LIMITING DISTRIBUTION OF THE MAXIMUM OF
A DIFFUSION PROCESS!

By SimeoN M. BERMAN
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1. Introduction. Let X (¢), t = 0 be a strong homogeneous Markov process on
the interval of real numbers (7, 1), —© = 1 < r, = o, with continuous
sample functions. For ¢ > 0, let Z(¢) be the maximum value attained by X(s)
on the interval [0, #]:Z(t) = max {X(s); 0 < s < #}. In this paper we shall
investigate the limiting distribution of Z(¢) as t — « for several general types
of Markov processes.

First we consider a process having a finite expected first passage time between
every pair of points in (r, r2). For this process it is known that a stationary
distribution exists [14]; many limit theorems which are valid for sequences of
independent random variables also hold for this process [17]. We use the well
known renewal principle to show that the asymptotic behavior of Z (%) is similar
to that of the maximum in a sequence of independent, identically distributed
random variables. Our results are applied to a process whose transition prob-
ability function satisfies the classical backward diffusion equation. An analytic
method of getting the limiting distribution of Z(¢) from asymptotic estimates of
the solution to the Fokker-Planck equation has been given by Newell [15]; his
results are very close to special cases of our Theorem 5.1.

For certain processes we cannot find the limiting distribution of Z(¢) but can
assert some form of asymptotic stability such as

limeo Z(t)/c(t) = 1

in probability for some real function ¢(¢) — «. We use the theory developed by
Gnedenko [10] and Geffroy [9] for the stability of the maximum in sequences of
independent random variables. Similar results have been obtained for stationary
normal processes by Cramér [4] and the writer [2].

The above theory is in the spirit of the extension of classical “extreme value”
methods [11] to dependent random variables [3], [18]. In the last part of this
study, we consider an entirely different type of process, for which “extreme
value” methods do not work. We unveil an analogy between the distribution of
Z(t) and a distribution arising in renewal theory [8].

In some of the proofs of our results, we shall employ certain fundamental
relations for recurrent diffusion processes due to Maruyama and Tanaka [14].
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320 S. M. BERMAN

The methods used in investigating the asymptotic stability of Z(¢) can also
be used to study the limiting distribution of occupation times. The appendix
contains a theorem which characterizes the limiting distributions of a class of
occupation times for recurrent diffusion processes. These results contain a general
solution of a particular class of problems considered by Khasminski [12].

There is no apparent relation between this study of the maximum functional
and other work on the supremum functional for processes with stationary inde-
pendent increments [1], [16].

2. Extreme Values: independent random variables. In this section, we sum-
marize known results necessary for our investigation, and give some new

generalizations.
Let X;, X;, -+ be a sequence of independent random variables with the
common distribution function (d.f.) F(z); let Z, = max (X;, ---, Xa). The

df. of Z, is F"(z). The limiting d.f. is of one of exactly three types, that is, if
there exists a d.f. ®(x) and sequences {a,} and {b.}, @, > 0, such that

(2.1) limg,e F*(ax + b,) = ®(x)

on the continuity set of ®, then the latter is of one of three types [10]. These are
known as “extreme value” types [11]. Necessary and sufficient conditions for the
convergence (2.1) to each of the types are due to Gnedenko [10]; when (2.1)
holds, F is said to be in the domain of attraction of .

Let {N,, n = 1} be a sequence of nonnegative, integer valued random vari-
ables defined on the same probability space as {X,}, and define:

W,=Zy, if N, >0 and W,= —o if N,=0.

W, is the maximum of a random number of independent random variables. A
generalization of one of our previous results ([3], Theorem 3.2) is
THEOREM 2.1. If there is a positive constant ¢ such that

(2.2) limp,wn ‘N, = ¢ in probability,
then (2.1) holds if and only if
(2.3) limg,o P{W, £ a,x + b} = ®°(x)

on the continuity set of ®.

ReMARK. The functional forms of the three types indicate that ® and ®° are
of the same type.

Proor. The necessity of (2.3) is the content of ([3], Theorem 3.2), so that we
shall prove only the sufficiency. There exist, by the weak compactness theorem,
a monotone function ®(z) and a sequence of integers {n:} such that

(2.4) liMyse F™ (@ + bay) = B()

on the continuity set of ®. Using the method of proof of ([3], Theorem 3.2),
one can show that (2.2) and (2.4) imply limy., P{W,, < @, + b.} = ®°(2);
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this and (2.3) imply that ® = &. Since (2.4) holds for an arbitrary convergent
subsequence, (2.1) follows.

Now consider the maximum Z, of random variables X, --- , X, which are
unbounded above. {Z,} is said to be relatively stable in probability if there is a
sequence {A,} such that lim,..,Z,/A, = 1 in probability. A necessary and
sufficient condition for this is
(2.5) limgse [1 — F(rx)]/[1 — F(z)] =0
for every r > 1; in this case 4, satisfies, by [10],

(2.6) 1 — F(4,) ~n7, as m— o,

THEOREM 2.2. Let {0,} be a nondecreasing sequence of positive numbers which is

dense in the set of positive integers for large n. Suppose that N,/a, has a continuous
limiting d f. for n — . Then there exists a sequence {B,} such that

(2.7) lim,,o Wa/B, = 1 in probability,

if and only if there exists a sequence {A,} with respect to which {Z,} is relatively
stable in probability; in this case we have B, = Ay, , where [0,)] stands for the
integral part of o, .

Proor. Let ¢ > 0, § > 0 be given numbers and o(1) a quantity converging to
0 as § — 0. Since N,/0g, has a continuous limiting d.f. we have

(2.8) limn,o P{N, = 0.} = o(1), lim,,o P{N, > ¢./8} = o(1).
On one hand, we have
(2.9) P{W, = By(1 & €)} = P{Wa < Bu(1 =% ¢), No < 0./}
+ 0(1) 2 P{Zu151 = Ba(1 % €)} + o(1);
on the other hand, we have
P{W, < B.(1 =+ €)} = P{W, < B.(1 & ¢), N, > b0y}

+ 0o(1) = P{Zpn = Ba(1 % €)} + 0(1).
If {Z,} is relatively stable in probability, then (2.9) implies, for B, = Ay, , that
P{W. = Ba(l1 + )} 2 P{Ziys) £ Aa(1 + )} + o(1)

= {F"(Apa(1 4+ )" + 0 (1)— 14 o(1);

(2.10)

(2.10) in turn implies that
P{W. = Ba(1 — €)} = P{Zo < Apa(1 — €)} + o(1)
= {F*"(Aa(1 — )}’ 4 o(1) — o(1).
Since ¢ is arbitrary, (2.7) follows.
Suppose that (2.7) is given; then the result follows by defining the sequence
{A,} implicity as A, ~ B,, and using (2.9) and (2.10) with 1 =F e instead
of 1 + e
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3. Description of the diffusion process. Let X (¢) be a homogenous Markov
process on the real interval (r,, ), — o < r < r; £ o, with the (stationary)
transition probability function P(¢, z, E),t = 0,y < x < 7y, defined for every
Borel set £ in (7, r;). We shall assume that:

(a) X(t),t = 0, is continuous with probability 1.

(b) The strong Markov property for first passage times holds [14].

(¢) The boundary points 7, and r, are inaccessible.

(d) All points of (7, r;) are mutually accessible.

A process with these properties will be called a diffusion process on (7, 72).
If, in addition, the first passage times among all points of (7, , r.) are finite with
probability 1, the process will be called a recurrent diffusion process. These
definitions coincide with those of Maruyama and Tanaka [14].

Let P,(-) denote the probability measure on the o-field of events generated by
X(t), t = 0, when the initial distribution of X (0) assigns probability 1 to the
point z, 1 < < r.. The expectation of a random variable ¢ with respect to
P,(-) is written as E,t. Any probability P.(-) or expectation E.¢ which is
independent of  will be written without the subseript z; a relation which holds
in probability or with probability 1 under all P,(-), n < z < 7y, will be said
to hold simply in probability or with probability 1.

4. Fundamental representation of Z(f). Let X(¢) be a recurrent diffusion
process on (ry, 12); for any z, n < z < ry, we define

r(z) = inf {t:t 2 0, X(t) = 2};

7(z) is the first passage time to x. Now fix two arbitrary points x; and x.,
rn < x <2 < 7o, and define:

To = 7(z2)
Ti = inf {t:t = Ty, X(t) = )
(4.1) T, = inf {t:t = T1, X(t) = 2}

T, = inf {t:t = Toy, X(1) = z)
T, = inf {t:t = T , X(t) = z}

Y
‘P-‘

Xo = maxocs<r, X(s), Xn = maxr, ,<.<r, X(8), n
Z, = max (X1, -, Xa), N(t) = max {k: Ty < 8.

It is known that the strong Markov property implies that {X,,n = 1} is a
sequence of mutually independent random variables with a common d.f.
G(x; 21, o) defined as

(4.2)
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G(z;x1, 1) =0, T = 2
(4.3) = Py{r(x1) < v(x)}, T <z <y
=1 T =7,

From the monotonicity of Z(¢) and from the relations
Tvey =t < Twwn, Z(Tww) = max (Xo, Znw)

we get max (Xo, Zyw) < Z(t) £ max (Xo, Zyw+1); from the inaccessibility
of r, we get P{ X, = 72} = 1;from the finiteness of all first passage times it follows
that Z(¢) — r; in probability as ¢ — o ; therefore, forany e > 0,1, < 2 < 19,
the inequality

(44) P{Znw = Z(t) £ Znvown} 21 — ¢
will hold for all sufficiently large ¢.

If X(t) has a transition probability function P(i, z, E) satisfying the backward
diffusion equation

oP

o'P oP
(4:.5) -&—a(x)w‘kb(x)%, t>0, 71<x<72,

it is known that G(z; 2, , x2), T2 < = < 73, is the solution of

a(z)(8°G/9z") + b(z)(9G/ox) = 0
with the boundary conditions G(x; ; z; , x2) = 0, G(r2 ; 21, x2) = 1. The solution
for o < x < . is, following [13],

zexp [ (b(w)/a(u)) du1 ds
(4.6) G(z; 21, 0) = f” { ‘[’2 ]

fl exP{—f,: (b(w)/a(u)) du}ds '

6. Finite expected first passage times. We now characterize the limiting d.f.
of Z(¢) for a process satisfying

(5.1) E(T1 — To) = m(2:,2;) < .

This is equivalent to the finiteness of all expected first passage times [14].
THEOREM 5.1. Let X (t) be a recurrent diffusion process on (r1, r2). There exist
Junctions a(t) > 0 and B(t) and a d.f. ®(x) such that

(5.2) lime,o P{Z(t) = a(t)z + B(1)} = &(x)

on the continuity set of ® if and only if ® is an extreme d.f. and for some x, , x, the
df. G(z; 2, o) is tn the domain of attraction of [®(x)]"“*™2. In this case, the
same will be true for all pairs x; , z, .

Proor. We know from renewal theory that lime ¢ 'N(t) = (m(z;, z2))™"
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with probability 1, and, therefore, in probability. We also see, from (4.4), that
Z(t) is distributed, for large ¢, essentially as the maximum of a random number
N(t) of independent random variables with the common d.f. G(z; x; , ;). The
proof is completed by a direct application of Theorem 2.1, after we define the
functions «(¢) and B(t) in terms of the sequences {a,} and {b,} as a(¢) = a1y,
B(t) = by .

Consider a recurrent diffusion process on (r; , ;) satisfying (4.5). For a fixed
2’ in (7, 72), define f(x) = exp {— % (b(s)/a(s)) ds}. Doob [6] has shown that
(5.1) holds if

(3) [ G@rtas= [ (orta = e [7(6/a) s < .

Theorem 5.1 asserts that if (5.3) is given, then Z(¢) has a limiting d.f. ®(z)
(necessarily an extreme value d.f.) if and only if the d.f. G, given by (4.6), is in
the domain of attraction of the same type as ®. Newell [15] found conditions on
a(z) and b(x) which are sufficient for (5.2) in the case where P(¢, z, E) has a
density which satisfies the forward (Fokker-Planck) equation; his conditions
can be shown to coincide with ours in the case where P(¢, z, E) satisfies the back-
ward equation. It is interesting that the standard probabilistic arguments used
to prove Theorem 5.1 provide more general results than those obtained by
Newell’s analytic method.

6. Some properties of the return times 7, with infinite expectation. In this
section, we shall give necessary and sufficient conditions on P(¢, z, E) for the
existence of a function ¢(¢) such that N(¢)/o(t) hasa limiting d.f.; E(T, — T,) is
then necessarily infinite. The results will be applied in the next section to the
stability of Z(¢) and in the appendix to an occupation time theorem.

From the familiar relation for the random variables T and N (¢) (defined in
(4.1) and (4.2)) {N(t) = k} = {T» < t} it follows that N(¢) has a limiting
d.f. if and only if T does [8]. The strong Markov property implies that T, — T
is distributed as the sum of k independent random variables, each distributed as
T, — Ty Let m;(t) and my(¢) be positive functions with the property

my(t) = P{Ty — To > 8},  P{Ty — To > my(t)} ~ 1, t— .
Feller has shown that
(6.1) lim;, P{Ty — To £ ume(t)} = limee P{Tyq < umy(t)} = Go(u)
if and only if
(6.2) lim. P{my()N(t) = u} = Ga(u9),

where G.(u), 0 < a < 1, is the d.f. of the positive stable law of index o and

Ga(uw V%) is the Mittag-Leffler d.f. of index o; furthermore, this is the only

possible limiting d.f. for N(¢) that can be obtained by a scale normalization.
A function A(z) is said to be slowly varying as + — « if for every constant
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¢ > 0, h(cz) ~ h(z). We define ¢(s) = f{? e dP{Ty — Ty < t} and record
the known
LemMmA 6.1 [7]. The existence of a slowly varying h(z), x — o, such that

(6.3) 1 — o(s) ~ s°h(s™), s —0,

1s necessary and suflicient for (6.1).
We now relate (6.3) to P({, x, E); we define

p(s,z, E) = f e P(t,z, E) di, s> 0,
0

LeMMA 6.2. The existence of a nondegenerate interval E whose closure is con-
tained in (1, r2), a slowly varying function h and a posttive number § such that

(6.4) limyo h(s")s*p(s, 22, E) = 8

1s necessary and suflicient for (6.3).
Proor. Define, for ¢, 5 = 1, 2,

pi(s) = fo"' e AP, () < 1), s> 0

p(x; ;8,2:, E) =‘£ e P, {X(t) e B, 7(x;) > t} dt, §>0;

then, by the strong Markov property [14], we get
p(sy Zj, E)¢ii(s) - p(s) T, E) = _p(xl; 8, Ti, E)
¢(s) = ¢ij(8)¢ji(8), ’L,] =12

In the equation with the factor ¢:;(s), we multiply each side by ¢;:(s), and
then substitute for ¢;:(s)p(s, z:, £) from the dual equation; this yields

p(s) xij)(l - (p(S)) = p(xl')s: xj)E) + ‘Pii(s)p(xj » S ID.',E),

which is equivalent to an identity in ([14], Formula (3.19)). Now let
s — 0:¢;(s) — 1, and the right side converges to p(z:; 0, z;, E) +
p(z;; 0, z:, E), which, by ([14], p. 131), is positive and finite. The equivalence
of (6.3) and (6.4) follows by letting s — 0 in the last equation.

We remark that (6.4) resembles a condition of Darling and Kac [5] which
they used in occupation time theory (see appendix).

The results of this section are summarized as follows:

THEOREM 6.1. There exists a function o(t) such that N(t)/a(t) has a limiting
d.f. if and only if the conditions of Lemma 6.2 are satisfied; in this case the limiting
d.f. is the Mittag-Leffler d.f. of index a (6.2).

7. Stability of Z(¢). We now suppose r, = « and give conditions under which
Z(t) is relatively stable in probability, that is, there exists a function c(f) — «
such that

(6.5)
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(7.1) lims,e Z(t)/c(t) = 1 in probability.

In view of (4.4), this problem, too, is reducible to that of a random number
of independent random variables. Under the Condition (5.1), the methods used
to prove Theorem 5.1 would enable us to prove an analogous result for (7.1).
But it would be more interesting to obtain (7.1) without (5.1). We shall replace
the latter by the conditions of Theorem 6.1.

THEOREM 7.1. Let X(t) be a recurrent diffusion process on (r1, «), such that
the conditions of Theorem 6.1 are satisfied. Then there exists a function c(t) such
that (7.1) holds if and only if for some ;1 , 2 satisfying m < 2 < T2 < o,

(7.2) liMgse [1 — G(rz; 21, 22)]/[1 — G(x; 21, 22)] = O,
for every r > 1.

Proor. This follows from Theorem 2.2 just as Theorem 5.1 follows from
Theorem 2.1. Z(t) is distributed approximately as the maximum of N(t) inde-
pendent random variables with the common d.f. G(x; 1, 22); (7.2) relates to
(2.5). The function c(¢) is taken to be Ay ; o(t) is asymptotic to ¢* times a
slowly varying function of ¢ [8], so that o;y = o(t) satisfies the conditions of
Theorem 2.2.

We give an example to show the consistency of the conditions of Theorem 7.1.
Let Y(¢) be a separable linear Brownian motion process with EY*(t) = ¢, and
Z'(t) the maximum up to time ¢. Let f(y) be an increasing, continuous function
on the real line, mapping it onto the semi-infinite interval (r,, o).
X(t) = f(Y(t)) is a recurrent diffusion process; let Z(t) = f(Z'(t)). The dis-
tribution of the return time Ty — T, is the same for both the X(¢) and Y (¢)
processes, so that the return time has the positive stable distribution of index 3.
Z'($)t™* has the half-normal d.f. for every ¢. Suppose that f(z) ~ logz, z — =;

then, .
Z(t) _ log Z'(t) _ log(Z' (1) 4+ jlogt
Llogt 3logt tlogt

in probability.

8. Processes with periodic transition functions. We consider a diffusion process
on (r;, «) having not necessarily the recurrence property—all first passage
times are finite with probability 1—but the weaker property that the first passage
time fromz toy, n < x < y < 7z, is finite with probability 1:

(8.1) Pir(y) < o} =1, n<r<y< o.

From the relation
(8.2) PAZ(t) =y} = PAr(y) 2 8, n<r<y<®

we see, in analogy to Section 6, that Z(¢) has a limiting d.f. if and only if 7(¢)
has one.
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For any linear Borel set E, let E’ denote the translate of E by a unit amount:
E' = {z:z — 1 ¢ E}. We now assume the following periodicity property for the
transition function:

(8.3) P(t z, E) = P(t,z + 1, E), tz20, n<z< o,

If P(t, x, E) satisfies the diffusion equation (4.5), then it has the property

(8.3) if the diffusion coefficients a(x) and b(z) are periodic with unit period.
Suppose first that y is an integer, r, < # < y. Under P,( ), the random vari-

able 7(y) may be written as a sum of y — [z] independent random variables, as

(y) =((y) —r(y—1D)+(y—1) —r(y —2)) + -+
+ (v([z] + 2) — 7([z] + 1)) + 7([z] + 1).

Property (8.3) implies that all the summands, except for 7([z] 4+ 1), have a
common d.f. Fixing our attention on Formula (8.2), and going back to the dis-
cussion at the beginning of Section 6, we can see that Z(¢) has the same limiting
distribution as the “renewal” random variable max {y:7(y) =< t}. The class of
limiting d.f.’s for this random variable has been described by Feller [8], so that
Z(t) has the same class of limiting d.f.’s. We shall not enumerate all the corre-
sponding limit theorems, but only one.

TueoreM 8.1. Let X () be a diffusion process on (r,, ©) satisfying (8.1) and
(8.3). There exists a positive function o(t) and a d.f. H(x) such that

(8.5) limg. P{Z(t) £ o(t)z} = H(x)

on the continuity set of H if and only if the Laplace transform p(s, x, E) of the
transition function satisfies the following conditions: There exist a slowly varying
function h(z), @ number o, 0 < a < 1, an integer k > r,, and a nondegenerate
interval E whose closure is contained in (k + 1, ) such that

(8.6) 1 — p(s, k, E)/p(s, k + 1, E) ~ sh(s™"), s — 0.

In such a case H is the Mittag-Leffler d.f. of index «, given by (6.2).

Proor. It follows from the results of Feller on renewal theory [8], in particular,
from our relations (6.1) and (6.2), that (8.5) holds if and only if the d.f. of
r(k + 1) — 7(k), the first passage time between successive integer points, is in
the domain of attraction of G. (6.1); in this case H is the d.f. given by the
theorem.

Define:

(8.4)

o(s) = fom ¢ dP{r(k + 1) — (k) < 8}, s> 0;

by (8.3), ¢ is independent of k. According to Lemma 6.1, the d.f. of (k + 1) —
7(k) is in the domain of attraction of G, if and only if (6.3) holds, with ¢ re-
placed by ¢.

In Formula (6.5), let us repiace z;, x; and ¢,;(s) by k, &k + 1, and ¢(s), re-
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spectively, and let E denote a nondegenerate interval whose closure is contained
in (k 4+ 1, «). It follows from the definition of p(k + 1;s, k, E) that it vanishes;
thus, from (6.5) we obtain

¥(s) = p(s, k: E)/p(s’ k+ 1, E).

By comparing (6.3) and (8.6), we now complete the proof.

A special case of this theorem is illustrated by the Brownian motion process:
the first passage times have the positive stable distribution of index % and the
maximum has the Mittag-Leffler distribution of index % (half-normal).

Using the method of proof of Theorem 8.1, we can prove corresponding limit
theorems for Z(¢) in cases where the distribution of normed sums of the first
passage times converges to the stable law of index o, 1 < « = 2.

9. Appendix: An occupation time theorem. Using the methods and notation
of Section 6, we can prove a stronger form of a general theorem of Darling and
Kac [5] for the particular case of a recurrent diffusion process:

TaeOREM 9.1. Let X(t) be a recurrent diffusion process on (r1, r2), E a non-
degenerate interval whose closure is contained in (ry, r2), V(z) the indicator func-
tion of E, and S(t) = [4 V(X(s)) ds. There exists a function o(t) > 0 and a
d.f. G(y) such that .

(9.1) lim,, P{S()/a(t) = y} = G(y)

on the continuity set of G, if and only if there exists a function h(x) which is slowly
varying as ¢ — o, and numbers §, a,x,6 > 0,0 < & < 1, r < z < 79 such that

(9.2) lim,.o (s ")s%p(s, x, B) = 6.

In this case G(y) s necessarily the Mittag-Leffler distribution of index a.
Proor. We apply the strong law of large numbers for independent random
variables, as in the proof of the ergodic theorem in [14], and obtain:

(9.3) lim.e S(t)/N(t) = p(z1, 22, E)

with probability 1, where the right side is positive and finite. The relation (9.3)
implies that S(¢)/o(¢) and N(t)/o(t) have a limiting d.f. of the same type, if
any. Theorem 6.1 now provides the rest of the proof.

Condition (9.2) (in a stronger form) was shown in [5] to be sufficient for G(y)
to be a Mittag-Leffler d.f.

There is an inherent relation between Theorem 9.1 and some results of Khas-
minski on processes satisfying diffusion equations, which were given without
proof [12]. Theorem 9.1 applies to more general diffusion processes than those
considered by Khasminski.
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