LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES!

By RonaLp PYKE AND RoONALD SCHAUFELE?

Unaversity of Washington and Stanford University

0. Summary. This paper is a study of Doeblin Ratio limit laws, the weak and
strong laws of large numbers, and the Central Limit theorem for Markov Re-
newal processes. A general definition of these processes is given in Section 2. The
means and variances of random variables associated with recurrence times are
computed in Section 4. When restricted to the special case of a Markov chain,
certain of the results of Sections 5 and 6 strengthen known results.

1. Introduction. In [14], Pyke defines a Markov Renewal process (MRP)
constructively as follows. Let I™ = {0, 1,2, ---}. Let {Q.; ;7,7 ¢ I} be a family
of transition mass functions satisfying @;;(x) = Oforz < Oand H;(+») =1
where H; = 2,; Q.. (Unless otherwise stated, all summations will be over
I".) Let {(J., X.);n = 0} be a two-dimensional Markov process defined on a
complete probability space (2, &, P) by X, = 0, P[J, = 7] = a, for some a; = 0
with Z, a; = 1, and

(11) P[Jn = j, Xn é z IJO ) XO y " ,Jn—l ) Xn—l] = an_l,j(x) (a.S.)
for all » = 1. Upon setting
Se=Xo+Xai 4+ - + X,, N(t) =sup {n = 0:8, = ¢},

and N;(t) = card {k:0 < k < N(t),J» = j}, one obtains the process {N(¢) =
(No(t), N1(t), ---); ¢ = 0} which is called an MRP determined by {Q:;}. The
process {Z;;t = 0}, where Z; = Ju(y , is called a Semi-Markov process (S-MP).

The constructive definition outlined above defines an MRP only up until its
first “infinity”’ or “explosion”. In [10], Lévy discusses a class of processes, called
by him Semi-Markov processes, which contains processes that may explode.
Smith, in [18], describes two ways in which a Semi-Markov process may be
defined beyond the first infinity. In Section 2 of this paper a general definition
of an MRP is given which allows for explosions. Also a summary of notation
to be used in this paper and [16] is given.

2. Definition of an MRP. Let {Y. = (Z;, U,);t = 0} be any separable
Markov process defined on a complete probability space (2, F, P), having state
space I'" X [0, +») = %, having the strong Markov property for any stopping
time which is almost surely finite, and having the following properties:
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(1) Its transition function P,(-, -) is such that for each ¢t = 0 and w e X,
P.(w, -) is a probability measure on ®&(9), the natural Borel field for &, and
Pey(+, A) is jointly measurable as a function of (¢, w) for each A £ B(X).

(2) If Pi(4, z; 7, y) = Pi((4, z), {7} X [0, y]), then for each fixed ¢ > 0,
i,jeI*,and x = 0, P,(4, z; j, -) is a non-decreasing function which satisfies

Pt(iix;j:y)=Pt(i:x;j:t—) iftéy<t+x:
(21) = Pt(i: x;j: t_)
+ 85P((4, 2), {3} X {t+2}) fy=2t+a

(8) The functions N;(t) = card {0 < u < t: Z,_ # Z, = j} are random vari-
ables (possibly infinite) for each j & IT and ¢t = 0.

DEriNiTiON 2.1. The process {Z: ;t = 0} obtained as the first component of the
above described process s called a Semi-Markov process and the process {N(t) =
(No(t), N1(t), --+);t = 0} is called a Markov Renewal process.

DEerinITION 2.2. A Markov Renewal process vs said to be regular if

PIN:(t) < +»] =1

forallie I and t = 0, and is said to be strongly-regular if P[N(t) < + ] =1
forallt = 0.

(In [14], strong-regularity was simply called regularity.)

Since the Chapman-Kolmogorov equation for any Markov process defined on
X is

+o0
Pur(iy 233,y) = 2 [ Pu(k, 2 j, y)P.Gs, x; k, dz),
-

it follows from condition (2) above, that the Chapman-Kolmogorov equation
for the Y-process is given by

Pe(iy335,9) = 3 [ Pulky 2, 4)P.GG, 23 b, d)
=%

+ Pi(4, s + z; 7, y)P.((3, ), {7} X {s + z}).

A thorough analysis (& la Chung [5]) could be undertaken of all processes
satisfying (2.2) and would undoubtedly show that the above definition includes
all the processes Lévy had in mind in [10], including those with instantaneous
states. In fact, it would seem that a suitable definition for an instantaneous state
is that it is a state, 7, for which P,(¢, z;,0) — é;;ast— O forallj e " and z = 0,
while a stable state, j, is one for which P,(j, z; k, y) — 83 or 0 according as
z <yorz = yforall kel and z, y = 0. An immediate consequence of these
definitions of stable and instantaneous states would be that as ¢t — 0, P.((z, z),
{1} X {t + z}) converges to 1 or 0 according as state < is stable or instantaneous.

The fact that countable state Markov processes are included in this new

(2.2)
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definition of MRP’s is important and is seen as follows. Set
Py(t) = PlZe = j| Zo = 4, Us = 0],

or equivalently, P;;(t) = Py(%, 0;7, + ).
LemMa 2.1. If for all ¢, e I, y = 0 and t > 0, P,(4, x; 5, y) s constant in
z for x = 0, then (2.2) reduces to

(23) Pt+8(7:) 07.7) y) = ; Pt(k’ 07.77 y)P'k(s)

Proor. By definition, P;;(t) = Pi(¢, 0; j, t—) + 8:;P:((z, 0), {z} X {&}).
Thus, the right side of (2.2) becomes » ; Pi(k, 0; j, ¥)P:(3, 0; k, s—) +
Pt(i: 0).7) y)Ps((z, x)’ {7'} X {8}) = Zk Pt(k7 0).7) y)Ptk(s)

CorOLLARY 2.1. If Py(3, x; j, y) ts independent of x for all 3, jeI*,y = 0
and t > 0, then the Z-process is a countable state Markov process.

Proof. This follows by letting y — + in (2.3) to obtain P;(¢t + s) =
2k Pa(s)Puj(t).

The main purpose of this paper is to prove limit theorems for a slightly more
restricted class of MRP’s which arise in the following way. Let {Z,:¢ = 0}
be a separable stochastic process defined on a complete probability space (2, &, P)
having state space I'", compactified by the addition of «, and having the follow-
ing properties:

(i) Almost all sample functions are right continuous, have left limits on
[0, + ), and are such that if Z, = #(7 £ + « ), there exists e(¢) > 0 such
that Z, = ¢ for all se[t, ¢t + e(t)), while if Z, = 4 o, there exists no e > 0
such that Z, = +« forall se (¢ — ¢ ¢t + €). Further, |Z,. — Z.|] < + «» for
allu = 0.

For each ¢t = 0, define U; = t — sup{u < ¢: Zy, #= Z,}, V, = inf{u > ¢: Z,
Zt} —_ t, Xt = Ut + Vt, Zt_ = lithZu, Zt = Zt+V“ a,nd Zt_ = Z(t—Ut)—~
That these quantities are random variables follows from (i) and the fact that the
Z-process is separable. For example {U;, = y} = Uin{U. 2 v, Z;, = k} =
Uis{Z, = k, se[t — y, t]} and hence is measurable since, by separability,
A, = {Z, = k,se[t — y, t]} is measurable for each k. To show that Z; and Zi
are measurable requires a little more work. For example, the measurability of
Z7 may be shown as follows. Let ¥, = (k + 1)/2"if /2" < U, < (k + 1)/2"
fork=0,1,2,---andn=1,2,--- .Let X,, = Z;—y,.Then Y, | Usand X, — Z;
as n — + «. Hence, it suffices to show that each X, is measurable. But

{Xo =g} = UlXa = j5 /2" < U: < (k + 1)/27)
= Ul Zi—gorom = 3} 0 {8/2" < U < (k + 1)/2],

which is a countable union of measurable sets and hence is measurable. It is
clear that Z7 and Z; are finite almost surely.

(ii) There exists a matrix of measurable functions Q.;(-; -) for all 4, je I'"
such that Qs (u; - ) is a mass function, D_; Qi(u; +») = 1, 2.;Q:(0;0) < 1,
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and
Pzt = V.22, =4, U, =wu, (Z,,U.);0=s <1
= Qi(u;z) (as.).

(iii) The process {Y, = (Z:, U:); t = 0} is a two-dimensional, separable
Markov process having state space IT X [0, 4+ ) = &, having the strong
Markov property for all stopping times which are almost surely finite and
having a transition function P,(-; -) satisfying (1) above and such that for
all ¢, jeI",z,y = 0,and t = O:

(2.4)

P(s, z35,y) = ;Qm(x; -) % Pey(k, 054, y)(t) fz+t>y
(2.5) = 3 Qulw; 1) * Poy(k, 035, +) (1)
+ 641 — Hi(x; t)] fz4+t=sy

where Hi(z;t) = D ; Qi(; t).

(K « L(t) = [4- K(t — z) dL(z) whenever the integration is defined. Also
K9) =1lor0ast=0or¢t <0and K™(t) = K™ « K(t) forn = 1.Since
one is usually interested only in ¢’s such that ¢ = 0, K (¢) isoften replaced by
1.)

Tt is clear that processes satisfying (i) through (iii) determine regular Markov
Renewal processes as defined in Definitions 2.1 and 2.2. Such MRP’s will be
said to satisfy hypothesis A. A process satisfying hypothesis A has at each time
point, ¢, the property that there is a well-defined state to be visited next by the
process and a well-defined state just visited previous to the present state. The
former property is related to the property of being conservative in the termi-
nology of continuous parameter Markov chains (see [5]). Also, for such a process,
if Z; — + » as t — s from one side, then Z, — -+ « as t — s from both sides.
Thus, a process satisfying hypothesis A may have explosions but the way in
which infinity can be approached is quite restricted.

Before proceeding with the limit theorems, we list the following definitions
and notation which are required in this paper and in [16]. For a more complete
treatment of some of these quantities, the reader is referred to [14], [15].

(2.6.1)  Qy(t) = Qi(0;1), pij = Qis(+ ), Qis(1) = pul (1),
Pi(t) = PlZe = j| Zo = i, Us = 0],

P(t) = PlZf = j| Zo = 14, Uy = 0),
(263)  Gi(t) = PINs(t) > 0| Zo = i, Up = 0],
(264) Mi(t) = EINy() | Zo = i, Uy = 0] + 6,5,
(2.6.5) wMi(t) = EIN{(Ti)| Zo = ¢, Uo = O] [1 — 8] + 6y
where T = min(¢, S) and S = inf{t > Vo : Z, = k},

(2.6.2)
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#Gij(t) = Plfor some u < ¢, N;j(u) > 0,
Ni(u) =0 Zo = 1, Up = 0],
(2.6.7) WPi(t) = PlZy = 4, Nu(t) = 0] Zo =1, Up = 0],
(268)  8i(jyx;t) = PlZe=j, U = x| Z = 1, U = 0],
(2.6.9) Ri(j,z;t) = PlZ, =4,V S x| Zo = 1, Up = 0],
(2610) S, b a:0) = PlZe = 4, 20 = b, U S 2| Za = i, U = 0],
(2.6.11) Ri(j, by x:t) = P2y =, 2{ =k, V. < 2|2 = i, Uy = 0O].

It is clear that S;(j, z; t) = P.(3, 0;j, z) and Py;(t) = Si(j, + «; t). Let 9;,
bsj, and p;; denote the first moments of H;, F;;, and G;; respectively.

A script letter will denote a matrix-valued function whose elements consist of
doubly or singly indexed functions which use the same letter. Singly indexed
functions are understood to yield diagonal matrices. For example, § = (G;;)
and 3¢ = (8;H;). For any matrix-valued function %, *% is defined to be the
diagonal of X, namely, “k = (3;K;). For any two matrix-valued functions %
and &, define & * & = (D Ku * Li;) whenever the definition is valid.

By means of the strong Markov property and the usual probabilistic argu-
ments, the following ‘‘backward’’ relationships (that is, relationships based on
the first transition) may be derived straightforwardly for any MRP satisfying
hypothesis A.

(2.6.6)

(2.7.1) ®(t) = @=C0(t) + (I — 3)(2),

(2.7.2) ®(t) = M (I — 3)(t) = g+°@(t) + (I — 3)(t),
(2.7.3) G(1) = @xG(t) + (I —’g)(1),

(2.7.4) M(t) = @+ Mm(t) + I,

(2.7.5) m(t) = g *m(t) + I,

(27.6) Riluit) = [ Hilusy)SiGG, dus 0),

(2.7.7) ¥®(8) = $ x (I — 3¢)(¢),

Pii(t) = 2Pii(t) + Ga % Prj(t), Mi(t) = My(2)
+ Ga * Mi(t),
(2.7.9) (1) = M (P — Q)(t) = M) (P — I) + L.

For a strongly-regular MRP, it has been shown (see [15]) that 9 is completely
determined from @ by means of the equation 9 () = >, @™ (¢). Hence 9 » @ =
@ * 9. This commutativity implies that the “forward” relationship (that is, a
relationship based on the last transition before time ¢) M (¢) = M * Q(¢) + I

(2.7.8)



MARKOV RENEWAL PROCESSES 1751

holds as well as (2.7.4). The following lemma shows that the same commutativity
holds true for MRP’s satisfying hypothesis A.
Lemuma 2.2. For an MRP satisfying hypothesis A,

M) = M*Q@) + I forallt = 0.
Proor. By conditioning on the last state visited, one obtains
Piy(t) = ZkMzk * Quyx (1 — Hj)(t) + 8;5(1 — Hy(2)).

Using p, m, ¢, and & to represent the Laplace-Stieltjes transforms of ®, Em, 9,
and 3 respectively, one obtains, using (2.7.2), that

[; Mma(8)gki(8) + 845][1 — hy(s)] = mi(s)[1 — hy(s)].

Hence m.;(s) = D M (8)qri(s) + 8. The lemma follows from the uniqueness
of the Laplace-Stieltjes transform.

In Sections 4, 5, 6 and 7 below we will be concerned with sums of a function
of an MRP satisfying hypothesis A. The specific context for these sections is as
follows. Let f be a real valued function defined on I™ X I'™ X R, . Assume that
for each 4, je I, f(4, 7, -) is Lebesgue measurable. Let X, denote the holding
time of the nth transition between states 7 and 7, and let N 4(t) equal the number
of transitions from ¢ to j which occur during [0, ¢]. For all ¢ = 0, define

Nij(t)
(28) W) = 3 310, J, Xaw)

whenever the series converges. For a strongly-regular MRP one may write (2.8)
equivalently as
N(t)

(2~9) Wi(t) = ;f(Jn—l,Jn,Xn)~
Another functional which might be of as much interest as (2.8) is
t
(2.10) W) = [ 9(Xu, Us, Za, 28) d,
0

where g is an integrable function defined on B, X Ry X IT X IT. However, if
one defines f(Z, j’ x) = fg g(x7 Y, i? .7) dy then W:(t) = Wf(t) + f(t),‘g(Xt » Y
Z:¢, Z{) dy. We shall study limit theorems for W,(¢) only, since the analogous
results for W (t) may be derived by similar methods.

By considering the related MRP with new two-dimensional states (3, 7,
i, j € I'*, and the new associated S-MP Z¥ = (Z,, ZT) with transition distri-
butions of the form

(2.11) Qi e, (25 1) = 8upicr Qis(m; 1)/ Qus(; )

one may always, without loss of generality, restrict oneself to functions, f, of
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the two variables (Z,, X.). Therefore, when studying the limiting behavior of
W,(t) the functions f are thus restricted and hence (2.8) is replaced with

Ni(t)

(2.12) Wi(t) = Z n;f(i, Xin).

In Section 4, where explicit computations of moments are made, the results are
given for the more general functions of three variables, since the reader would
find it prohibitive to carry out the transformation given by (2.11) each time he
applies them to a particular situation.

Most of the methods of proof used in this paper are similar to those used by
Chung [5] when dealing with the analogous problems of Markov chains.

3. Doeblin Ratio limit theorems. In this section, one is led to consider the
expected amount of time which an MRP spends in certain states. We will
therefore use the convention that a bar over a symbol will denote the integral
over [0, #] of the same symbol without the bar. For example, P;;(t) = [(P:;(u) du.

The following relationships are straightforwardly derived.

(3.1) Ga(t) = 2’ G * kG%‘)(t)'= G % M i5(2),

(3.2) Pij(t) = Gij x Pji(t) + 8i{1 — Hi(1)] = iPij » Mui(1),

(3.3) Gi(t) = Gi(t) + Gy * ;Gii(2), (1 # J),
(34) Mii(t) = M ;% Gi(t), (% # 7)),
(35) Pu®) = [ [ Pitu— 0) dGyo) du = PyaGif, (i),

In deriving the limit theorems below, one uses Abelian arguments. The form
of Abelian theorem most applicable to these discussions is given now, the proof
of which is standard and therefore omitted.

LemmA 3.1. Let K be a mass function (that vs, @ non-decreasing right-continuous
Sfunction) for which K(t) = 04t < 0 and K(t + 1) — K@) < cforallt 2 0
and some constant c. Then for any mass function F satisfying F(t) = 04ft < 0,
one has

limg,o[K * F(t)]/K(t) = F(=).

In Markov Chain theory, a Doeblin Ratio limit theorem gives the limit as
n — o of the ratio of the expected number of visits to one state, to that of
another state under various initial conditions (cf. [5]). Analogous theorems for
abstract state space discrete parameter Markov processes are also possible (cf.
[6] and [12]). For continuous parameter Markov chains, Doeblin Ratio limit
theorems are obtained for the expected amount of time spent in a state rather
than the expected number of visits to a state. Of course, for discrete parameter
processes the “number of visits” and the “time spent” are equivalent. It is the
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purpose of this section to derive the limits for both of these types of ratios, as

well as for some more general ones. Notice that P,;(t) is the expected amount of

time spent in state j during [0, ¢] given that Z, = 4, Uy = 0, while M ;;(¢) is the

expected number of visits to state j during [0, ¢] given that Z, = 7, Uy = 0.
LemMA 3.2. For any two states © and j, (¢ #£ j),

(3.6) limy,e Pij(8)/Pii(t) = Gij(0) = limy, Mii(8)/Mi5(2).
Proor. That the ratios are both well defined follows since M ;;(1) = M;;(0) = 1
and P;;j(t) = E[min(V,, t)| Zo = j, Uy = 0] > 0. The existence and evaluation

of the limits follows by application of Lemma, 3.1 to (2.7.5) and (3.5).
LemmA 3.3. For any two states © and j,

(3.7) limese Pij(8)/Mi(t) = iPis( ).
Proor. It follows from (3.2) that
(3.8) Pii(t) = Pijx Mu(2).

Therefore (3.7) follows from Lemma 3.1. The quantity ;P;;( ) is the expected

time that the S-MP spends in state j before the first transition into state 7 is

made, given that Zy, = ¢, Uy = 0. The limit'in (3.7) may then take on any value

in the closed interval [0, «]. It may be shown directly, or by application of

Lemma 4.1 below that ;P;;( ) = n; :M;( ) whenever G;j(©) > 0.
Tueorem 3.1. For any two states © and j,

(3.9) Limy,e Mi(8)/Mi(t) = My( o).

Proor. Assume first that state 7 is recurrent and that ¢ 5% j. Define V, to be
the number of transitions into state j between the (n — 1)th and nth con-
secutive visit to state ¢ (n = 1,2, - - - ). Define W to be the number of transitions
into state j during the interval (¢, V;(¢)] where V;(t) = inf{u > V,:Z, = 4}.
Then

N;(1)+1
Mii(t) = E( Z Vn|Zo = i, U, = 0> - E(Wcho = i, U = 0)

n=1

(3.10)
= Mj( 0 )Mi(t) — E(W|Zoy = <, Uy = 0)
by Wald’s Fundamental Identity. If G;j( ) = 0, then V; = W, = 0 and (3.9)
is vacuously true. Otherwise Gy;(») = 1 and state j is also recurrent. That
Mij(+ o) < 4 in this case follows since Mi(+») = Gi(+»)/[1 —
iG;;(+ )]. Moreover, one may show that
E(W.|Zy =1, Uy = 0) = M (o ){[iGii(©) — Gis] * M ;
+ [iGij( ) — Gul} * Mui(t)
which is finite. Hence by repeated application of Lemma 3.1 one obtains

lims0 BE(W:| Zo = 4, Uy = 0)/M(¢) = 0. This together with (3.10) proves
(3.9) for recurrent states ¢. Assume now that state ¢ is not recurrent. Then
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M (o) < o and the limit in (3.11) is equal to M;( e )/M (% ). It remains
to prove that this limit equals ;M ;;( « ). But (2.7.8) with k = ¢ yields M;;(» ) =
1/[1 - G“( el )] SO that M”( 0 )/M“( 0 ) = ,'Mi,‘( 0 )

CoROLLARY 3.1. For any two states © and j (¢ 5 j) for which G;( ) > 0,

(3.11) o limge Myi(2)/Mis(t) = Mji(*)/iMa( ).
If, moreover, n; < , then
(3.12) it Pii(0)/Pislt) = (nif/ne)Mis( ).

Proor. From the above theorem and Lemma 3.2,
limy,e Mji(t)/Mi(t) = Mi( o )/Gii(®).
But from (31) and (34), iMi,‘( «© ),M”( ®© ) = Gij( ®© )M,,( © ), as desired,
since the positivity of G4;( ) implies the finiteness of ;M (). The second

statement of the corollary is a consequence of the foregoing results applied to
the relationship ,

Py/Pi = (Pij/ M) (M i/ M) (M j;/Pjs) (Pjif Pis)

in which the dependence upon ¢ has been omitted.

Tt is remarked that in the case of finite mean recurrence times u; and u;; the
limit in (3.12) is equal to Gy( ® )njus/naus;. This follows from Lemma 4.1
below.

For an MRP it turns out that the most important Doeblin Ratios are those
involving the functions R:(j, k, x: t) or S:(j, k, x: t). In particular, it is the
limit of these ratios which provide the stationary measures for null-recurrent
MRP’s (cf. [16]). Nevertheless the proofs of these results follow exactly the
same lines of those given above for the simpler ratios. Therefore, only the out-
lines for the proofs of the following theorems are given.

From the definitions in (2.6), the following relationships are immediate:

(5.13) Ri(j, by x:t) = Gij # Ri(5, b, x: - )(1), (@ # ),
' Ri(j, b, w:t) = Gij % Ri(G, by x: - )(2), (i = 7),
Rz( .’ ky x: t) = 1R'b( .’ k: x: ) *Mii(t)’
(3.14) I J

Ri(j, k, z:t) = Ri(g, k, x: - ) % My(t).
By direct application of Lemma 3.1 to (3.13) and (3.14) one obtains
TarorEM 3.2. For any states 1, 7, k and any z > 0
limese Ri(7, k, 2: 1) /Ri(5, ky 22 1) = Gij( ), (¢ # j, pi > 0)
and '
limee Bi(G, k, x: )/ Mi(t). = Ri(5, k, x: »).
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LEMMA 3.4. ;R;(j, k, x: ©0) = + o if and only if pjr > 0and My( o) = + 0.
More precisely,

(815) Bl ki ) = M) [ (@) — Qu(w)] du.
Proor. Since ;Ri(j, k, z:¢) = [Qu(z + +) — Qu(-)] * :Mi;(t), one obtains

Bl by 2 ) = Mst) [ " 1Qa(®) — Qu(w)] du
t—utz

- fotft_u [Qir( o) — Qu(v)] dv diMlii(u)'

This expression may be shown to converge to the right hand side of (3.15) as
t — o whenever p; > 0. To do this, one uses (3.4) and the Key Renewal theorem
in the case of ;M (o) = + .

As a consequence of the above results, one obtains the following corollary
which is used in [16] in studying the stationary measures for a null-recurrent
MRP.

CoROLLARY 3.2. If 1, 4, k, m, r, h are in the same recurrent class and if ps > 0,

then '

— M) [ 1Qu(o) — Qu(w)] du
lim, BG R0 | '
Ru(r, b, y: t)

M) | " 1Qu( ) — Qu(w)] du

4. Computation of moments. Throughout the remainder of this paper it
is assumed that we are working with an irreducible recurrent, (i.e., Gi;(+ ) = 1
for all 4, j e I'"), regular MRP satisfying hypothesis A. Let f be a real-valued
function of the type described in Section 2. Let {T;, : n = 1} be the successive
occurrence times of state j, with the understanding that T';; > 0 even if Z, = j.
For convenience set T = 0. For each 7, define the sequence of r.v.’s

(4.1) Y = Wi Tinw) = Wi(Tin) (n 2 1).
Thus Y$” denotes the part of the summation in (2.9) which occurred during

(Tjny Tjnul These r.v.’s are independent and identically distributed by the
assumptions of Section 2.

Throughout the remainder of this paper, we will focus our attention on a
fixed state j, say j = 0. It will then be convenient to write simply Y, and T,
for Y and T , respectively.

Whenever the quantities are defined, set

(4.2) Ein = fom 1@, k, ) dQu(x), 5120) = /0-” [f(’t, k, x)]z dQux ()

and

2) 2)
§i=;£ik, § =;E$k-
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The results to follow will require one of the conditions,

(43) [ 174 2)] Q@) <
or
(44) > " 1f(k, 4, 2)F dQui(z) < <o

For convenience, set m; = oMo+ ).
LemMma 4.1. If (4.3) is satisfied and

(4.5) Z ij |Ealm: < oo,

then E|Y,| < « and
(4.6) E(Y,) = ng‘

If also poo < =, then oy = D_;nm; and E(Y,) = pwd; where
(4.7) As = Z; Mis/ oo

does not depend on the state 0.

Proor. The proof of (4.6) is an extension of that given by Chung (Section
I. 14 of [5]) for the corresponding result for Markov Chains. In order to compute
E(Y,), it suffices to compute E(Y;).

For each u = 0, define the random variable G(u) as

(4.8) G(u) = X (Zu, Zay Xu)izgousry -
It is easy to deduce from (4.1) that

T2
Y: = G(u) du.

Ty

Therefore,
EY) = B [ [o o) du] - fo " Ble(w)] du.

But

ElG(w)] = Z Z Zw:fo Z ‘/:”_8-'17—.][(’5, k, ) dQu(x) doGo: *OG%—D(U) dGoo(s)

20 k. a=l
+ 3 [ 500,k ) due) doto)

and
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[E[G(u)]du > é [f

3l i L ZG, b, 2) dQu(2) doGio # oGLT () dGin(s) du
+ ; _[o lu ./u:, 2~ f(0, k, ) dQu(x) dGo(v) du

S| " 1, &, ©) dQu(z) = > m

since mo = 1. All interchanges of summation and integration in the above compu-
tations are valid because of assumptions (4.3) and (4.5).

Consider now the special function f*(¢, 7, #) =  for all  and 5. Then G(u) = 1
for Ty < w < T2, G(u) = 0 otherwise, and {; = ;. Hence (4.6) yields

(49) Moo = E(T«z d T1) = Zm’mi .

Therefore, the proof is complete since one may show, using Corollary 3.1, that
mi/my = WMyi(+ ), a constant deperiding on ¢ and & but not on the fixed
state 0.

To compute the second moment of ¥;, and hence its variance, assume that
(4.4) is satisfied. Whenever up < « set

(4.10) B, = (; mmi)—l{iz{z@mi + 2;%;@%9%)11%”(@)}

and assume that each series on the right hand side is absolutely convergent
when ¢; is replaced by D x |£4]. Then one may prove, by the same method as
for Lemma, 4.1,

LeMMma 4.2. Under the above assumptions

(4.11) E(Y}) = uoB; < .

Again, by using the specific function f* defined above, one could deduce from
Lemma 4.2, an expression for the second moment u$3, and hence the variance,
of the recurrence time of state 0. One should note also that because of the form
of E(Y31) it is not necessary that uSy < « in order that E(Y}) < .

A more general result than that given in Lemma 4.2 may be derived in a
similar manner. Namely, let f and g be two arbitrary functions such that f, g
and fg each satisfies (4.3). Then one may obtain

LEMMA 4.3. Whenever the indicated series are absolutely convergent, one has

EY:\(f)Y:(g)] = ;fi(fg)m,-

(4.12)
+ ; ,Zo: §{zik<f)§r(g) + £a(9)E () ImidiMin( )]
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where, for example, {:(fg), £x(f) and Yi(g) are simply the quantztzes deﬁned by
(4.2) and (4.1), but for the functions fg, f and g, respectwely

Clearly Lemma 4.2 is the special case of Lemma 4.3 in which g = f.

By considering (without loss of generality ) the restricted class of 2-dimensional
functions f discussed at the end of Section 2, and the restricted class of strongly
regular MRP’s which satisfy (2.11), it is possible to consider Lemmas 4.1 and
4.2 as consequences of the corresponding results for Markov Chains, by using
the conditional independence of X;, X;, -+ givenJy,J1, - -- . A third method
for obtaining these moment computations is to employ a result of Orey (Theorem
6.1 of [12]) for abstract state Markov Chains which are recurrent in the sense of
Harris [6]. As is pointed out in [14], the process {(J», X»); # = 0} is a Markov
process. Clearly this is a recurrent process (in the sense of Harris) whenever the
¢.M.C. {J, ; » = O} is recurrent. To see this, define a sigma-finite measure u on
Borel sets of I X [0, «) by u({k} X [0, 2)) = mpH(z). It is then possible to
apply the stationarity results of [16] to Orey’s result to obtain (4.6) above.

Before turning to the limit theorems, the following result which will be needed
below, is stated. Its proof is omitted since it may be proved either by paralleling
the proof of Theorem I.14.4 of [5] or by applying Theorem 6.2 of [12].

LEMMA 4.4. For r > 0, set w, = E|YP|". Then for two distinct states <, j in the
same recurrence class, u; and u; are either both finite or both infinite.

The main consequence of this lemma is the fact that the mean recurrence
times pj; (and their variances) are either all finite or all infinite for all states j
in the same irreducible recurrence class.

5. Strong Law of Large Numbers. Consider an irreducible recurrent MRP
and a real-valued function f defined on I™ X R, for which the series (2.9) con-
verges for all ¢, a.s. As in Section 4, f and the state j = 0 are considered fixed.
Throughout this section, assume E|Y,| < « and set m = E(Y,), (n = 1).
Set G(u) = f(Zu, Xu)/X. for all w = 0 (as in (4.8)). Set a; = Twyy , b: =
t — Ut, and

T by
Ri(t) = Iiny<a f Gu) du, Re(t) = | G(w) du,

ay
(5.1) -
V() = I[Tlst]f G(u) du = Z=:l Y.

n

which yields the decomposition W(¢) = Ri(t) 4+ V(¢) + Ra(t).
Lemwma 5.1, Under the assumption that E|Y,| < + =,

(5.2) Ri(t)/t—>0 (as.)
and
(5.3) V(t)/t = m/uw (as.),

the latter limit being zero if ugpp = .
Proor. Clearly |Ri(t)] < |[§'G(u) dul|. Since the right hand side of this
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inequality is a well defined finite r.v. which does not depend on ¢, (5.2) is im-
mediate. To prove (5.3), observe that by the S.L.L.N. for independent and
identically distributed r.v.’s, the assumption of the lemma implies that
n'> 1 ¥, — m (a.s.). Moreover, it is known in Renewal theory that No(¢)/t —
poo (a.8.), even if p = =+ . These two results together imply (5.4).

Because of the factorization of W (t) given in (5.1), it follows that under the
assumptions of Lemma 5.1, W(¢)/t will converge almost surely, if and only if
Ry(t)/t does. Set

Tn41
(54) v = [ " le)] du, (n 2 1),
Ty
which is to say that Y7, is the analogue of ¥, with f replaced by |f].

TueoreM 5.1. (S.L.L.N.). If E(Y{) < o, then W(t)/t — m/uw (a.8.).

Proor. Notice first that E(¥7) < o implies E|Y;| < «. Moreover |Ry(1)] =
Y}Co(t) . Since E(YT) < w, one has Yi/n — 0 (a.s.) and since No(t)/t — poo
(a.s.) it follows that

T Y vow = [Y;O(O/Nq(t)]'[No(t)/t] —0 (as.)

as required. This theorem together with Lemma 4.4 leads to

CorROLLARY 5.1. If E(Y{) < @, m/uw = A does not depend on the choice ji=0,

The condition E(Y{) < « is quite strong, as is indicated by Example (i)
below. It is desirable to try to obtain weaker conditions, and, if possible, necessary
and sufficient conditions for the a.s. convergence of Ry(¢)/t. The next theorem
gives a much weaker sufficient condition for the S.L.L.N. than that given in
Theorem 5.1, as well as a necessary and sufficient condition in the positive re-
current case. For each v = 0 define

(55) 7@ = {7 6) duf Ly, orez

and

(5.6) Ma = 8upocice | Va(v), (nz1).
THEOREM 5.2. (a) If E(M,) < =, then

(5.7) W (L) = m/ue  (a.s.).

(b) If wo < o, then (5.7) holds if and only if E(M,) < .
Proor. Observe first of all that E(M,) < « implies E|Y,| < «, so that
Lemma 5.1 applies. Also, on the event [Ny(¢) > 0], one has that

(5.8) Ry(t) = Ywoy(t — Us — ay).

It therefore follows that on this event

(5.9) |Ywen(t = a: — U)|/Trwywr1 = Re(t)] £ |Ywoo(t — as — UL)|/a
so that
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lim supaz1 (Ma/n)(n/Tpp1) < lim Supeae ¢ |Ra(t)]
< lim supazi (Ma/n)(n/T,).

To obtain the first inequality in (5.10) observe that its left member may be
written as

(5.10)

lim sup sup  {|Ya(u)|/Trsi}.

t>0 nz=No(t) 0S5 u<lTry1— Ty '
The right hand inequality in (5.10) suffices to prove (a) because if E(M,) < «,
and hence M,/n — 0 a.s., then Ry(¢)/t — 0 a.s., since, in any case, T%/n — ug
a.s. If uw < o« then from the left hand inequality in (5.10) it follows that
R2(t)/t — 0 a.s. implies that M,/n — 0 a.s. and hence E(M,) < o, thereby
proving (b).

In order to illustrate the importance of the various assumptions used in this
and the remaining sections, the following examples of strongly-regular MRP’s
have been constructed. S

ExamprLEs. Let the MRP under consideration actually be a Markov Chain
with transition probabilities of the form p; ;1 = 1 — i, P2i2ia = 1, (2 = 0).
Therefore, the mean recurrence time pg is equal to 2 D di Where d1 =1
and d; = Hk=l Dok—1,2% = P[T1 = 2’&], forz > 1.

(i) This first example will illustrate that neither the condition E(Y7) < o,
of Theorem 5.1 nor the condition ue < <, is a necessary one. Define the func-
tion f to be f(0) = 0, f(2¢) = —f(2¢ — 1) = 1(z = 1), and choose the d.’s

so that ug = . Then
R:(t)/t =0 if [{] — a:is odd

= —1/t if[t] — a:is even

(where [¢] is the greatest integer <t), is obviously convergent to zero a.s. More-
over Y; = —1 and E(Y’f) = up— 1=

(ii) One can modify the above example slightly to show that even when
poe < o, the condition E(Y7) < «, is still not a necessary one. To do this,
choose the d.’s 50 that u = Qi1 d:i < o, and yet D imy (di — dip1) = oo.
Define the function f by f(2¢) = —f(2¢ + 1) = 7 (¢ = 0). Then

Ry(t)/t =0 if [{] — a; is even
= ([f] —a:— 1)/2t otherwise

which again converges to zero a.s. However, in this case Y; = 0 and E’(Y’f) =
E[(T, — T,)*/4] — E[(T: — T1)/2] = «, by construction.

(iii) If the above example is modified to make pg = o, then it becomes one
for which E|Y,| < «, and yet R(t)/[t], and hence W(¢)/[t] [t can only converge
in distribution if it converges at all. This follows from results of Dynkin and
Lamperti (cf. Theorem 3.2 of [8]).

(iv) Consider now an example in which the d.’s are so chosen as to make



MARKOV RENEWAL PROCESSES 1761

=1 i’l’(di — di1) = © a,nd‘ hence, a fortiori, upw = . Define the function
Fby f(2¢) = —f(2¢i + 1) = 7" (¢ = 0). Then
Ry(t)/t =0 if [f] — a;is even

= {([t] — a: — 1)/2}/t otherwise
and, since [tf] — a; — 1 = t, this converges to zero a.s. However, in this example
My = [(T, — T — 1)/2]

has an infinite expectation, thus showing that the condition, pep < o, cannot
be dropped from (b) of Theorem 5.2.

It may be that one is interested in the convergence of normed sums of the
form W (¢)/N(t). In this case an analogue to Theorem 5.2 may be proved in
which 7/ is replace by m/ug in (5.7) and in which the condition, up < <,
in (b) is replaced by ugo < .

6. Weak Law of Large Numbers. Assume throughout this section that ¥; is
a r.v. which satisfies the Weak Law of Large Numbers (W.L.L.N.). That is,
its characteristic function is differentiable at zero with derivative equal to m,
say, or, equivalently,

(1) BE(Yyyy<a) = masz — » and

(ii) zP[|Y;] > 2] — 0 as x — = (cf. Pitman [13]). Using the same notation

as in Section 5, one obtains
Lemma 6.1. If Y, satisfies the W.L.L.N., then

(6.1) Ri(t)/t— 0 (as.),
(6.2) V(&)/t —p m/pen

the latter limit being zero if poo = .

The proof is analogous to that of Lemma 5.1 and is omitted. The important
implication of this result is that under the assumption that Y, satisfies the
W.L.L.N., W(t)/t will converge in probability if and only if R.(¢)/¢t does. Thus
in the proof of the following theorems attention will be directed to the quantity

Rz(t) 01’11y. .
TueoreM 6.1. (W.L.L.N.). If Y, satisfies the W.L.L.N. and if pspy < <,
then Ry(t) comverges in distribution and hence
(6.3) W(t)/t = m/poo .
Proor. Using (5.8), one may obtain, by direct computation, that for each
state <,
P[Ry(t) £ x| Zo = 4, Uy = 0] = P[Ry(t) < =, No(t)

(6.4) =02 =1, Uy = 0](1 — i)

t
+ f PlYo(t —u — Us) S 2,No(t —u) =0|Zo=0,Uo = 0] dM s (u),
0
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where Yo(v) = {[§ G(u) du}Ir, 20 . Now under the condition Z, = 0, Uy = 0,
Yy = Yo(T:) has the same distribution as ¥, . Also one obtains that as u in-
creases, the events [Yo(u — U,) = z, No(u) = 0] will alternatively occur and
not occur until finally No(u) > 0 at u = T,. Let ¢, &2, - -- be the successive
time points at which such a change occurs. Set {_; = ¢, = 0 and define for k = 0,
Vi=rhkon [ty < u = tuy, Vu = kon [ta < u < tuss]. Note that V% and
V7, are finite (a.s.) because ugy < -+ 0, so that upon setting V,, = V5 — V5,
one has [V, = 0,u < T4 = [Yo(u) £ 2, No(u) = 0, u < T]. Therefore,

PlYo(u) £ 2,No(u) =0|Zy=0,Uy=0]=E(1 — V.| Zo=0,U, = 0),

is a function of bounded variation in %, and hence is continuous a.e. The version
of the Key Renewal theorem due to Bene$ [3] is then applicable to each term of
(6.4) to give

limesw P[R(t) < 2| Zo = 4, Uy = 0]

(6.5) L
= um f PlYo(u — U,) < 2, No(w) = 0| Zo = 0, Us = 0] du.
0

Since P[Ry(t) £ z] = D_:a:P[Rs(t) £ x| Zo = 4, Uy = 0], the theorem follows
by the dominated convergence theorem. (In taking the limit in (6.5), it should
be understood that if Gy is a lattice distribution function, then ¢ approaches
infinity over multiples of its span.) The integral on the right hand side of (6.5)
is the (conditional) expected amount of time before the first visit to state O
during which W; does not exceed x.

It cannot, unfortunately, be concluded from this theorem that m/ue does not
depend upon the choice of j = 0, nor that the assumption, “Y{” satisfies the
W.L.L.N.” is true for all or no j. This is true, but it requires a separate argu-
ment which is left for future work.

The finiteness condition imposed on the mean recurrence time ugo in the above
theorem is somewhat unnatural. It implies in particular that the MRP is strongly-
regular. It is really the family of r.v.’s Y1(u), and not the mean recurrence times,
that should be considered as playing the major role in determining the convergence
of Ry(t). For example, if the r.v.’s Y;(u) are uniformly bounded, and hence Ry(t)
is uniformly bounded (and vice versa), then clearly R2(¢)/t converges to zero in
probability regardless of the value of ugy . On the other hand, one cannot expect
R.(t)/t to converge in probability to zero without some conditions on the joint
behavior of the r.v.’s Y1(u) and the recurrence times. [For example, consider
Example (iii) of Section 5.] Unfortunately, there do not seem to be any practical
alternatives for the condition, “ugo < ', that merit mentioning.

7. Central Limit theorem. Assume in this section that uso < « and Var (Y1)
= ¢ < . In particular, this assumption implies through Lemma 6.1 and
Theorem 6.1 that in the expression W(¢) = V(¢) + Ry(t) + Ra(t), both £ *R(¢)
and ¢ Ry(t) converge to zero in probability as t — . Therefore, when studying
the limiting behavior of { *W (t), it suffices to consider that of £V (¢). To avoid
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the need for an additional assumption, the d.f. which places unit mass at zero
will be considered as a N (0, 0) d.f.

From Renewal theory, N;(t)/t —as. 1/uj; . Therefore, one may apply the
theorem of Anscombe [2] on sums of random numbers of random variables (see
also the recent, more general paper by Billingsley [4] or the Central Limit
theorem of Smith [17] for cumulative processes) to obtain

LemMa 7.1. If ugo <  and Var (Y,) = o* < o, then

(7.1) W (t) — No(t)m] =5 a N(O, 6*/uw) r.v.

Consider now the limiting behavior of ¢ *[W(¢) — tA], where 4 = m/ oo is
independent of 7, as given by Corollary 5.1. Note first that if uew < «, if one
replaces the function f with the function g = f — m/ug0 , and if Var Yi(g) < =,
then a consequence of Lemma 7.1 is that

(7.2) HW(t) — N(t)Ap] —».a N(0, B,) r.v.

where p = poo/uso does not depend upon the choice j = 0 by (4.7) and B, =
woo Var Yi(g). Since neither the left hand side of (7.2) nor the assumptions
used, depend on the choice j = 0, then neither does B, . In a similar manner,
upon replacing f in Lemma 7.1 with the function % defined by h(7, z) =
f(3, s) — zA one obtains that if Var Y1(h) < o, then

(7.3) W () — SywA] —za N(O, By) r.v.

where B, = uoo Var Y1(h) does not depend on j = 0. Moreover since ¢t — S vy =
t — Swyw , which by Renewal Theory converges in law when ugp < «, one has
£t — Swx] —» 0. This completes the proof of

THEOREM 7.1. Let oo < ®, pw < o, and let g and h be as defined in the
preceding paragraph. Then

(a) #f Var Yi(g) < o, t_%[W(t) — N(t)Ap] —»La N(O, B,) r.v,,

(b) if Var Yy(h) < o, (W(t) — tA] > a N(O, B,) r.v.
with B, and By, as defined by (7.3) and (7.4) respectively.

Perhaps the most important case of an MRP with more than one state (thereby
excluding the basic case of a Renewal process) is the two state MRP. For in any
MRP all problems concerning the duration time (sojourn time) of a particular
state may be reduced to this case. In [20], Takécs studies the limiting distribu-
tion of the duration time spent in one of two states. This is the special case of
the above with f(7j, k, ) = x whenever 7 is the specified state. It should also be
pointed out that the joint asymptotic normality of the N;(¢)’s follows from the
above theorems upon setting f(k, j, x) = w; , a constant, for the set of indices &
being considered, and equal to zero otherwise.

When studying the limiting behavior of the maximum likelihood estimators
of the parameters in a Birth and Death process, Albert [1] obtains special cases
of the above Central Limit theorems. These limit theorems have also been applied
in [11] to study the limiting behavior of estimators of the transition functions
{Q:;} in an arbitrary finite state MRP.
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Many other limit theorems for MRP’s are possible. For example, the law of the
iterated logarithm, as well as the limiting distribution of the maximum partial
sum or of the maximum f, may be derived, (cf. [5], [9] and [12]). Moreover, the
a.s. convergence of the ratios in Section 3 can be studied. Of greater interest,
however, would be a study of the Central Limit problem for the case in which
Y1(f) is in the domain of attraction of a (non-Normal) stable law. Several limit
theorems for sojourn times in the non-Normal case have been outlined by Kesten
[7]. A recent paper by Taga [19] studies limit theorems for MRP’s with a finite
number of states. ‘
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