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0. Summary. In [6], Wald and Wolfowitz present a method for obtaining
approximate two-sided tolerance intervals for a normal distribution. Some readers
of [6] have been left with the impression that Wald and Wolfowitz proved that
the confidence level attained by their approximation converges to the nominal
confidence level with increasing sample size N, and that the difference is O(1/N?)
(see, e.g., [3]). However, Wald and Wolfowitz did not consider that problem in
their paper, nor does the problem seem to have been considered elsewhere in the
literature. The principal result of Wald and Wolfowitz is given at the end of
Section 1.

In Section 2 it is shown that the confidence level attained by the Wald-
Wolfowitz approximation does converge to the nominal confidence level, that
the difference is O(1/N), and that 1/N is the exact order of the rate of con-
vergence except for the confidence level .5.. This is a corollary of a more general
result obtained by considering the case in which s° ~ ¢°x%/n, and independently
& ~ normal (g, ¢°/N), where n is not necessarily equal to N — 1.

It is found, perhaps surprisingly, that as N — oo, the confidence level attained
by the obvious generalization of the Wald-Wolfowitz approximation converges
to the nominal confidence level fastest when n is fixed, the difference being
O(1/N?) in this case. Furthermore, if n increases “too rapidly”’ as N — o, then
the confidence level attained does not converge to the nominal confidence level.
These results are consequences of the two theorems proved in this paper. Theorem
1 in Section 2 states that if n/N® — 0, then the confidence level attained by the
generalization of the Wald-Wolfowitz approximation converges to the nominal
confidence level, that the difference is O(n/N?), and that, with certain unim-
portant exceptions, n/N’ is the exact order of the rate of convergence. In Theorem
2, Section 5, it is shown that if n/N* — oo, then the confidence level attained by
the generalization of the Wald-Wolfowitz approximation converges to a limit
which does not depend on the nominal confidence level. A modification of the
generalized Wald-Wolfowitz approximation which has the desired convergence
property in this case is presented.

Certain facts used in Section 2 are verified in Sections 3 and 4. In Section 6,
an heuristic explanation of the observed asymptotic behavior is given, and the
possibility of improving the Wald-Wolfowitz approximation is discussed briefly.

The basic notation and method of determining error bounds in this paper are
essentially the same as those employed by Wald and Wolfowitz in [6]. Sections
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2, 3 and 4 of this paper are counterparts, respectively, of Sections 4, 8 and 9 of
the Wald-Wolfowitz paper. Equation (19) in the present paper plays the role
that the basic Equation (4.1) did in the Wald and Wolfowitz paper.

1. Introduction. Let & be distributed as normal (u, ¢2/N), and let s® be dis-
tributed as ¢°x5/n independently of Z A two-sided tolerance interval is to be
computed from Z and s” such that the probability is equal to a preassigned value
B that the tolerance interval includes at least a given proportion v of the normal
(», ¢°) population.

Let

Z+As
(1) A(E, 5,0) = (1/(2m)%) [Hs exp [—(1 — wWY2dt A > 0.

A(Z, s, \) is the proportion of the normal (p, o) population included between
the limits £ — As and Z 4+ \s. Since the distribution of A (Z, s, A) does not depend
on the unknown parameters u and o, there is no loss of generality in assuming
that © = 0 and ¢ = 1, and this assumption is made hereafter.

Let

(2) Pa(v, | £) = the conditional probability, given &, that A(Z, s, \) = v,
and let
(3) Py (v, \) = E[Pa(v, N l z)].

Then Py (v, \) is the probability that the tolerance interval [ — \s, £ 4 As]
includes at least v of the normal (g, ¢°) population; i.e., Py ,(7, A) is the confi-
dence level attained by the tolerance factor .

It is clear that for each N, n, 8 and v there is a X\ such that Py .(v, \) = 8,
so the problem of obtaining two-sided tolerance intervals for the normal distri-
bution does have an exact solution. An approximation is used for computational
reasons, since the equation Py (v, A\) = B cannot be solved directly for \.

Define r(Z, v) by

47 (2,7)
(4) (2r)% | exp (—22/2) dt = .

E=r(%,y

Since A(#, s, \) is a strictly increasing function of s, the inequality 4 (Z, s, \) = v
is equivalent to the inequality s = r(&, v)/\. Hence (2) may be written as

(5) Pu(v, N|Z) = P{s = r(& v)/N| &} = P{(G/n)! 2 (& v)/N| 3}

In this paper we consider approximate tolerance interval procedures for which
the tolerance factor M is given by

(6) M = (N, v)/cap for some z,,
where

(7) Pfs

v

cn,ﬂ} = 3
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The dependence of Ay, on v, 8 and z, is suppressed in the notation for typo-
graphical convenience.

The approximation presented by Wald and Wolfowitz in [6] for the case
n = N — 1 has the above form with z, = 1. The tables of tolerance factors
prepared by Bowker, which appear in [1], pp. 102-107, and elsewhere, are based
upon the Wald-Wolfowitz approximation. In [7], Wallis considers the problem
of tolerance intervals for linear regression. In that problem, Wallis’ “effective
number of observations,” N, plays the role of our N, and n ¢ N’ — 1 (in par-
ticular, » may be much larger than N'). Wallis uses the generalization of the
Wald-Wolfowitz approximation obtained by replacing N and N — 1 by N’ and
n, respectively. In [8], Weissberg and Beatty present tables of the generalized
Wald-Wolfowitz approximation in which (in our notation) (N, v) and c, s are
tabulated separately. These tables are reproduced by Owen in [4], pp. 128-137.

Wald and Wolfowitz showed in [6] that for fixed X and n, Py.,(y, \) =
P.(v,N| N™*) 4+ O(1/N?). This result motivated their choice of the approximate
tolerance factor as the solution in X of Py_i(y, \| N™?) = . Thus Wald and
Wolfowitz assumed n fixed, N — o, in their proof of asymptotic behavior, but
they used n = N — 1 in their application of their result.

2. The case n/N2 — 0. In this section we investigate the asymptotic behavior
of the difference between the confidence level attained and the nominal confidence
level B, when the tolerance factor Ay, is given by (6). The analysis in this
section embraces the cases in which either or both of n, N tend to infinity.
However, since bounds O(n/N?) and O(n!/N) are obtained, the results are
useful only for the case n/N* — 0. The case n/N° — w is treated in Section 5.
The case in which n and N” increase at the same rate seems devoid of interest,
and is not studied.

The difference between the confidence level attained and the nominal confi-
dence level 8, which we wish to study, is given by

(8) PN.n('Y, )‘N.n) - 8= E[Pn('Y; A n l j) - ﬁ]
It will be convenient to have the notation
(9) hw(&; 20) = 1 — (&, v)/r(N 20, 7),

where the dependence upon v is suppressed for typographical convenience.
Since by (4), (%, v) is positive, an even function of £, and increasing in ||,
it follows that

(10) hy(Z;20) > 0 for |N*3| < |2
=0 for |N'z = |z
<0 for |N' > |
Starting from (5) and (6), we compute
Pu(¥, My | &) = P{s Z 7(Z, ¥)ens/r(N 50, v)}
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= Pls 2 cap — capll — 7(%, v)/r(N 0, )]}
(11) = P{s Z ap — Caphn(Z; 70)}

B8+ P{Cn,ﬂ - cn,ﬁhN(j; xO) Ss = cn,ﬁ},
for |N*G| < |ad

B — Pleas = s = Cap — Caphn(T; 20)},
for |N*@| = |ad.

Because s is asymptotically normal (1, 1/2n) (see, e.g. [2], pp. 250-251), it will
prove useful to introduce

v

(12) 2= (2n)l(s = 1)
since z is asymptotically normal (0, 1). Similarly, let
(13) Kup = (20)(cap — 1)
Then

(14) Plz = K.g} = B.

Using (12) and (13) we can rewrite (11) as
Pn('Y, )‘N,n , x-) - B

(P{Knp — [(20)" 4 Knglhw(Z; 20) < 2 < Kag}, for [N < [n]
(15)

—P{Kup = 2 = Kup — [(2n)} + K glha(F; 20)},
for |N*z| = |ad,

Let g.(-) be the density function of the distribution of z. From the known
density function for s (see, e.g., [2], p. 237), and from (12), it is easy to compute
that

(16) ga(2) = (n/2)"""[L + (20) %] expl(—n/2) (1 + (2n)%)*/T(n/2).
For each 7, the function g.(z) possesses derivatives of all orders at every z. For
typographical convenience let

(17) t = [(2n)} + K. glhw(Z; 20).

Then (15) may be rewritten as

Kn,8 .
P.(v,A\vn | E) — B = j; tg,.(z) de, for |N°Z| < x|, where ¢ =0
n,

(18) et
= - gx(2) dz, for |N'z| = |zo|, where ¢ < 0.
Ka,8
The two functions of ¢ appearing on the right-hand side of (18) have identical
Taylor expansions in ¢ about ¢ = 0. Terminating the Taylor expansion at the
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second term, we obtain (19). The fact that g.(z) possesses derivatives of all
orders at every z ensures the validity of (19).

(19) Pu(¥y M | ) — B = tga(Knp) — 3gn(Kaup — 9(2))

where 0 < 6(¢) < 1. It is clear from (16) that for each n, the functions g,(-)
and g.(-) are bounded. Straightforward computations show that the sequences
of functions g,(-) and g',.( -) are uniformly bounded (g.(-) and ¢, (-) converge
pointwise, respectively, to the normal (0, 1) density function and its derivative).

It follows that the error in confidence level, Pyn,(v, Ava) — B =
E[P.(v, \v.n | ) — B], is bounded by a quantity whose order of magnitude is
the larger of the orders of magnitude of E[f] and E[f’]. Therefore, in view of the
definition, (17), of ¢, we need only obtain boundson Elky(%; xo)] and E[hy(&F; o))
in order to obtain a bound on Py (v, Ax,») — 8. However, we wish to determine
the best possible bound on Py .(v, Avx) — B for sequences of N, n under which
Pua(v, Avm) — B8 — 0. This requires a finer analysis. The method employed
here is to find a function of N, n, ¥ and 8 to which Py (v, Axv.») — B is asymp-
totically equal in such cases.

It follows from the definition, (9), of hx(Z; 2,) and from the Taylor expansion
for 7(&, v) given by Equation (34) in Section 3, that

ha(E; @) = (N o, v)™
[(z§ — N&°)r(0, v)/2N + {xio(N z0, v) — N (z, v)} /N’

It is proved in Section 4 that the function (-, v) is bounded. Since N ' has a
normal (0, 1) distribution, its moments do not depend on N, and in particular

EINZ) =1, E[N%'|=3
E[(z5 — NZ°)% = x5 — 25 + 3.

Let the symbol X denote ‘‘is asymptotically equal to.” Then it is clear that as
N —> o

(20)

(21) Elhy(%; 20)] =~ (x5 — 1)/2N  for x5 # 1,
and
(22) E[h3(; m)] & (x5 — 2z + 3)/4N* for all z, .

Further analysis is necessary to determine an asymptotic expression for
Elhy(&; 20)] when 75 = 1. The following result, which is obtained from Equations
(32) and (33) of Section 3 by a straightforward computation, is needed.

(23) v(0, v) = [3r(0, v) — 2:°(0, v)]/24.

Since all functions of , in this paper depend upon z, only through |2o|, we may
suppose here that o = 1.

Elhx(£;1)] = Ep(N7, v) — N''(, v)I/Nr(N 7, ¥)

24
( ~ —20(0, v)/N*r(0, v) = [2/*(0, v) — 3]/12N".
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The one exception to this result occurs when 2/°(0, ¥) — 3 = 0; the v for which
this occurs is approximately .78. In this case E[hy(Z; 1)] converges to zero faster
than 1/N*.

We continue the analysis for the case z5 = 1. For the case zj = 1, only the
results obtained from a similar analysis will be given. Since, by (17), ¢ =
[(2n)t + Ko plhn(E; x0), it follows from (24) that for any sequence n(N),
N=12 -,

(25) El] &~ [(2n)" + K, gll2r°(0, v) — 3]/12N°

(with one exception noted above), and it follows from (22) that
(26) E[f] &~ [(2n)! + K. g'/2N".
Consequently, ‘

(27) Varlt] & [(2n)} + K. g*/2N*

with no exception; and if n/N® — 0, then the sequence of random variables ¢
converges in probability to zero.

Consider first the case in which » is fixed as n/N* — 0. The sequence of random
variables gﬁ,(K,,,,g — 10(¢)) in Equation (19) converges in probability to gﬁ,(K,,,p),
and (with exceptions noted below)

Pya(v, Mvw) — B R [(20)! + Ko gll2°(0, ¥) — 3lgn(Ka)/12N?

= [(21)} + Ko l'g0 (Kap) /4N,
Here the order of magnitude of the rate of convergence to zero is exactly 1/N?,
unless the right-hand side is zero. This can occur only for special (v, 8, n) which
one can expect never to encounter in practice.

Consider next the case in which n — « as n/N° — 0. Denote the normal
(0, 1) density function and its derivative, respectively, by ¢(-) and ¢'(-).
Then
Pun(v, \va) = B (20)'12°(0, v) — 3l6(Ks)/12N" — ng'(Ks)/2N*

~ —n¢ (Kz)/2N*.
Here the order of magnitude of the rate of convergence to zero is exactly n/N°

(except for 8 = %).
For z§ 5 1, a similar analysis shows that when n is fixed as n/N* — 0,

(30) PN,n('Y) >‘N,n) _B ~ [(2n)% + Kn,ﬂ](x% - l)gn(Kn,ﬂ)/zN)
and when n — « asn/N° — 0
(31) Pun(v, Avm) — B2 (2n)'(25 — 1)¢(Kps)/2N.

The order of magnitude of the rate of convergence to zero is exactly 1/N in the
former case and exactly n!/N in the latter case, with no exceptions.

The principal results of the foregoing analysis are recorded in the following
Theorem:

(28)

(29)
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THEOREM 1. If Ay, = (N 'z, v)/cap and if n/N* — 0, then
Pya(v Mvm) — B = O(n'/N) for xf =1
and
Pyn(v, \ym) — 8 = O(n/N*) for z§ = 1.

Furthermore, each bound gives the exact order of the rate of convergence, except for
the special cases noted after Equations (28) and (29), respectively.
CoROLLARY 1. If n is fixed and xo = 1 in Theorem 1, then

PN,n('Y) )\N,n) —B= 0(1/N2)7

and 1/N? is the exact order of the rate of convergence except for the special cases
noted after Equation (28).

Corollary 1 is similar to the principal result of Wald and Wolfowitz in [6].
However, Wald and Wolfowitz held A fixed as well as n, and then considered
P.(v, N[N~ ') as a computational approximation to the true confidence level
Py (v, \). Their result was that the difference is O(1/N?).

CorROLLARY 2. Ifn = N — 1 and xy = 1 in Theorem 1, then the tolerance
factor is that given by Wald and Wolfowitz, and the confidence level attained con-
verges to the nominal confidence level 8, and the difference is O(1/N), and 1/N
1s the exact order of the rate of convergence except for B = %.

Note that for fixed 7, limy_« Ay, = 7(0,v)/cn gforall 2o, and u 2= [r(0, v) /ca gls
are the well-known exact tolerance limits in the case where u is known (see,
e.g., [5]).

3. Validity of the Taylor expansion of r(Z, v). Denote the 7th derivative of
r(Z, v) by r®(&, v). A simple computation (given by Wald and Wolfowitz in
[6]) shows that

(32) r®(z, v) = tanh[zr(z, 7).

Hence r(Z, v) possesses derivatives of all orders for all real values of &, and so
r(Z, v) possesses a valid Taylor series expansion. Since r(&, v) is an even func-
tion of &, only even powers of Z occur in the expansion. Terminating the Taylor
expansion at the third term, we have

(%, 7) = r(0,7) + (&/2)r®(0, v) + (&'/4)r® (&(&), v),
where 0 < £(Z) < |Z|. From (32) we have that
r®(& v) = (&% v) + r(, 7)) sech’[#r(z, v)],
so r®(0, v) = (0, v). Let
(33) v(Z,v) = (1/4)r® (&(&), 7).
Then
(34) r(Z,v) = r(0,v) + (&/2)r(0, v) + (&, 7).
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4. Proof that v(-, v) is bounded. Fix § > 0. Since r(Z, v) possesses everywhere
derivatives of all orders, the fourth derivative r®(z, v) is continuous and hence
bounded for |Z| < 4. It follows from (33), in which 0 < £(%) < ||, that v(Z, v)
is bounded for |Z| < .

Since r(Z, v) is minimum at & = 0, it follows from (34) that (£°/2)r(0, v) +
(%, v) = 0 and hence »(Z, v) = —(1/2°)r(0, 7). Consequently v(Z, v) is
bounded below for |Z| = .

Next observe that

(35) r(Z, v) = (0, v) + |2
To see this suppose, without loss of generality, that £ = 0. Then the interval
[ — {r(0,v) + @}, + {r(0,v) + 7] = [—7(0, v), r(0, v) + 2]

has, under the normal (0, 1) distribution, probability content at least vy, since
it contains the interval [—r(0, v), 7(0, v)] which, by (4), has probability con-
tent exactly . Since 7(Z,y) is an increasing function of v for fixed Z, it follows
that (0, v) + & = (&, v). Now from (34) and (35) we have that

(&/2)r(0, v) + &o(z, v) < |3

I\

and hence
v(&,v) < |8 — (0, v)/27.

Consequently v(Z, v) is bounded above for |Z| = 8.
We have shown that (-, v) is bounded above and below for every real Z.

5. The case n/N? — . In this section we investigate the asymptotic behavior,
as n/N® — o, of the difference between the confidence level attained and the
nominal confidence level 8, when the tolerance factor Ay, is given by (6).
Here it is most convenient to work in terms of y = N*z, where y has a normal
(0, 1) distribution for all N. If P,(vy, Av,. | £) written in terms of y is denoted
by Pna(v, Av.a|y), then the confidence level attained is

Pan('Y, )\N,n) = E[PN,n('Y, )\N,n | y)]
By (18) we have

K,,’ﬂ
Pya(v,Avm |y) =8 +f gn(2) dz,  for |y| < |mol,
Ky, 5—t(¥)
(36) =340, for |y| = |xd| ,
Ko p—t (¥)
=B+ i 9:(2) dz,  for |y| > |z ,
n,B

where #(y) is the ¢ defined by (17) written in terms of y. Explicitly,
(37) ty) = [(2n)} + Knplhw(N7hy; 20)
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where the first factor is always positive, since by (13), (2n)! 4+ K,; =
(2n)¥, s > 0. Hence, from (10),
t(y) >0 for |yl < |z
(38) =0 for [yl = |xl
<0 for |yl > |xd.
Clearly, if N is fixed (or bounded) as n — o, then
t(y) = + o for [yl < |ul
(39) -0 for |y| = |
— — o for |y| > |

We show next that (39) holds also in the case where N — « as n/N* — o,
Using (20), we can write (37) as

t(y) = [(2n)} + Kugl/r(N 7z, v)
X[(@ — y*)r(0, v)/2N + {zto(N %m0, v) — y'o(N 7Yy, v)}/NY.

It was proved in Section 4 that »(-, ) is bounded. Hence if N — « as
n/N* — o, then t(y) is asymptotically equal to (2n)(zi — 4*)/2N, and (39)
holds.

Since (39) holds when n/N® — «, and since z is asymptotically normal
(0, 1), it follows from (36) that as n/N* — o,

Pya(vs Mm|y) =B+ (1 =8) =1 for [y < |z

(40)

(41) — B+0=p for [yl = |z
— B—B=0 for |yl > |xl.

Let

(42) fra(y) = Pua(¥, M | ¥)(27) ™ exp[—y*/2].

Then it follows from (41) that as n/N* — «
Fua(y) = f(y) = (2m)7 expl—y*/2] for |y| < |ad|
(43) = B(2m) " exp[—y?/2] for |y| = |u|
=0 for |y| > |-
Since the functions fy.(y) are uniformly dominated by the integrable function
(2r)™* exp[—y’/2], it follows that as n/N* — o,

PraCra) = B P G |90 = [ Sualw) dy— [ 100 dy
= P{fyl < lol}.

This result is recorded in the following theorem:
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THEOREM 2. If Ay = (N %20, ) /Cas , and if n/N* — oo, then Py (v, Ayn)
— P{ly| < |zo|} where y has a normal (0, 1) distribution.

COROLLARY 1. If Ay, = r(N'*xo , ¥)/Cug, and if n/N* — oo, then the con-
fidence level attained converges to the nominal confidence level B if and only if |xo| =
r(0, 8).

Note that for |z| = (0, 8), and N fixed, lim, sehvn = (N (0, 8), 7),
and & &+ r(N % (0, 8), v)o are the well-known exact tolerance limits in the
case where ¢ is known (see, e.g., [5]).

6. Heuristic explanation of results and discussion. It is-perhaps surprising
that as N — oo the confidence level attained by the generalization of the Wald-
Wolfowitz approximation should converge fastest to the nominal confidence
level when 7 is fixed, and that the confidence level attained should fail to con-
verge to the nominal confidence level if n increases ‘“too rapidly.” This behavior
is contrary to that observed in most statistical applications, where it is usually
found that the larger any sample-size is, the better. An heuristic explanation of
the behavior observed can be given as follows.

For any v, the exact tolerance factors for various 8 are the corresponding
percentage points of the distribution of »(&, v)/s. The approximate tolerance
factors given by Wald and Wolfowitz are percentage points of the distribution
of (N}, v)/s. Thus Wald and Wolfowitz replace the random variable r(z, v)
by the “typical value” »(N*, v). The variance of r(Z, v) is O(1/N?) and the
variance of s is O(1/n). Consequently, the substitution made by Wald and
Wolfowitz does not matter much if N” is “large” in comparison with n, since
then most of the variability of 7(Z, v)/s is due to s. On the other hand, if N” is
not “large” in comparison with 7, then much of the variability of r(Z, v)/s is
due to 7(Z, v), and a serious error is introduced by replacing the latter random
variable by the “typical value” r(N %, v).

These remarks suggest that a more adequate approximation for general n, N
could be obtained by replacing (&, v) by some other random variable, rather
than by a constant. A normal random variable would be a natural candidate,
since then the approximate tolerance factors would be given by the non-central
{-distribution (as are the exact tolerance factors in the case of one-sided tolerance
intervals). Furthermore, it is possible to choose the mean and variance of the
normal random variable in such a way that as N — o« with n fixed, orasn — o«
with N fixed, the tolerance factors tend to the exact tolerance factors for the
respective cases of u known and ¢ known. The asymptotic behavior of the dif-
ference between the confidence level attained and the nominal confidence level
could be determined by using the methods employed in this paper.
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