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1. Introduction. Chow and Robbins [3] have considered the problem of finding
a confidence interval of prescribed width 2d and prescribed coverage probability
a for the unknown mean u of a population © having fixed distribution function
F with unknown, but finite, variance ¢* > 0. Since no fixed sample procedure can
possibly work, they consider a certain class of sequential procedures and show
that the members of this class are asymptotically ‘“consistent” (i.e., cover u
with probability «) and asymptotically “efficient” (i.e., have expected sample
size equal to the smallest sample size one could use if ¢° were known) as d goes
to zero. The purpose of this paper is to extend these results to the linear regression
problem.

2. The problem. Consider y1 , ¥, - -- a sequence of independent observations
with

(2.1) yi = B + e,

8 an unknown 1 X p vector, ' a known p X 1 column vector, and e; a random
observation obeying a (possibly) unknown distribution function F with finite,
but unknown, variance ¢°. We wish to find a region R in p-dimensional Euclidean
space such that P(8 e R) = 1 — « and such that the length of the interval cut
off on the g;-axis by R has width =2d,7 = 1, --- p. As has already been noted
for p = 1, no fixed-sample procedure will meet our requirements; we are thereby
led to consider sequential procedures.

To motivate the sequential procedure that we use, consider what classical
statistical practice would be if ¢* were known. Since the least-squares estimate of
B8 has componentwise (by the Gauss-Markov theorem) uniformly minimum
variance among all linear unbiased estimates of 8, has good asymptotic properties
(such as consistency—viz., Eicker [5]), and performs reasonably well against
nonlinear unbiased estimates (Anderson [1]), classical practice would be to use
the least-squares estimate of 8 in the construction of our confidence region. It is
well-known that the least-squares estimate of 8 in our problem is

where Y, = (g1, -+, ), Xo = (@2, -+, 2"™):p X n, p £ n, and where we
assume that X, is of full rank. (This is usually possible to achieve in practice—
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if not, sample until p independent z*” are found, start with the p corresponding
y’s and save the remainder for future use in the sequential procedure. Such a
procedure does not bias the results and is equivalent to starting after a fixed
number of observations ng .)

Since the covariance matrix of the 3(n) is o* (X, X,') ™, classical practice would
be to construct the confidence region

(B(n) — B)(X.X.)(B(n) — B) = &

which, if F were the cumulative of the normal distribution, would then have
probability of coverage equal to P{ “’x, £ d'} (and, hopefully, would have
this property asymptotically for any F). It is obvious, however, that unless
this probability of coverage is equal to «, such a region cannot be of use to us.
To find a confidence interval of fixed width 2d for any one of the 8, , we could
(in analogy to [3]) use the interval f;(n) = d. Indeed, for any normed linear
combination a8, a: 1 X p, e’ = 1,0of the B;, i =1, --- p, we could use the
confidence interval af’ (n) =+ d. Let us now ask for a confidence region R,
that would be contained in all of these confidence intervals. One such region is

(2.3) R, = {z: (2 — B(n))(z — B(n))" = d},
since for any a such that ad' = 1,any zeR,,
(a(z — B(n))")? £ maxw (alz — B(n))')’ = (2 — B(n)(z — B(n))" = d.

We shall adopt this region for our confidence procedure.
Since in our problem o” is unknown, classical theory would suggest the least-
squares estimate

(2.4) &(n) = VoI, — X (XX ) X,) Y,

as an estimate of o".

Before presenting our class of sequential procedures @, we digress briefly
to consider some asymptotic properties of 8(n) and ¢*(n) for large n. These
properties will be important in our discussion of the asymptotic properties of
the class €, and are of interest on their own merits.

3. Asymptotic theory for large n. The asymptotic distribution theory for
B(n) is merely a corollary of the following well-known theorem:

TureoreM 3.1. If 21, 22, -+ are independent identically distributed random
variables, each with mean 0, variance 1, and cumulative distribution function G,
and if bpi,t =1, -+ n,n=12 ---, is a fived array of constants with

Dorabhi=1, n=12---,
then if
(3.1) maxi<izn [bnil = 0, n— o,
we have

(3.2) lim £(2 e buze) = 9(0, 1).
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Proor. This theorem is an immediate consequence of the “particular case”
of Theorem 3 in Gnedenko-Kolmogorov [6], p. 103. Of interest in connection with
Theorem 3.1 above is the work of Eicker [4].||

Returning to our problem, let

Un = (Xan/)_an = ((unw))

CoroLLARY 3.2. If

(3.3) max;,; [Un.ii| >0 as n— o,
then
(3.4) limusw £((B(n) — B)(XaXa)) = (0, 6°I,).

Proor. For any 1 X p vector a such that aa’ = 1 consider
ta(a) = o 'a(XaX ) (B(n) — B)' = o aUn(Ys — EY,)".

Then t,(a) is a linear combination of the elements of Z, = ¢ (¥, — EY,),
the elements of Z, being independent, identically distributed with means O,
variances 1, and cumulative distribution functions F(z/¢). Further aU, U, a’ = 1
so that we may apply Theorem 3.1 provided that the maximum element of the
vector aU, tends to 0 as n — «. This follows from the fact that (letting U, =
(Un(l)) e Un(n))7 Un(i): V4 X 1)'

[aU0| = |20 atneis] £ 281 | [tn- 5]
< p' maxy; [Un.i] — 0, allj.
Thus by Theorem 3.1
limpw £(ta(a)) = (0, 1).

Since this is true for all a, aa’ = 1, it follows from well-known theorems in mul-
tivariate analysis and large-sample theory that (3.4) holds.||

A sufficient condition for (3.3) to hold is that:

AssumpTION 3.1. There exists a p X p positive definite matrix = such that

(3.5) LM n (X X,') = =

AssuMPTION 3.2. limg.e X,/n! = 0.

Under these assumptions we can find the asymptotic probability of coverage
of the region R, .

CoROLLARY 3.3. Under Assumptions 3.1 and 3.2,

(3.6) P{(B(n) — B)(B(n) — B)/n £ d} = P{T(\, -+ N\p) £ d/0’}

where A1, - - - \p are the characteristic roots of =" and T (A1, - -+ \p) has the dis-
tribution of a weighted sum of p independent chi-squared variables with one degree
of freedom, the N;’s being the weights.

Proor. By Corollary 3.2 we have that lim £((8(n) — 8)X.X,") = 9(0, ¢’I,).
Further
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(B(n) = B)(B(n) — B)" = (B(n) — B)(XaXa) (Xn X, ) (XX, ) (B(n) — 8)".
Since n "X, X, converges to =, it follows that
lim £(n"(B(n) — B)(B(n) — B)") = L(wZ"w")

where £(w) = 91(0, ¢’1,). An application of a well-known theorem in multi-
variate analysis completes the proof. |
Finally we need to consider the question of the consistency of ¢°(n).
TaEOREM 3.4. If max, ; |Un.i5| — 0 as n — o« then

(3.7) lim 6*(n) = o, as.

Proor. Since for Z, = Y, — EY,, &) = n ' Z,(I — U,'U,)Z, and since
by the given U, — 0 as n — o, then

&(n) = n'Z.Z, (1 + o(1))

which by the strong law of large numbers converges a.s. to o". ||

Before closing this section, we would like to note that Theorem 3.1 is really a
special case of a more general theorem by Eicker [4]. Generalizations of the present
paper in directions suggested by this theorem are possible and will be considered
in a subsequent paper.

We are now in a position to discuss the main topic of this paper, namely the
class of sequential procedures €. This is taken up in the next section.

4. Asymptotic properties of the class €. Given d and a.and for a fixed sequence
of z-vectors, ¥, 2, --- arranged so that X, is non-singular and so that
Assumptions 3.1 and 3.2 are satisfied, let {a,} be any sequence of constants con-
verging to the number a* satisfying

(4.1) O P{T(\, -+ \p) S 0¥ = a

Then this sequence {a,} determines a member of the class € of sequential pro-
cedures as follows:
(I) We start by taking no = p observations y1, - -+ Y, - We then sample one

extra observation at a time, stopping according to the stopping variable N
defined by

(4.2) N = smallest k = no such that k7'(&*(k) + k™) £ d/a .

(I1) When sampling is stopped at N = n, construct the region R, described
in (2.3).

Then the procedures in the class @ are asymptotically ‘“consistent’” and
“efficient” as d — 0. That is

THEOREM 4.1. Under the assumption that 0 < ¢ < =,

(4.3) limgo (A°N)/(a*s") = 1 a.s.,
(4:.4) limd_.,o P(ﬁé‘R}v) = «,
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and
(4.5) limg.e (°EN)/(a*s") = 1.

REMARKs. 1. As in [3], the adding of n™" to 6°(n) in (4.1) is unnecessary if
F is continuous.

2. As in [3], N could be defined as the smallest odd, even, etc. integer =n,
such that (4.1) holds and the above result would go through.

ProoF oF THE THEOREM. Since n'¢°(n) converges to o° a.s. and since 6*(n) +
n”" is a.s. positive, then Lemma 1 of [3] implies (4.3). Further Lemma 3 and the
discussion following in [3] apply to ¢°(n) + n~" as well, and thus (4.5) follows.
It only remains to prove (4.4).

Since

P{BeRy} = P{(B(N) — B)BWN) — 8) = Y
= P{N(B(N) — B)(B(N) — B)'/o" < Nd'/o"},
since Nd*/a* — a* a.s., and since by Corollary (3.3)
limy... P{n(B(n) — )(B(n) — B)'/o" = 0™} = «

it follows as a trivial extension (to the distribution of T'(A1, - -+ \,)) of a result
of Anscombe [2] that (4.4) holds.||

Very little is known about the properties of any member of the class € for
moderate values of ¢°/d’. Some work done on this problem by N. Starr will
soon be available.
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