ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY
STOCHASTIC PROCESSES

By L. H. KoopmaANs!

Sandia Laboratory, Albugquerque

0. Summary. The existence of the class of orthogonal projections which map
an arbitrary g-variate weakly stationary stochastic process again into a g-variate
process contained in the span of p( =< ¢) of its component processes is established.
Mimicking the definitions of the partial and multiple correlation coefficients
(e.g., Anderson, 1958), these projections are used to define partial and multiple
coefficients of coherence, thus providing the foundation for the multivariate
covariance and correlation analyses for weakly stationary processes employed
in special cases by Tick (1963) and Jenkins (1963). Some of the properties of
the partial and multiple correlation coefficients are established for the corre-
sponding coefficients of coherence. In particular, formulas are established for
generating these parameters iteratively. When used for the sample coefficients
of coherence, these formulas provide useful methods of defining and constructing
estimates of the multiple and partial coefficients of coherence from the usual
estimates of the ordinary coefficient of coherence. Results due to Goodman
(1963) concerning the distributions of these estimators when the process is
Gaussian are indicated.

1. Introduction. In statistical applications it is often important to be able
to deal with such questions concerning the distribution of random variables
X1, --+, X, as the following: How strong is the linear relationship between
X, and X; ? How strong is the residual linear relationship between X; and X;
after the effects of the linear regression of these random variables on certain of
the remaining variables has been removed? What proportion of the variance of
X is attributable to the linear regression of X; on one or more of the other
random variables? What is the value of the residual variance of X, after its
regression on the remaining random variables has been removed? It is well
known that these questions can be given formal meaning in terms of the variance-
covariance structure of the distribution of X;, -+, X, . To each question there
corresponds a parameter, depending only on the variance-covariance matrix,
which provides the appropriate measure of the desired quantity. In the same
order as the questions, these are the ordinary correlation coefficient, the partial
correlation coefficient, the multiple correlation coefficient and the residual or
conditional variance. '

Several important structural relationships exist between these parameters. Of
particular importance are inductive formulae which permit one to construct the
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1766 L. H. KOOPMANS

last three, which are otherwise of a rather complicated form, from the ordinary
correlation coefficients which are very simple functions of the variances and
covariances.

In scientific applications of time series analysis, where X1(¢), - -+, X,(¢) are
interpreted as non-deterministic functions of the time variable ¢, questions of a
similar nature are asked. The variance of a random variable is replaced by the
seemingly different concept of power, which is, intuitively and imprecisely,

T
limgr.s (27)7 | Xi(2) dt
for the ¢th time series. Moreover, the magnitude of the linear relationship
between time series is generally thought of as the degree to which one series can
be transformed into the other by a linear filter.

A satisfactory mathematical model for the idealization of non-deterministic
time series within which these concepts can be made precise is available in the
structure of weakly stationary stochastic processes. The variance-covariance
matrix of the random variables X, ---, X, has a natural analog in the spectral
density matrix of the g-variate process Xi(¢), -+, X,(¢). This matrix-valued
function measures the variation of the power (now also the variances of the
X.:(t)’s) in the component time series and the linear interrelationships between
the time series as a function of frequency. The coefficient of coherence, a version
of which was originally defined by Wiener, is the natural analog to the ordinary
correlation coefficient and, in fact, is virtually the same function of the spectral
density matrix as the correlation coefficient is of the variance-covariance matrix.
In (Koopmans, 1964) the coefficient of coherence was shown to enjoy all of the
important properties of the correlation coefficient.

The purpose of this paper is to establish, within the same framework, the
existence of the appropriate frequency dependent analogs of the partial and
multiple correlation coefficients and the residual variance. The important struc-
tural relationships that hold in the case of the correlation coefficients, including
the inductive formulae for constructing the partial and multiple correlation
coefficients, are established for the partial and multiple coefficients of coherence.
A more formal outline of the necessary tools and of the results is given in the
next section.

2. Preliminaries. Let X = {X(f) : —© <t <=} be a g-variate, continuous-
in-the-mean, weakly stationary stochastic process. That is, X(¢) is acolumn
vector (X1(t), -+, Xq(t))" of complex-valued random variables over a proba-
bility space (2, @, P) such that

(i) EX;(t) =0, =1,2, --+,q, — <t < » and

(ii) EX;(t + 7)X(0) is finite in absolute value for —» < t, 7 < « and
depends, functionally, on = alone forj, k = 1,2, --- , q.

The components of X are, thus, elements of the Hilbert Space £,(P) of complex-
valued random variables, X, for which EX = 0 and inner product is given by
(X,Y) = EXY.
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We shall assume that the spectral distribution of X is absolutely continuous
with respect to a given Lebesgue-Stieltjes measure, u, and shall denote the
spectral density matrix of X with respect to u by =Z(A). Thus, Z(\) = [o(N)] is
a ¢ X ¢ matrix of complex-valued, measurable functions which is non-negative
definite and hermitian almost everywhere with respect to u, (abbreviated a.e.

().
Let G(Z) denote the class of all ¢ X ¢ matrices, A(\), of complex-valued,

measurable functions for which
Al = trfAzA* dp < o,

where * denotes conjugate transpose and tr denotes trace. The range of inte-
gration is always taken to be (— «, « ). Elements A and II of G(Z) are identified
if ||[A — IO = 0. Then, G(Z) is a Hilbert Space over the complex field relative
to the inner product

@A, ) = tr f AZTT dp.

Similarly, the class H(Z) of row vectors.z(A) = (z1(N), -+, Z¢(7)) of measur-
able, complex-valued functions for which

||a:||2 = fxzx* du < o,

(again identified by norm equivalence) is a Hilbert Space with inner product
(x, ) = [¢=2y* du.

If h and g are arbitrary measurable functions of \, we write b = g a.e.(Z) if
tr [4= du = 0, where 4 = [k 5 g].

We denote by 911 the linear manifold in £,(P) spanned by the components of
X (i.e. 9 consists of all finite linear combinations of the form

m q

2 2 X (L),

=1 j=1
where the a;; are complex constants and m is an arbitrary integer) and
by 5 its £2(P) closure which will be termed the subspace spanned by X. Simi-
larly, 9t,,...,i, and M, ... 5, will denote the manifold and subspace spanned by
X;l,...,,'p = {(X;l(t), sl X,'p(t))/: —o << 00}.
There exists an inner product preserving linear isomorphism, <>, between the
subspace 91 and H(Z) defined by

Xou if X=fx(>\)dZ(>\),

where Z(\) = (Zi(\), -+, Z4(2))' is the spectral process determined by X.
Let U denote the group of unitary transformations, U,, on 51 onto 91 de-
termined by the equations

UtXi(u)=Xj(t+u)7 Jj=12 -4 —o Jtfu< o,
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By an immediate extension of Theorem A of (Koopmans, 1964) a linear iso-
morphism (also denoted by <) can be established between G(Z) and the class,
T(X), of all linear transformations which transform X again into g-variate,
continuous-in-the-mean, weakly stationary processes relative to the group, U.
That is, if T ¢ T(X), then the elements, TX;(t), of the transformed process
TX are in 51 and satisfy the equations

UTXi(u) = TX;(u + t), i=12 ---,gq, —oo < fu <o,

This implies that RX and TX are stationarily correlated with each other for
all R, T' ¢ T(X) and, in particular, X is stationarily correlated with every TX.

The isomorphism between G(Z) and T(X) can be described as follows. If
T < A, then for every X ¢ S for which X <> z ¢ H(Z) and

f TAZA*Z* dp < o

we have
TX = f zA dZ.

Le. D(T), the domain of T, is isomorphic to H(AZA™) and T acts as an inte-
grated matrix operator on this domain. We will treat T as though it were a
matrix operator when applied to the elements of X and define the Gramian of
g-vectors of elements of £,(P), X = (X1, -+, X)), Y = (Vy, ---,Y,), as
the ¢ X ¢ matrix ((X, Y)) whose ¢, jth element is (X, Y;). The parts of Theorem
A (Koopmans, 1964) that will be required in this paper are stated in the ap-
propriate form as follows. ‘

THEOREM A 1. If T e T(X), A e G(Z) and T <> A, then the q-variate, weakly
stationary process TX has the spectral representation
TX(t) = f A dZ(V), —w <t < .
Moreover, if x <> X e D(T),
TX = [ 200A0) dZ(M).
The spectral distribution of TX s absolutely continuous with respect to u and has
spectral density AZA*,
2. Let T o> Aand R - II. Then if x > X e D(T), y < Y ¢ D(R),
(TX, RY) = [ aasi** dp.

In particular, the cross covariances of TX and RX have the spectral representation,

(TX (1), RX(s))) = / FEMNZOIITFN) du(N),  —o <t s < co.
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3. Further, if the matriz product AIl ¢ G(Z) and D(T) = D(R) = N, then the
compostte operator RT vs in T(X) with D(RT) = T and RT <> AIlL.

A corollary of this theorem, which will be needed in the sequel, characterizes
the class, T"(X), of orthogonal projections in T(X). The proof given in (Koop-
mans, 1964) for the bivariate processes can be easily extended to the ¢-variate
case.

CoROLLARY A. Let G™(Z) be the collection of A ¢ G(Z) for which

(i) A’ = A, and
(ii) AZ = ZA* a.e.(Z) and such that

(ili) [eAZA*z* du < [222™ du for all x e H(Z). Then, T e T*(X) if and only if
T < A for some AeG"(Z). Moreover, AeG" (2) and A < T implies I, —
A e G™(Z), where I,1s the ¢ X q identity matriz, and I, — A <> I — T. The spectral
denstty of (I — T)X s

S — AZA*ae.(u).

(That A e G(Z) is an easy consequence of Condition iii so that this need not
be specified in the statement of the Corollary.)

To motivate the definitions of the partial and multiple coefficients of coherence
it is useful to recall in a somewhat different form than is usually given, the
definitions of the partial and multiple correlation coefficients for random vari-
ables X1, X», ---, X,in £(P).

Let 9y, ... be the collection of all complex linear combmatlons of the random
variables Xj; , - - . Then 91;, .. , is a linear subspace of M = 9M.... ,and
there exists a unique orthogonal prOJectlon M,...,;, o0 91t with range equal to
mil,... Vip o

DeriniTION 1. The partial correlation coefficient psj.s,,....s, , of X: and X; given
Xy, -+, Xi, is then the ordinary correlation coefficient of (I = My, s,) Xiand
(I — 11,,,.. )X +, where I is the identity operator on 91.

DEFINITION 2. The multiple correlation coefficient, R..,.. wipy Of Xi given
X, -+, X, is the ordinary correlation coefficient of X ; and ﬁ,l, Y. ¢

The properties of and interrelationships between these correlation coefficients
are determined by the projections ﬁil,...,ip and the properties of the ordinary
correlation coefficients. Due to the close analogy between the ordinary correlation
coefficient and the coefficient of coherence for pairs of stationarily correlated,
weakly stationary processes (Koopmans, 1964) it is reasonable to expect that a
similar theory can be derived for multivariate time series provided the orthogonal
projection, II, ... s, , on 3 with range 5T;,,...,., , maps X into a g-variate Weakly
stationary process which is stationarily correlated with X; i.e. provided Iy, ...,i,
T"(X). Section 3 is devoted to estabhshmg this result. The partial and multlple
coefficients of coherence are introduced in Section 4 and several of the properties
with correlation coefficient analogs are derived. The close resemblance between
the coherence expressions and those for the correlation coefficients are demon-
strated when det Z(\) > 0.

3. Proof that IL;,,...,;, ¢ T"(X). It suffices to establish the result for pro-
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jections of the form II, = II,,4,...,, since the general projection can be reduced
to this form by relabeling the component processes of X. We will show that
II, ¢ T"(X) by establishing that there always exist a G ¢ G"(Z) such that the
range, ®R(T'), of T' <> G is M, r41,...,, . The uniqueness of orthogonal projection
will then imply T = II, .

A ¢ X ¢q matrix, G, will be said to be (n;, ne) partitioned if #;, and n, are
positive integers such that n; + n, = ¢ and

. [Gu Gu]
G21 G22
where G;; is a matrix of dimension n; X n;, 1 < ¢, j < 2. Similarly, a ¢ row
(column) vector z is said to be (n;, ny) partitioned if 2 = (1, 22)((21, 22)")
and z; is a n; row (column) vector. Unless otherwise specified, throughout the
remainder of this section the matrix valued function = and the elements of
G(Z) and H(Z) will be (r — 1, ¢ — r + 1) partitioned.
LeMMma 1.
[0 A( x)]
G(\) = . e G(2)
0 I

if and only if A(N) is a measurable solution of the matriz equation
(1) AN)Z2(N) = Zu() ae.(p),

where Z(\) = [Z:(N)]i, § = 1, 2; 0 denoles a mairiz of zeros; and I is the identity
matrix.

ProoF. We suppress the argument A in all proofs except where needed for
clarity. If G, ¢ G"(Z), then A is measurable and, by virtue of Condition (ii) of
Corollary A, G,2 = =G5 a.e.(Z) But tr= = 0 implies = = 0. Thus, [G,Z = G ]
C [tr2 # 0] which implies G,= = 2G5 a.e.(u). A simple multiplication establishes
that,

Azzl AEzz % 212 A * 2;12
(2) G.z = and 2G; = N .
2o Zx SwA”

Thus, equating the components of these matrices, Equation (1) is seen to be
satisfied.
04

Now, let G, = I:O T

easily seen that G7 = G, a.e.(u) which implies Condition (i) of Corollary A.
Since 2 iS hermitian, 221 = E;kz and 2;‘2 = 222 . Thus, A222 = 212 implies
ZpA* = Zn. Also, ZppA* = AZpA™ = (AZpA™*)* = AZ, . Thus, by Equation
2, it follows that G, = ZG7 a.e.(u) and Condition (ii) is established.
To establish Condition (iii), let H = l-(I) _%
hermitian a.e.(x), HZH*2* = 0 a.e.(u) for all z ¢ H(Z). Then, applying

] where A is a measurable solution of Equation 1. It is

]. Since ¥ is non-negative definite
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Equation (2),
Zu — AZnA* 0
HzH* = " = a.e.(u).
0 0
Thus, zHZH 2* = 2,(Zy — AZuA®)zf = 0 a.e.(u), where z = (z1, z2).

Now,
% *
@.36" = I:Azzzx‘i AZzz:l _ [AzzzA Elz:l ae.(u)
P2V | 22 Za s

by virtue of Equation (2). Thus,
a2z* — 202G ™ = 2(Zn — AZpd®)zf 2 0 a.e.(u).
It follows that for all z ¢ H(Z),

f G 2Gra* dp < f a2z dy,

and Condition (iii) of Corollary A is satisfied.
LemMmA 2. The matriz equation ‘

A()\)Ezz(k) = 212()\)

has a solution at each N for which Z(\) is non-negative definite, hermitian. The
class of solutions of this equation possesses a measurable member.

Proor. Fix A at a value for which £ = Z(\) is non-negative definite, hermitian.
The eigenvalues of 2 are then non-negative real numbers which we will label to
satisfy the inequalities £ = & = --- 2 § = 0. The principal axis theorem for

hermitian forms (Gantmacher, 1959, p. 337) yields the representation
z = Udiaglts, &, -, £} U"

where U*U = I and diag{# , &, - -, &} is the square matrix with main diagonal
elements £, &, « - -, & and zeros elsewhere.
Let s be the integer for which ¢ > 0 and £,11 = 0, and define the ¢ X s matrix,

D, by
1@
b= [0]
where Q = diag{£}, &, -- -, E?} and 0 is the (¢ — s) X s matrix of zeros.
Then, DD* = diag{t, &, -+, &} and D*D = diag{, &, - -, &} which is

a non-singular s X s matrix. The principal axis representation can now be

written in the form ‘
2]y e [ 2E
= [El ) 2 ] = % PR E
2 2931 222
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where 2, is the r — 1 X s matrix and 2, the ¢ — r + 1 X s matrix defined by

21
[ } UD.
2o

It follows that =;; = .27, 4,7 = 1, 2in the (r — 1, ¢ — r + 1) partition of Z.

Now, the equation AZs = =i, has a solution if and only if the rows of Z; are
contained in the linear span of the rows of Tz . A necessary and sufficient con-
dition for this to be the case is that for every non zero ¢ — r + 1 column vector,
b, if Zpsb = 0 then Zpb = 0. But Zwb = 0 implies 5*2,25b = 0 and, thus, Z3b = 0.
Then Emb = 212;7) = 0.

The matrix A can be determined explicitly by an application of the principal
axis theorem to the matrix 2 . Let

Zog = U2 diag{£{2)) Ei(’2)’ Tt Elg?-)f-l-l} U;

2 .
where £2 = - 2 2 > 0,2 = ... = £2.1 = 0 are the eigenvalues of

Su, and let the ¢ — 7 + 1 X s matrix D; be defined as was D above. Then, if
S@ = UsD:, it can be shown (see e.g. Marsaglia, 1963) that

3) A= 2122(2)(2?2)2(2))_22?2)' for 6> 0

=0 for s = 0.
It is seen from the definition of = that when s; = ¢ — r + 1 (i.e.detZ» > 0) 4
= Z,%% as it should be.

This explicit expression for A is easily seen to make A a measurable function
of the elements of 25, the eigenvalues of Ty and the elements of the unitary
matrix U, . Since it it well known that the solution of an algebraic equation is a
continuous function of the coefficients of the polynomial, the eigenvalues of Zg;
are measurable functions of the elements of Zs . Thus, the measurability of 4,
and consequently of G,, depends on the measurability of the elements of Us,.
In order not to further defer the main result, the existence of a measurable
version of U, will be established in the Appendix.

TaeoreM 1. Let T, < G, e G"(Z) where G, ts as defined in Lemma 1. Then
®(T,) = Myp4a,eerq- Thus I, = T, e T"(X).

Proor. In (r — 1, ¢ — r + 1) partitioned form, the spectral representation
for T,X may be written

0 1,50 = [ 240 a0,

(5) T,X,(t) = f ¢ dZ(N) = Xa(d), —w <t < .

The corresponding partitions of the subspaces will be written 9, = My,... r1,
My = IM,.....,, ete. In the proof of Lemma 1 it was shown that for every r vector
z e H(Zu),
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f sAZmAYE dp < w.

This implies 4 ¢ H(Zz). By Theorem A and Equation (4) it follows that
T. 9 C .. By Equation (5), it is seen that 7,91, & 9. . Thus, since T'is
continuous, 7,9 = T.(91; + 9z) S Me or ®R(T,) € Iz . But Equation (5)
implies that the generators of M, are in ®(7T',). Since ®R(T',) is a closed linear
subspace, 3y C ®(T,) and the theorem is proved..

4. Applications of Theorem 1—The multivariate coefficients of coherence.
Let II;,,...,;, be the projection in T"(X) with range 9,,...,;, as defined above
and let I denote the identity element in T"(X). Then (I — II;,...,s,) € T"(X)
by Corollary A. Denote the spectral density matrix of the g-variate process
(I — M,....;,)X by

Zierip(N) = [055051,000,,(M)].

Then, by analogy with the partial correlation coefficient (Anderson, 1958, p.
29), we will define the partial coefficient of coherence, psj.iy,..,i,(N), of X; and X;
to be the ordinary coefficient of coherence (Koopmans, 1964) of the univariate
processes (I - H;l,...,ip)Xi and (I - Hil,..,.,ip)Xj H

s
G, i, (V)| . .
Pijeir,erip(N) = — loisein.e when the denominator is
(8) T [O'ii-il."'.ip(x)a';'.j"il,"'.ip()\)]% positive,

= 0 otherwise,
1= i:j:ily "'sip = q-

Similarly, the multiple coefficient of coherence, Ri.s,,...,i,(N), will be defined as
the ordinary coefficient of coherence of the univariate processes X; and II;, ..., X;.
Let

Zierip(N) = [065041,000,55(M)]
denote the spectral density matrix of II,,...,;,X, and let
Mil"",ip()‘) = [Mij~i1,~-~,ip()\)]

be the ¢ X ¢ matrix valued integrand in the spectral representation of
(X (8), Ui,....;,X(s))) given in Theorem A. Then uiii,...,;,(N) is the cross
spectral density of X; and IT;,,...,;,X: . The multiple coefficient of coherence can
now be defined formally by the following expression:

[iiig e ip(N)]
Ri~i1,-~~,i,, ) = 2
(7) W lo5(N) Gideig ooe iy (VDI

= 0 otherwise,

when the denominator is positive,

1S 4,6, 0 S ¢

The remainder of this section will be devoted to establishing other expressions
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for the partial and multivariate coefficients of coherence and to the derivations
of some of the interrelationships between these quantities which have analogs
in multivariate analysis. To do this it will again be convenient to relabel the
components of the process Xsothat 1 < 7,7 < r — land {41, ---, 3} = {r,
r+1, -4} :

Whenever the denominator of the coefficients of coherence 6 and 7 are zero
the numerators are also zero. We will hereafter eliminate the necessity of speci-
fying separately the value of such indeterminate ratios by adopting the con-
vention 0/0 = 0.

In the notation of Section 3, let IT, <> G,(\) and let G,(A) and =(A) be (r — 1,
g — r + 1) partitioned. A()\) is as defined in Lemma 1.

THEOREM 2. Let a;y(\) denote the ith row of A(N). Then for 4,5 = 1,2, -+,
r—1,

hira(N) = 055(A) — a(M\)Zn(M)afhH(\) ae.(u).

" Proor. This is an immediate consequenée of Corollary A. Note that on the
set [det 222()\) > 0], a(,-)Ezza?}) = 0’(,‘)2-2_210’?‘,') where T () is the ith row of 245 .
The definition of the partial coefficient of coherence given by Equation (6)
then takes on the adaptation of the familiar form from multivariate analysis to
complex random variables (Anderson, 1958, p. 29).
*
THEOREM 3. R:...... J(\) = a(g(k)i?gi))a(,)(k) a.e.(u).
Proor. From the properties of the elements of G"(Z) and from Theorem A,

Mo..q = G2 = G2GF = 2,.... ;a.e.(p).

Thus, fiir,.q = Giireng = [AZ24]i = a@Zuat; bya simple computation.
The result now follows from Equation (7).
On the set [detZy(A) > 0] we get the more familiar result

a(i)(k)z-z-;()\)o'?i)(x)
aii(N) ’

e\ =

(see Anderson, 1958, p. 32).

COROLLARY 1. 0%iree.g(A) = (1 — R d(N))ois(N) ace.().

Proor. Immediate from Theorems 2 and 3. This is Equation (23) of (Ander-
son, 1958, p. 32). In the present context, 1 — Ri.,....,(\) can be interpreted as
the proportion of the spectral density of X; at frequency M which remains after
removing the influence of the linear regression of X; on X, , X,4q, -+, X, .

We now derive two relationships which make it possible to construct the
multivariate coefficients of coherence inductively from the ordinary coefficients
of coherence for pairs of the component processes.

THEOREM 4.

Yijertt,eoegd(N) = Yirerta,ee . g(N)Fjrerta, e (V)
[(1 = phrrt,e g (L = plrrtreen, e I

(8) 'Yij'r,"',q()\) =
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where pijr,....d(N) = |Yijor,. (M) @6 () for 1 £ 4,5 <r < q, and
Yirern(A) = a55(N)/[oss(N) oM, 1=4,j=q¢

Proor. Let the projection II, be defined as above and let G, ¢ G"(Z) be written
inan (r — 1, ¢ — r + 1) partition as

0 4,
Gr = .
[0 1 }

Since III,4; = I, it follows that (I — II,) = (I — 1,)(I — II,4+1) and, by
Theorem A,

(9) 2 = (I — G)Zm(I — G)¥, 1sr<gq
where, as defined earlier,
(10) == - G)=U - G 1sr=gq

(All equations hold a.e.(x).) From the form of G,., it follows from Equation
(10) that the (r, ¢ — ) partition of Ty, is

N Zn — A4,2pAF 0
(11) 2r+l = )
0 0

where the partition of 2 is also (r, ¢ — 1).
If the (r — 1, ¢ — r + 1) partition of =y, is written =y = [Z3j.pa], 5,5 = 1,2,
then it is easy to show that

£ . .
Z1rp1 = [0ijrst,eee,dls l1=4j=sr—-1
£
O1rertl, - ,q
n
N O2rrtl, g
2121 =
L
Or—1,rr+l, g o --- 0
and
£
Urr'r-l-l,*",q 0 O
. 0o 0 0
222r1 =

0 o --- 0
An application of Equation (9) yields the (r — 1, ¢ — » + 1) partition
l:zitl-rﬂ — A, 251 AT i — Arzi"2~rl-1:|

(12) =
3t — ZheraAr 0
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But, by Equation (11) with » 4 1 replaced by r, the (r — 1,9 — r 4 1) partition

of =y is
" Ei"lw 0
2 = ,
0o O

where 211., = [05j.r,...q), 1 £ 4,7 < r — 1. Equating this expression to Equation
(12) yields

L L L *
1 = 2 — AZ214y

and
Ztoert = ArZtarg1 .
Equivalently,
( 13) a';"'j.,-,...,q = a‘:.j‘?‘-l-l,"‘,q — az-,ai',.,“,...,qd,-,
and
(14) Cirrtlynig = QirGrrppl,een,g - fOr1 24,5 S — 1,

by the above expressions for
Stom, 1 4,7 S 2. Let vijrng = 05erensa) (GFireee g@hioris ia)s
(with the 0/0 = O convention understood). Then Equation (14) may be re-
written
Qir(0rritrnd)! = YVirrstroo,a(OTirstonna)’.

This equation and Equation (13) are now easily seen to imply Equation (8).

This derivation is similar to the computation leading to Equation (34) of
(Anderson, 1958) which is the real variables equivalent of Equation (8). It is
to be noted that only the minor problem of appropriately defining the inde-
terminate ratios result from the possible singularity of =.

The following lemma, is Theorem 1 of (Koopmans, 1964 ).

LemMa 4. Let Y be a bivariate process (¢ = 2) with components Y;,5 = 1,2 and
spectral density mairiz [r:;(N)], and let 7?(\)j = 1, 2 be the spectral densities of
the unvariate processes Y defined by

Y® = PY,, Y® = (I — P.)Yy,

where Py s the project’ian'z’n T"(Y) with range equal to the closed linear manifold
spanned by Yo . Then

P\ = P (\)ru(r)
(15) and
PN = (1 = p"(\)ru(N) ae.(p),

where p(\) 1s the (ordinary) coefficient of coherence for Y.
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THEOREM 5. 1 — Ry.1,....d(N) = (1 — progrrgz,oe (M) ) (1 — Rippa.. o))
a.e.(u) for 1 £ r < q — 2, where

B 2.q(N) = pe2,(N) a.e.(u).

Proor. It will be convenient, in this proof, to denote the closed linear mani-
folds generated by a bivariate process Y and its univariate components Y;,j7 = 1, 2
by M{Y., Yo} and M{Y;}, = 1, 2 respectively.

If Lemma 4 is applied to Y; = X, , Y, = II,;..X,, then P, = II,;, restricted to
M{X, , I,,.X,} and

(16)  ol(I = Iu)XJN) = (1 = Brrpre,dN))or(N) ace.(n),

by Equation (15) and the definition of the multiple coefficient of coherence.

Here, o[U](\) denotes the spectral density of the univariate process U.
Similarly, a second application of Lemma 4 with Y1 X,, Y, = (I —II,2)X,

yields, .

(17)  ol(I — Ty2)XI(N) = (1 — RYrpaee o(N))orm(N) acec(p).
Let A, = I,y — O,12. Then A, & T"(X ) and the relation
(18) (I — Myp1) = (I — Agr)(I — Tiy)

is valid. Moreover, if A: denotes the restriction of A,y to (I — H.2)X;,
(I — I,42)X, 41}, it can easily be shown that the range of Afi)l is M{ (I — H,p2) Xy}
Thus if Lemma 4 is applied a third time with

= (I — In2)Xr, Yo = (I — M42)Xra,

it follows that P, = A%} and, by Equation (15) and the definition of the partial
coefficient of coherence,

ol(I — Avn) (I — Hpa)XJ(N) | o
= (1 = phrrst dO))ol(I = Tu)X (V) ae.(u).

The theorem now follows by combining Equations (16), (17), and (19) using
Equation (18) and by noting that the factor ¢,.(A) can be cancelled even when
o-(N) = 0, since both sides of the resulting equation are then unity.

Theorem 6 in conjunction with Theorem 5 provides a means of generating
the multiple coefficients of coherence. The analogous result for multivariate
correlation coefficients is given in a special case on page 43 of (Anderson, 1958).

As a concomitant of the above correlation analysis, a spectral covariance analy-
sis or cross-spectrum analyms for weakly stationary processes is immediately
available. Thus, for example, the residual cross-spectrum for the processes
X., X;, after the effects of regression on the component processes X;, , -+, X;,
have been removed, is the ¢, jth element of the matrix function =j,...,:,(\)
defined above. In particular, the residual spectrum of X, , after the effects of
regression on X, , --- , X, have been removed, is given by Corollary 1 in terms
of the multiple coefficient of coherence and the spectrum of X;. This type of

(19)
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analysis was employed by Tick (1963) for processes with discrete spectral dis-
tributions having a finite number of discontinuities (u = point measures on a
finite set of points) and by Jenkins (1963) for a class of processes with absolutely
continuous, non-degenerate spectra (u = Lebesgue measure and det Z(\) > 0
a.e.) to analyze the response characteristics of certain complex linear systems.

When p is Lebesgue measure, det Z(A) > 0 a.e. and the dlstrlbutlon of X
is Gaussian, approximate distributions of the natural estimators for Priviyses wip(N)
and R%.;,.....;,(\) are provided in the comprehensive paper of Goodman (1963) .
He shows that as in the case of the real multivariate normal distribution, the
distribution of the estimator of the partial coefficient of coherence is identical
to the distribution of the estimator of the ordinary coefficient of coherence with
merely a reduction in the degrees of freedom. Thus, the tables of the distribu-
tion of this estimator, (Amos and Koopmans, 1963), can be used for the partial
coefficient of coherence, as well. This makes it possible to obtain explicit solutions
to inference problems in which the partial coefficient of coherence is the parameter
of interest.

Acknowledgment. I am deeply indebted to my colleagues Drs. D. L. Hanson,
D. R. Morrison and D. W. Sasser for many.helpful discussions and suggestions.
The work was carried out under the auspices of the U. S. Atomic Energy Com-
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5. Appendix—Continuation of Lemma 2. We now show that if Z(A) is an a.e.
(1) non-negative definite, p X p hermitian matrix of measurable functions with
(measurable) eigenvalues £(A) 2 £(A\) = -+ = £&()\), then there exists a
matrix U(\) with measurable components such that UMN*U\) = T and

Z(\) = UQ) diag {£:(V), &), -+, HENJU(N) ae.(n).

It is easily seen that if U(N) = [pi(N), ¢2(N), -+, ¢p(N)] where, for each X
such that Z(\) is non-negative definite, hermitian,
(1) {ex(\), -+, ¢»(N\)} is a complete orthonormal set of p dimensional

column vectors in the inner product
(@), ei(N) = i (Nei(N),

(ii) @:(\) is an eigenvector for Z(\) corresponding to the eigenvalue £:()N),
i=12 ---,p,and

(iii) @:(A\) has measurable components, 2 = 1, 2, ---, p, then U()\) will
satisfy these conditions.

Without loss of generality we may assume that Z(\) is non-negative definite,
hermitian for all A.

Define the sets S,, 1 < n < 277, by

Sn = [E(N)Aka(N)Ag - -+ Apatp(N)]

where A; takes on the “values” > or =, §; = 1 or 0 according as A, is > or =,
and 8,0y - - - 8,1 is the binary expansion of n — 1. Then S, is measurable, and
the eigenvalues have fixed multiplicities on S, for each n.
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Fix n and let z:(\), 22(N), ---, x(\) denote the distinct eigenvalues of
Z(\) on S, with multiplicities

TiyTe, =0, Ts, Zri = P.

=1

The minimal polynomial of Z(A) on 8, is then
¥(z,\) = II (2 = 2:0).

Following Gantmacher (1959, 1 p. 84), define

(20) : vz, p ) = L& )\i = :,(y’ 2

and form the matrix polynomial ‘
C(z,N) = ¥(zI, Z(N\), N), M e S,

where I is the ¢ X ¢ identity matrix and z is a real scalar. The quantity x — y
is a factor of ¥(x, \) — ¥(y, \), thus ¢(z, y, \) is everywhere continuous in z
and y and is measurable in A. It follows that C(x:(\), ) is a ¢ X ¢ matrix w1th
measurable entries forz = 1,2, --- , s.

Since ¥(z;(A\), A) = 0 and 2()\) satisfies its minimal equation, the matrlx
polynomials ¥(z:(A)I, ) and ¥(Z(A), N\) are both zero for all A ¢S, . Thus,
by Equation (20), for each A ¢ S,

) — z:NI)C(x:(N),\) = 0, i=1,2 -,

Now, if it can be shown that the rank of C(z;(\), \) is 7, , it will follow that there
are r; linearly independent eigenvectors of =(\) corresponding to z;(\) and each
is some linear combination of the columns of C'(x;(A), A\). We now show this to
be the case. (The proof of this result was provided by D. W. Sasser.)

SuBLEMMA. Rank C(xz:(A\),\) =r;,1=1,2, -

Proor. The argument A remains fixed throughout the proof and will be deleted.
Since = can be put into canonical form without changing the dimension of the
eigenspaces it suffices to consider the case where

= diag{xl, e L1, Xa, ttt y Loyttt Tey ot ’xc}.
In this matrix and the following diagonal matrices, the length of the kth block
of symbols between the braces is o, &k =1, 2, ---, s. Then, for z # z;,
1=1,2,---,8 2 — zI is non-singular and
C(2) = ¥(@)(2 — 27 = I (v — ) diag {(22 — 2)7, -+, (22 — 2)7,
(IL’z - x)—17 Tty ((L‘z - x)_l’ Tty (xc - x)—l, Tty (xc - x)—l}

= (—1)" diag {_H(xi— ), v, H(xi—x),ig(xi—x), ey
[ @—a)-, I @—a) -, Il (@ - o)}
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Thus,
C(xk) = th(x) = (_l)sdia'g {0, ooy 0,0, NN USRS 70}
z>a

where a; = ][] (2 — a1). This matrix clearly hasrank v, , £ = 1,2, -+, s.

To complete the proof of Lemma 2 it is only necessary to measurably ortho-
normalize the columns of C'(z;()\), ) for each <. Since eigenvectors correspond-
ing to different eigenvalues are orthogonal, the union of the s sets of resulting
eigenvectors will be orthonormal. Also, this set will contain exactly p elements
since the ranks of the eigenspaces are constant for all A ¢ S, and are equal to
the multiplicities of the eigenvalues. That this orthonormalization can be carried
out in a measurable way by a simple extension of the Gram-Schmidt process is
easily shown and the details will be omitted.

Now, let {o{” (), --+, 05" (\)} be the orthonormal set of eigenvectors of

2(\) for A e S, and let x.(\) be the set characteristic function of S, . Then, if
271

¢1()‘) = ”Z; Xn()\)¢$")(7\), i=12 --,0p,

the p X p unitary matrix
U()\) = [¢1(>\)7 ] ¢ﬂ(>\)]
is a measurable solution to our problem.
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