ --- + Un, then the distribution of V is Poisson with expectation
mb, . Since

[V > mk,] € [Uy > kaU --- U[U,, > ki,

we obtain, by Boole’s inequality, P[V > mk,] < mP[U; > k,], which is precisely
what the desired inequality states. We now verify that the three sequences
satisfy (5). Let us denote the expression in (5') by B(n). Then, for n > m,
we have

(H (1 + mk; )) ;ﬂ mk; |a;| <.<]_=f_[n (1+ kj)m) > ) mk; |a;|

j=—n lilzn+

m—1

<m ( II a+ kj)’”‘“‘) B(n).
1=—m+1

Since by (5) B(n) — 0 as n — o, and since the coefficient of B(n) in this last

expression does not depend on n, we may conclude that (5) in Theorem 1 is

satisfied by the three sequences. Thus, Theorem 1 implies that F*™ is continuous

singular.

6. Remarks. Three remarks are now in order. It should first be noted (as
remarked in Section 1) that the conditions of Theorem 1 (and therefore of
Theorem 2) are not broad enough to include the example due to Hartman and
Wintner, and one easily shows that hypothesis (5) (and therefore (5")) is violated
when N = 2. Indeed, in this case it is easy to see that for all n,

<H 1+ Ic,~)> > k27 z2
i="n 1ilZn+1

The second remark is that it is possible to have sequences {a,}, {b.}, {kn}
which satisfy Theorem 1 and such that k, = 1 for all n. One can verify that this
is the case when a, = (2/3)" and b, = 1/n,n = 1,2,...

The third remark is that the sequence {b,} only determines whether F is con-
tinuous or discrete. According to the result of Hartman and Wintner stated in
Section 1, the distribution function F is either continuous singular or absolutely
continuous when (4) is satisfied. If the jumps of the M- and N-functions are
{b.} at {a.}, and if F is absolutely continuous, then by pressing the points at
which these jumps occur closer to the origin one can obtain an F which is con-
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tinuous singular, and by pressing them even still closer one can obtain an F
such that F*™ is continuous singular for all m. Indeed, given {b,} which satisfy
(4), one can always select positive integers {k.} such that (3) is true. Now let

" {2"( b} <E 1+ >'"> ! |n|-3},

It is easy to see that {a.}, {ba}, {ks] now satisfy (2) and (5') (and therefore
(5)). Thus we obtain from this remark that in order that a discrete G' produce an
absolutely continuous F, it must of course satisfy (4), but the discontinuities of
@ cannot pile up at too rapid a rate about zero.
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