SINGULAR WEIGHING DESIGNS!

BY DAMARAJU RAGHAVARAO
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1. Summary and introduction. Suppose we are given p objects to be weighed
in N weighings with a chemical balance having no bias. Let X = (z;;) be the
weighing design matrix, where z;; = 41 or —1 if the jth object is included in
the 7th weighing by being placed respectively in the left or right hand pan, and
x;; = 0 if the jth object is not weighed in the sth weighing. The weighing results
may be represented by means of the following matrix equation,

(1.1) y = Xw + ¢,

where y is the column vector of the results recorded in the N weighings, € is the
column vector of the errors in these results and w is the column vector of the true
weights. Under the assumption that ¢ has mean Oy, and dispersion matrix
oIy , where Opy, is the m X n null matrix and Iy is the Nth order identity
matrix, the normal equations estimating w are given by the equation

(1.2) S = X'y,

where S = X'X and  is the column vector of the estimated weights. The
weighing designs problem was studied till now when S is non singular (cf.
Hotelling [1], Kishen [2], Mood [3], Raghavarao [4]).

There is no recorded literature dealing with weighing designs whose S is
singular. Occasions may arise when the experimenter is faced with weighing
designs whose S is singular. We now define

DeriniTioN 1.1. A weighing design X is said to be singular if the matrix S
is singular.

The word “singular weighing design” in the above definition is somewhat mis-
leading, but is used for the lack of a suitable word. Singular weighing designs
may occur in the following cases.

1. Bad designing. As there are no best weighing designs tables, an experi-
menter who desires to use a particular order weighing design, has to construct
one for himself before starting the weighing operations. In such circumstances
bad designing may result in singular weighing designs:

2. Laboratory observations. Many scientists are of the opinion that they can
achieve greater precision in their readings by repeating their experiments. The
process of repeating weighing operations may also lead to singular weighing
designs, when the number of independent linear weighing operations made is
less than the number of objects.
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3. Accidental. Though optimum or best weighing designs have been selected
by the experimenter, accidentally some objects may fall down and break while
taking the weighings. In that case, if the experimenter continues his weighing
operations, putting x;; = 0 for the broken objects, he may finally obtain a singu-
lar weighing design. For example, let an experimenter plan to weigh 5 objects
in 5 weighings with the design Ps of [4]. After two weighings, the first two objects
fell down and broke. If he continues the weighing operations assuming z;; = 0
(2 = 3,4, 5;j = 1, 2), he gets a singular weighing design.

This paper deals with two statistical questions. The first question concerns
the estimability of individual weights of the objects and the second question
considered is the taking of additional weighings so as to render the problem one
of full rank and if possible so as to minimize the resulting generalized variance
of the estimates, which is equivalent to Mood’s efficiency definition.

In Section 2, results on singular weighing designs together with some matrix
lemmas are given, outlining the proofs wherever necessary. Necessary and suf-
ficient conditions for the estimability of individual weights of the objects are
given in Section 3 and the problem of taking additional weighings so as to ob-
tain the estimates of all the objects is considered in Section 4.

2. Preliminaries and some matrix lemmas. Let the singular weighing design
X, be of rank r. Without loss of generality we assume that the first » columns of
X are independent and X = [X; X,], where X, is an N X r matrix of rank r
and X, is an N X (p — r) matrix. Let us define J = (X1X;) " X1X . Then it
is easy to see that X, = X J. A solution of the normal equations (1.2) is
o - [HE)XIA],

Op—r1

(2.1)

We devote the rest of this section for some matrix results, which will be re

quired for further development of our problem.
LemMA 2.1. Given four matrices A, B, C and D of orders p X p, p X ¢, ¢ X P
and q X q respectively, if D is non singular then

A B _
(2.2) !C p =Dl |4 — BD 0.
LemMma 2.2. If
" [z 2
(23) Z = I:Z; Za:l

is a partitioned symmetric matriz such that Z and Z, are non singular, then
o [ZMI + 2, F2: 27"y —Z7'Z, F

(24) Z = I: —Fz, 77 il )

where

(2.5) F =2y — Z:27'Z,.
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Lemma 2.3. If Z vs a non singular n X n matriz, and U and V are n X m and
m X n malrices respectively, then

(2.6) Z+UV)' =27 - 77U, + VZ'Uuy vz

The result can be proved by multiplying the members of the above relation in
either direction by Z + UV, yielding the identity matrix.
LemMma 2.4. For the matrices Z, U and V as defined in Lemma 2.3, we have

(2.7) |Z + UV| = |Z| |[I. + VZ7'U|.

Proor. Taking the determinants on both sides of (2.6),
(2.8) (Z+ UV)7| = |27 |I. — Ull. + VZ'Uy vz
Let ¢, ¢, -+, cu be the characteristic roots of U{I, + VZ~ ‘uytvz,
out of which ¢,c, -+, ¢, are non zero. Then, it is well known that
VZ'U{I, + VZ7'U} ™ has o , €2yt o+, Cy as the only non zero characteristic
roots. Now,

I — Ulln+ VZ7UYVZ 7 = 1 —e)(1 — o) -+ (1 — ¢n)
=(l-a)l=a) - 1=—qc)=|I,— VZ'UI, + VZ'U}7|
= {In+ VZ'U} — VZ7'U| [{I. + VZ7'U}7|
= [{I. + VZ7'U}™.

Substituting the above value in (2.8) and taking the reciprocals, we get the
required result.

3. Estimability of individual weights of the obJects for singular weighing
designs. If b is any column vector of order p, b'w is said to be a linear para-
metric function of the weights. The linear parametric function b'w of the Welghts
is said to be estimable, if there exists a column vector a of order N such E (d'y) =
b'w, where E stands for the mathematical expectatlon of the random variable.
It easily follows that the linear parametric function b'w of the weights is esti-
mable for a singular weighing design, if, and only if

(3.1) rank (X') = rank (X' |b).

In weighing designs, we will be interested in finding the estimates of the in-
dividual weights of the objects. Hence, we try to find necessary and sufficient
conditions for the estimability of the parametric function piw of the weights,
where p(z = 1, 2, -+ -, p) is the ¢th column vector of I,. Let z;, z,, - -, Zp
be the column vectors of X. We now have

THEOREM 3.1. A necessary and sufficient condition that the parametric function
piw of the wetghts 1s estzmable 1s that

(2.9)

(3.2) rank {1, B2, v cv, Lica, Tiga, c0 , 2y} =7 — L

By noting that rank (X' | p;) = 1 + rank (21, 2, -+ , Tix, Tiga, = - , z,),
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the above theorem follows easily from the necessary and sufficient Condition
(8.1) for the estimability of the parametric function p;w of the weights.

An interesting corollary to the above theorem is

CoROLLARY 3.1.1. The parametric functions p,yjw of the weights are not es-
timable (j =1,2,--- ,p — r).

Let &1, &, - -+, & be the 7 column vectors of order p — r of J'. If the indi-
vidual weight of the 7;th object (¢4 = 1,2, - -+, r) is estimable, then from Theo-

rem 3.1 we should have rank (z;, 22, -« , Tij—1, Tigq1, *+* , &, Xo) =7 — 1,
which ‘is possible if and only if £, = 0,—,1. Hence we have
TaeEOREM 3.2. The individual weight of the i1th (44 = 1, 2, ---, r) object s

estimable if and only if &, = Op_ry .

If the individual weights of the first » objects are estimable, then from Theo-
rem 3.2, we have § = & = -+ = & = 0p_1. Thus X = Oy, . If we agree
to call a weighing design to be real if each object is weighed at least once, then,
for a real design, X, # 0 and we have

CoROLLARY 3.2.1. In a real singular weighing design of rank r, at most r — 1
objects have estimable weights.

If the parametric function p;w of the weights is estimable, its best unbiased
estimate can be obtained, from Gauss Markoff theorem, as pi (X1 X;) X1y,
where pf is the ¢th column vector of I, . The variance of pi’ (X1X;) X1y can
easily be seen to be equal to the sth diagonal element of (X1X;)™ times o’
These results may be summarized in

THEOREM 3.3. If the parametric function piw of the weights is estimable for a
singular weighing design, its best unbiased estimate is pi (X1 X1) X1y, with a
variance equal to the ith diagonal element of (X1X:) ™" times o°.

4. Problem of taking additional weighings. Given a singular weighing design,
it is easy to see that by taking p — r independent additional weighings, we can
make the problem one of full rank and obtain the estimates of all the weights.
Let p — r additional weighings be taken, on the same balance on which the first
N weighings are made according as the design matrix B = [B; Bj], where B,
isa (p — r) X r matrix and B, is a (p — r)th order square matrix. Let z be
the column vector of the results recorded in these additional weighings and
be the column vector of errors in these results.

The results of the additional weighings can be written as

(4.1) 2 = Bw + o.
Letting
(42) Zy = X1Xy + BiB:,  Z, = X1Xo + BiB;,  Z; = X3X; + B:Bs,

from (1.1) and (4.1), we obtain the normal equations

Zy Zy X; B Y. Xiy + Biz
(43) , W= , , i.e. S = , L
Z2 Z3 X2 Bz 2 ng + Bzz
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If we define F to be equal to Zs — Z3Z7'Zs , its value is given by the following
LeMMma 4.1.

(44) F = (B, — BlJ)ID(Bz — ByJ),

where

(4.5) D = {I,_, + B(X:X)) By} ™.
Proor.

F = Z; — Z377'Z, = (X3Xs + BiB,) — (X3X: + BsBy)
A(X1X)™ = (X1Xy) 'BiDBy(X1X1) Y (X1X: + BiB.)
= J'BiDByJ — J'BiDB, — BiDB\J + BsDB, = (B, — BJ)'D(B: — B.J).

We now prove
LemMma 4.2.

(4.6) |8y = |X1X4| |B; — BiJ[,
Proor.
81| = |Zi| |F| = |24 |D| |B: — ByJ® = |X1Xi| |B. — BuJ[",

from Lemmas 2.4 and 4.1.
FYor Z,,Z, , Z; and F as defined by (4.2) and (4.4), by making use of Lemma
2.3, we get

—Z7'ZF " = —{J + (X1X1)'BiD(B, — BJJ)}F7,
NI + ZF 72,777 = (XaXn) ™ + JFOT
+ JF (B, — B,J)'DBy(X1X;)™"
) + (X1X1)'BiD(B, — B,J)F'J'.
If we choose B; and B, , such that |B; — BiJ| # 0, from Lemma 2.2, we get
(48) S

(XiX)+JF +JFY(By, — BJ) DB(X1Xy)" —{J + (X1X) ™
_ +(X{X1)—IB{D(Bz — BIJ)F‘IJ' -BiD(B2 — BIJ)}F‘1 .

—F{J' + (B: — BJ)'DBy,(X1X:) 7} F
Now, on simplifying we get the solution of the normal equations (4.3)

(4.9)
. [(X{XI)“IXiy + J(By — BJ)'Bi(X1Xy) ' X1y — J(By — BIJ)“Iz}
w = .
(B, — BJ) ™2 — (B, — BJ)'Bi(X1X,) X1y

The dispersion matrix of the estimates (4.9) is ¢°S;". The above results can be
summarized in the following

(4.7)
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THEOREM 4.1. Given a singular weighing design, unbiased estimates of all the
weights can be determined by taking p — r additional weighings with the design
matriz B = [By By] such that |B, — ByJ| # 0. The estimates thus obtained are
given by the Equation (4.9) with the dispersion matriz oSt

The estimated weights (4.9) will be efficiently determined, for Mood’s effi-
ciency definition, if the determinant of S; is maximum. When r = p — 1,
|Si| can be maximized, independent of the choice of X;, whereas when r <
p — 1, it is possible to maximize |S;| only for a particular choice of X; . In this
paper we shall consider the case r = p — 1 in detail. Maximizing || for a par-
ticular choice of X; and some connected results are given in the author’s un-
published thesis [5].

Now let [4; A,], where A;isa (p — 1)th order row vector and A, is a scalar,
denote the pattern of taking the additional weighing. The normal equations in
this case are

X1 X, + A1A;, XiX, + Aid, w X: Ai[y
XoXy + Abdy XoXo + Abds | | Xs Ab]|z

(4.10)
1. e., Sz’w = [

X + Al
Xoy + Az '

|Sz| can be obtained from Lemma 4.2 to be equal to | X 1Xi| (4; — AyJ)* In order
to make S, nonsingular, we choose A; and A4, such that (4, — 4,J) 0. The
value of the determinant of S can be maximized for a given X;, by choosing
A1 to be the column vector obtained from J where the non null elements are re-
placed by +1 or —1 according as the element is positive or negative and finally
taking 4, = —1. Thus

LemMa 4.3. | S| is mazimum for a given X , subject to the choice of the elements
+1, —1 and 0 for A, and A, , by taking A1 to be the column vector obtained from
J where the non null elements are replaced by +1 or —1 according as the element is
positive or negative and A, = —1.

Let the column vectors of [X; X3] be reshuffled, so that another set of p — 1
independent column vectors occupy the first p — 1 positions. Let the newly
obtained matrix be [V: ¥3] and let L = (Y1Yy)7'Y1Y,. Let [Hy H.], be a row
vector, where Hj is the column vector obtained from L where the non null ele-
ments are replaced by +1 or —1 according as the element is positive or negative

and H, = —1. We now prove

LemMa 4 4.
(4.11) |X1X1|(As — AJ)? = |Y1Y4|(H, — HiL)™.

Proor. Let 21, 2, - - - , & be the columns of [X; X»]. Without loss of general-
ity, we assume that Y, consists of the columns z1, @2, - -+, Ti1, Tp, Te41,
-+« Zp1. Let J' be the row vector (a1, @2, -+ , @p1). Then

(4.12) Tp = 01 + @2 + -+ + CGpaXp .
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3 7’ . —_
We can easily see that L’ is the row vector —a; (a1, a2, -+, @y, —1, G141,
<ot @p). Now
! ’ ’ ’ ! ’
11 T1X2 crr Tle—1 T1kp T1le4a ce T1pa
’ ! ’ ! ! ’
Xok1  T2X2 coc Toli—1 Tolp Toliya s Xolp1

! ! ! ! ! !
Li—1l1 Te—1%2 *** Ti—1t—1 Ti—1lp Ti—1Ti41 **° Ti—1Tp—1

413) |vivy| =

’ ’ ’ ’ ’ ’

Tpli  TpTe  ccc Tl Tplp  Tpepr c 0 Tplp
’ ’ ’ ! ’ !
Te41T1r Te41le *°° Tp41li—1 Te41lp Te41lir1 *°° Ti41lp1
’ ’ ! ’ ’ !
Tp—1T1 TpTe cr Tp1®i—1 Tp Tp Tp—1Tig1 0 Tp—1lp—1

On substituting the value of z, from (4.12) and simplifying the above deter-
minant, we get

(4.14) 7.7y = |XiXyal.
Now '

' —1 2
|X1X1| (4 — A)? = | X1X4 {: |ai| + 1}

2

p—1 2 p—1
(4.15) = @ |Y1Y4| {Zl |ai| + 1} = |Y1Yy| {Z_; lad az' + at‘l}

= |Yi1y| {2 lai| et + 1 + at_l}2 = |Y1Y4|(H, — HiL)".
1L
Hence the lemma is proved.
The solution of the normal equations can be obtained as
(4.16)
(Ay — AJ) (X1X1) X1y + JA(X1 X)Xy — Jz

¢ — A(X1X) Xy :l
The dispersion matrix of the above estimates is
(4.17) @8z

The estimates (4.16) will be efficiently determined, for Mood’s efficiency defi-
nition, if | S| is maximum. |S,| is maximum when 4; and 4. are chosen according
to Lemma 4.3. Lemma 4.4 insures that the maximum value of |S;| will be ob-
tained by selecting A; and A as in Lemma 4.3, whatever p — 1 independent
columns we choose for X; . These results are summarized in

THEOREM 4.2. Given a singular weighing design of rank p — 1, the weights of

’w = (Az - AlJ)_l[
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the objects will be efficiently estimated, for Mood’s efficiency definition, by taking an
additional weighing corresponding to the row vector [Ay A,] determined as in
Lemma 4.3. The estimates of the weights thus obtained are given by (4.16) with the
dispersion matriz (4.17).

IrnrusTrATION 4.2.1. Let us consider the singular weighing design

1 11
1 1 1
(4.18)
1 —-1.0
1 -1 0
of rank 2. Since the first two column vectors of (4.18) are independent, we can

choose them for our X; . Then J' = (%, 1). Lemma 4.3 dictates us to take the
additional weighing corresponding to the row vector

(4.19) (1L, 1, —=1),

in order to get maximum efficiency for Mood’s efficiency definition, for the esti-
mated weights of the objects. The estimates are given by

22 + y1 + y2 + 2ys + 2y,
(4.20) W =5[22+ y+ y2 — 2y — 2ya
23/1 + 2y2 — 4z

with the dispersion matrix

7 —_1 -1

32 32 16

(4.21) | — & =i
-1 —7¢ 3 J
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