ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS¹

By Leon J. Gleser

Columbia University

- 1. Introduction. Chow and Robbins [3] have considered the problem of finding a confidence interval of prescribed width 2d and prescribed coverage probability α for the unknown mean μ of a population Ω having fixed distribution function F with unknown, but finite, variance $\sigma^2 > 0$. Since no fixed sample procedure can possibly work, they consider a certain class of sequential procedures and show that the members of this class are asymptotically "consistent" (i.e., cover μ with probability α) and asymptotically "efficient" (i.e., have expected sample size equal to the smallest sample size one could use if σ^2 were known) as d goes to zero. The purpose of this paper is to extend these results to the linear regression problem.
- **2.** The problem. Consider y_1 , y_2 , \cdots a sequence of independent observations with

$$(2.1) y_i = \beta x^{(i)} + \epsilon_i,$$

 β an unknown $1 \times p$ vector, $x^{(i)}$ a known $p \times 1$ column vector, and ϵ_i a random observation obeying a (possibly) unknown distribution function F with finite, but unknown, variance σ^2 . We wish to find a region R in p-dimensional Euclidean space such that $P(\beta \varepsilon R) = 1 - \alpha$ and such that the length of the interval cut off on the β_i -axis by R has width $\leq 2d$, $i = 1, \dots, p$. As has already been noted for p = 1, no fixed-sample procedure will meet our requirements; we are thereby led to consider sequential procedures.

To motivate the sequential procedure that we use, consider what classical statistical practice would be if σ^2 were known. Since the least-squares estimate of β has componentwise (by the Gauss-Markov theorem) uniformly minimum variance among all linear unbiased estimates of β , has good asymptotic properties (such as consistency—viz., Eicker [5]), and performs reasonably well against nonlinear unbiased estimates (Anderson [1]), classical practice would be to use the least-squares estimate of β in the construction of our confidence region. It is well-known that the least-squares estimate of β in our problem is

(2.2)
$$\hat{\beta}(n) = Y_n X_n' (X_n X_n')^{-1}$$

where $Y_n = (y_1, \dots, y_n), X_n = (x^{(1)}, \dots, x^{(n)}): p \times n, p \leq n$, and where we assume that X_p is of full rank. (This is usually possible to achieve in practice—

Received 5 October 1964.

 $^{^{1}}$ Research sponsored by National Science Foundation Grant NSF-GP-2074 at Columbia University. ${463} \\$

if not, sample until p independent $x^{(i)}$ are found, start with the p corresponding y_i 's and save the remainder for future use in the sequential procedure. Such a procedure does not bias the results and is equivalent to starting after a fixed number of observations n_0 .)

Since the covariance matrix of the $\hat{\beta}(n)$ is $\sigma^2(X_nX_n')^{-1}$, classical practice would be to construct the confidence region

$$(\hat{\beta}(n) - \beta)(X_n X_n')(\hat{\beta}(n) - \beta)' \leq d^2$$

which, if F were the cumulative of the normal distribution, would then have probability of coverage equal to $P\{\sigma^2\chi_p^2 \leq d^2\}$ (and, hopefully, would have this property asymptotically for any F). It is obvious, however, that unless this probability of coverage is equal to α , such a region cannot be of use to us.

To find a confidence interval of fixed width 2d for any one of the β_i , we could (in analogy to [3]) use the interval $\hat{\beta}_i(n) \pm d$. Indeed, for any normed linear combination $a\beta'$, $a: 1 \times p$, aa' = 1, of the β_i , $i = 1, \dots, p$, we could use the confidence interval $a\hat{\beta}'(n) \pm d$. Let us now ask for a confidence region R_n that would be contained in all of these confidence intervals. One such region is

$$(2.3) R_n = \{z: (z - \hat{\beta}(n))(z - \hat{\beta}(n))' \le d^2\},$$

since for any a such that aa' = 1, any $z \in R_n$,

$$(a(z - \hat{\beta}(n))')^2 \le \max_{aa'=1} (a(z - \hat{\beta}(n))')^2 = (z - \hat{\beta}(n)(z - \hat{\beta}(n))' \le d^2.$$

We shall adopt this region for our confidence procedure.

Since in our problem σ^2 is unknown, classical theory would suggest the least-squares estimate

$$\hat{\sigma}^{2}(n) = Y_{n}(I_{n} - X_{n}'(X_{n}X_{n}')^{-1}X_{n})Y_{n}'$$

as an estimate of σ^2 .

Before presenting our class of sequential procedures \mathfrak{C} , we digress briefly to consider some asymptotic properties of $\hat{\beta}(n)$ and $\hat{\sigma}^2(n)$ for large n. These properties will be important in our discussion of the asymptotic properties of the class \mathfrak{C} , and are of interest on their own merits.

3. Asymptotic theory for large n. The asymptotic distribution theory for $\hat{\beta}(n)$ is merely a corollary of the following well-known theorem:

THEOREM 3.1. If z_1 , z_2 , \cdots are independent identically distributed random variables, each with mean 0, variance 1, and cumulative distribution function G, and if b_{ni} , $i = 1, \dots, n, n = 1, 2, \dots$, is a fixed array of constants with

$$\sum_{i=1}^{n} b_{ni}^{2} = 1, \qquad n = 1, 2, \dots,$$

then if

$$\max_{1 \le i \le n} |b_{ni}| \to 0, \qquad n \to \infty,$$

we have

(3.2)
$$\lim \mathfrak{L}(\sum_{i=1}^n b_{ni}z_i) = \mathfrak{N}(0, 1).$$

PROOF. This theorem is an immediate consequence of the "particular case" of Theorem 3 in Gnedenko-Kolmogorov [6], p. 103. Of interest in connection with Theorem 3.1 above is the work of Eicker [4].

Returning to our problem, let

$$U_n = (X_n X_n')^{-\frac{1}{2}} X_n = ((u_{n \cdot ij})).$$

COROLLARY 3.2. If

$$\max_{i,j} |u_{n\cdot ij}| \to 0 \quad as \quad n \to \infty,$$

then

(3.4)
$$\lim_{n\to\infty} \mathfrak{L}((\hat{\beta}(n) - \beta)(X_n X_n')^{\frac{1}{2}}) = \mathfrak{N}(0, \sigma^2 I_p).$$

Proof. For any $1 \times p$ vector a such that aa' = 1 consider

$$t_n(a) = \sigma^{-1} a (X_n X_n')^{\frac{1}{2}} (\hat{\beta}(n) - \beta)' = \sigma^{-1} a U_n (Y_n - EY_n)'.$$

Then $t_n(a)$ is a linear combination of the elements of $Z_n = \sigma^{-1}(Y_n - EY_n)$, the elements of Z_n being independent, identically distributed with means 0, variances 1, and cumulative distribution functions $F(x/\sigma)$. Further $aU_nU_n'a' = 1$ so that we may apply Theorem 3.1 provided that the maximum element of the vector aU_n tends to 0 as $n \to \infty$. This follows from the fact that (letting $U_n = (U_n^{(1)}, \cdots, U_n^{(n)}), U_n^{(i)}: p \times 1$):

$$|aU_n^{(i)}| = |\sum_{i=1}^n a_i u_{n \cdot ij}| \le \sum_{i=1}^p |a_i| |u_{n \cdot ij}|$$

$$\le p^{\frac{1}{2}} \max_{i,j} |u_{n \cdot ij}| \to 0, \text{ all } j.$$

Thus by Theorem 3.1

$$\lim_{n\to\infty} \mathfrak{L}(t_n(a)) = \mathfrak{N}(0,1).$$

Since this is true for all a, aa' = 1, it follows from well-known theorems in multivariate analysis and large-sample theory that (3.4) holds.

A sufficient condition for (3.3) to hold is that:

Assumption 3.1. There exists a $p \times p$ positive definite matrix Σ such that

(3.5)
$$\lim_{n\to\infty} n^{-1}(X_n X_n') = \Sigma.$$

Assumption 3.2. $\lim_{n\to\infty} X_n/n^{\frac{1}{2}} = 0$.

Under these assumptions we can find the asymptotic probability of coverage of the region R_n .

Corollary 3.3. Under Assumptions 3.1 and 3.2,

$$(3.6) P\{(\hat{\beta}(n) - \beta)(\hat{\beta}(n) - \beta)'/n \leq d^2\} = P\{T(\lambda_1, \dots \lambda_p) \leq d^2/\sigma^2\}$$

where λ_1 , \dots λ_p are the characteristic roots of Σ^{-1} and $T(\lambda_1, \dots, \lambda_p)$ has the distribution of a weighted sum of p independent chi-squared variables with one degree of freedom, the λ_i 's being the weights.

PROOF. By Corollary 3.2 we have that $\lim \mathfrak{L}((\hat{\beta}(n) - \beta)X_n X_n') = \mathfrak{N}(0, \sigma^2 I_p)$. Further

$$(\hat{\beta}(n) - \beta)(\hat{\beta}(n) - \beta)' = (\hat{\beta}(n) - \beta)(X_n X_n)^{\frac{1}{2}} (X_n X_n')^{-1} (X_n X_n')^{\frac{1}{2}} (\hat{\beta}(n) - \beta)'.$$

Since $n^{-1}X_nX_n'$ converges to Σ , it follows that

$$\lim \mathfrak{L}(n^{-1}(\hat{\beta}(n) - \beta)(\hat{\beta}(n) - \beta)') = \mathfrak{L}(w\Sigma^{-1}w')$$

where $\mathfrak{L}(w) = \mathfrak{N}(0, \sigma^2 I_p)$. An application of a well-known theorem in multivariate analysis completes the proof.

Finally we need to consider the question of the consistency of $\hat{\sigma}^2(n)$.

THEOREM 3.4. If $\max_{i,j} |u_{n\cdot ij}| \to 0$ as $n \to \infty$, then

(3.7)
$$\lim \hat{\sigma}^2(n) = \sigma^2, \quad \text{a.s.}$$

PROOF. Since for $Z_n = Y_n - EY_n$, $\hat{\sigma}^2(n) = n^{-1}Z_n(I - U_n'U_n)Z_n'$ and since by the given $U_n \to 0$ as $n \to \infty$, then

$$\hat{\sigma}^2(n) = n^{-1} Z_n Z_n'(1 + o(1))$$

which by the strong law of large numbers converges a.s. to σ^2 .

Before closing this section, we would like to note that Theorem 3.1 is really a special case of a more general theorem by Eicker [4]. Generalizations of the present paper in directions suggested by this theorem are possible and will be considered in a subsequent paper.

We are now in a position to discuss the main topic of this paper, namely the class of sequential procedures C. This is taken up in the next section.

4. Asymptotic properties of the class \mathfrak{C} . Given d and α and for a fixed sequence of x-vectors, $x^{(1)}$, $x^{(2)}$, \cdots arranged so that X_p is non-singular and so that Assumptions 3.1 and 3.2 are satisfied, let $\{a_n\}$ be any sequence of constants converging to the number a^* satisfying

$$(4.1) P\{T(\lambda_1, \cdots, \lambda_p) \leq a^*\} = \alpha.$$

Then this sequence $\{a_n\}$ determines a member of the class \mathbb{C} of sequential procedures as follows:

(I) We start by taking $n_0 \ge p$ observations y_1, \dots, y_{n_0} . We then sample one extra observation at a time, stopping according to the stopping variable N defined by

(4.2)
$$N = \text{smallest } k \ge n_0 \text{ such that } k^{-1}(\hat{\sigma}^2(k) + k^{-1}) \le d^2/a_k$$
.

(II) When sampling is stopped at N = n, construct the region R_n described in (2.3).

Then the procedures in the class ${\mathfrak C}$ are asymptotically "consistent" and "efficient" as $d \to 0$. That is

Theorem 4.1. Under the assumption that $0 < \sigma^2 < \infty$,

(4.3)
$$\lim_{d\to 0} (d^2N)/(a^*\sigma^2) = 1 \quad \text{a.s.},$$

(4.4)
$$\lim_{d\to 0} P(\beta \varepsilon R_N) = \alpha,$$

and

(4.5)
$$\lim_{d\to 0} \left(\frac{d^2 E N}{a^* \sigma^2} \right) = 1.$$

REMARKS. 1. As in [3], the adding of n^{-1} to $\hat{\sigma}^2(n)$ in (4.1) is unnecessary if F is continuous.

2. As in [3], N could be defined as the smallest odd, even, etc. integer $\geq n_0$ such that (4.1) holds and the above result would go through.

PROOF OF THE THEOREM. Since $n^{-1}\hat{\sigma}^2(n)$ converges to σ^2 a.s. and since $\hat{\sigma}^2(n) + n^{-1}$ is a.s. positive, then Lemma 1 of [3] implies (4.3). Further Lemma 3 and the discussion following in [3] apply to $\hat{\sigma}^2(n) + n^{-1}$ as well, and thus (4.5) follows. It only remains to prove (4.4).

Since

$$P\{\beta \in R_N\} = P\{(\hat{\beta}(N) - \beta)(\hat{\beta}(N) - \beta)' \le d^2\}$$

= $P\{N(\hat{\beta}(N) - \beta)(\hat{\beta}(N) - \beta)'/\sigma^2 \le Nd^2/\sigma^2\},$

since $Nd^2/\sigma^2 \to a^*$ a.s., and since by Corollary (3.3)

$$\lim_{n\to\infty} P\{n(\beta(n)-\beta)(\beta(n)-\beta)'/\sigma^2 \leq a^*\} = \alpha,$$

it follows as a trivial extension (to the distribution of $T(\lambda_1, \dots, \lambda_p)$) of a result of Anscombe [2] that (4.4) holds.

Very little is known about the properties of any member of the class \mathfrak{C} for moderate values of σ^2/d^2 . Some work done on this problem by N. Starr will soon be available.

REFERENCES

- Anderson, T. W. (1962). Least squares and best unbiased estimates. Ann. Math. Statist. 33 266–272.
- [2] Anscombe, F. J. (1952). Large sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48 600-607.
- [3] Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462.
- [4] EICKER, F. (1963). Central limit theorems for families of sequences of random variables. Ann. Math. Statist. 34 439-447.
- [5] EICKER, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regression. Ann. Math. Statist. 34 447-457.
- [6] GNEDENKO, B. V. AND KOLMOGOROV, A. N. (1954). Limit Distribution for Sums of Independent Random Variables, (translated from the Russian by K. L. Chung). Addison-Wesley, Cambridge.