THE EXISTENCE OF PROBABILITY MEASURES WITH
GIVEN MARGINALS!

By V. STRASSEN
Géttingen Unaversity

1. Summary. First an integral representation of a continuous linear functional
dominated by a support function in integral form is given (Theorem 1). From
this the theorem of Blackwell-Stein-Sherman-Cartier [2], [20], [4], is deduced
as well as a result on capacities alternating of order 2 in the sense of Choquet
[5], which includes Satz 4.3 of [23] and a result of Kellerer [10], [12], under some-
what stronger assumptions. Next (Theorem 7), the existence of probability
distributions with given marginals is studied under typically weaker assump-
tions, than those which are required by the use of Theorem 1. As applications we
derive necessary and sufficient conditions for a sequence of probability measures
to be the sequence of distributions of a martingale (Theorem 8), an upper semi-
martingale (Theorem 9) or of partial sums of independent random variables
(Theorem 10). Moreover an alternative definition of Lévy-Prokhorov’s distance
between probability measures in a complete separable metric space is obtained
(corollary of Theorem 11). Section 6 can be read independently of the former
sections.

2. Acknowledgments. This work started from a conversation with Paul
André Meyer about the similarity of the Blackwell-Stein-Sherman-Cartier
theorem and Satz 4.3 [23]. We both found independently generalizations of the
two results, Professor Meyer earlier than I. His result is included here with his
kind permission as the corollary of Theorem 10. My knowledge of the relevant
literature has been considerable improved by contact with Professors W. J.
Bade, K. Ito, J. L. Kelley, H. Kellerer and L. Le Cam, whom I thank very much.
I am indebted to H. Kellerer for a critical remark.

3. Notation. If (2, ®) and (R, &) are measurable spaces, then a Markov kernel
P from @ to R is a real function on ¢ X @ such that for any we Q, P(-, o) is
a probability measure on ¢ and for any E ¢ ¢, P( E, -) is B-measurable.

If u is a probability measure on ®, Py is a probability measure on ¢ defined by

(1) (Pu) (B) = [ P(B, o)u(dw)
for E ¢ 9. P X u is a probability measure on ¢ X ® defined by
(2) (P X p) (BEXF) = [rP(E,o)u(do)

for Eed, Fe®.
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424 V. STRASSEN

If 2 is a bounded #-measurable function on R, 2P is a bounded ®-measurable
function on @ defined by

(3) (2P)(w) = [ 2(r)P(dr, ).

4. An application of the Hahn-Banach theorem. Let X be a real linear space,
elements of which we denote by z, y. A real function h on X is called a support
function if and only if it is subadditive, i.e.,

h(z +y) = h(z) + h(y)
and nonnégative homogeneous, i.e.,
h(az) = ah(x)

for any a = 0.
We list two well-known properties of support functions A.

(4) Hahn-Banach theorem (see, e.g., [15], p. 21):
If X, is a linear submanifold of X and I, a linear functional on X,
satisfying lo(z) < h(zx) for all z £ X,, then there is a linear func-
tional  on X which extends /, and satisfies I(z) < h(zx) for all z ¢ X.
Let X be a Banach space and X be its dual (we denote elements
of X* by z*, 4*). Then h is norm continuous if and only if it is norm
bounded, i.e., if and only if

[IAll = aet sup{|h(2)]: [z]] < 1} < .

(5) Moreover, for any continuous support function % let ¢(h) be the set of all
linear functionals on X dominated by & (these are then automatically
continuous), i.e.,

o(h) = {z*:2* ¢ X* and z* < A}

Then h = sup ¢(h). ¢ maps the set of continuous support functions
one-to-one onto the set of nonempty, convex and weak™ compact sub-
sets of X™,

Now let X be a separable Banach space, (2, ®, u) a probability space. We
denote elements of @ by w, 4. Let w — h, be a map from Q into the set of con-
tinuous support functions on X, which is weakly measurable in the sense that
for every x the map w-— h.(z) is ®-measurable. Then also w— ||h,|| is ®-
measurable (because X is separable). Assume

(6) [ ] w(de) < .
The integral
W) = [ ho(@)u(do)

defines a continuous support function on X.
Tarorem 1. If z* & X*, then the following are equivalent:
(i) «* 4s dominated by h, i.e., z* ¢ o(h),
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(ii) there is a map w— " from Q into X* which is weakly measurable in the
sense that for all x the map

(7) w0z, (2)

18 measurable, which satisfies

(8) 2o (x) S ha(z)
for all  and w (i.e., To" € ¢(hy) for all w) and

(9) : 2 (z) = [ 2.%(@)n(dw)
for all x.

Proor. Let £ be the linear space of measurable maps ¢ from @ into X which
assume only finitely many values, £ and ¢’ being considered equal if they agree
p-almost surely. Put H(£) = [ h,(£(w))u(dw). H is a support function on &£.

Now assume (i). On the linear subspace £ of £, which consists of all y-almost
everywhere constant maps £ from @ into X, the linear functional @ defined by
Q(&) = «*(x), where z is the u-sure value of , is dominated by H:

Q8 =2%@) S h(z) = [ho(@)p(dew) = [ ha(E(w))p(do) = H(E).

By the Hahn-Banach theorem there is a linear functional @ on £ dominated by
H such that for all £¢ & Q(§) = Q(§). Now let z¢ X, Ae® and I, be the
indicator of A. Then

(10) Q(zly) = H(zls) = [ ho(z)p(dw)
and
(11) —Qls) = Q(—=Is) £ [sho(—2)p(dw),

so that A — Q(xI,) is a finite signed measure u, such that u, << u with a density
®— ¢.(x) bounded from above by w— h.(z) p-almost everywhere. Because Q
is a linear functional, we have for any z, y ¢ X and q, b real

go(ax + by) = ag.(x) + bg.(y), (u-almost all w),

so that if we exclude a p-null set Ay, ¢, may be assumed rational linear and
dominated by k. on some countable dense subset X, of X closed under rational
linear combinations. Without loss of generality Ay = &, because there is a map
w— 2, from Ao to X™ such that (7) and (8) hold (this can be seen by adapting
K. Jacobs’ construction ([23], p. 295) to this case: one replaces the sets A* there
by sets

A" = {g¥ 2™ (z) £ 1)
for rational 7, and x from a countable dense subset of X. If one is willing to assume

(2, ®, u) to be complete, the problem becomes of course trivial).
Let z,* be the unique continuous extension to X of the restriction to X, of



426 V. STRASSEN

¢ . Then z,* ¢ X™* and
(12) 2o () = ho(z)

E3 . . . . .
for all z. Moreover for any =, w — z, (z) is B-measurable (as a pointwise limit
of a sequence of measurable functions). Also, because for any sequence (2,)nx;
of elements in X norm-converging to «

lim, supacg |1, (A) — wa(A)| =0
(see (10),.(11)) and therefore
lim, J |ga(2) = gu(2)| w(dw) = 0,
we have for any «
2. (2) = qu(x), (u-almost all w).
S0 w — 2,*(x) is a density of u, with respect to u. We conclude

2 (z) = Q(5) = Q() = Q(zla) = m(2) = [ 2" (2)n(dw),

which together with (12) proves (ii). We remark that the theorem follows very
easily from (5) when @ is finite. After having finished this paper I learned from
Hans Kellerer that he has already proved a result implying Theorem 1 in the
case X = R"in [ ] with a different method.

5. Convex sets of probability measures. Let Q be a convex compact metrizable
subset of a locally convex topological vector space. For Borel probability measures
wand v write u < v if and only if for all y £ S = {all continuous concave func-
tions on @}

(13) Jyduz [ydo

A dilatation P is a Markov kernel from  to @ such that for all continuous affine
functions z on @, zP = 2z (see (3)).

Turorem 2 (Hardy-Littlewood-Pélya-Blackwell-Stein-Sherman-Cartier-Fell-
Meyer [2], [20], [4]). u < v if and only if there is a dilatation P such that v = Pu
(see (1)).

Proor. The “if”” part follows from Jensen’s inequality (see [7]). We apply
Theorem 1 to prove the “only if”’ part, putting X = C(Q) = {all continuous
real functions on @}, ¥ = » (by Riesz’s theorem we identify here and in the
following certain linear functionals with probability measures) and

ho(z) = inf {y(w):ye S and y = x}.

One easily verifies the assumptions made before Theorem 1. Moreover, (i) is
satisfied: From the separability of {y:y e S and y = x} it follows that «—
ho(x) is pointwise limit of a nonincreasing sequence of functions in S, so that
from (13)

i (z) = fxdv = fhw(x)v(dw) = fhw(x),u(dw).
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(ii) of Theorem 1 provides us with a function w — z,*. Because
ho(z) =< sup {z(w):weQ}

and the rlght side is just the support function defining the set of probability
measures, z,* is a probability measure for each «. Because of (7)), P(-, w) =
z," defines a Markov kernel. (9) yields » = Pp. From (8) we get forz e S

(2P)(0) = 2.%(2) = hu(2) = 2(w),

so for continuous affine z,zP = 2, which completes the proof.

For the application of the above theorem to the comparison of experiments
see Blackwell [1]. It would be interesting to know whether the more general
stability result of Le Cam [18] (Theorem 2 of that paper) can be obtained by
our methods.

Now let R be a Polish space, i.e., a Hausdorff space metrizable by a complete
separable distance (see [3]). Denote by C(R) the Banach space of bounded
continuous real functions on R. Denote by & the set of nonempty convex sets of
(Borel-) probability measures in R which are closed with respect to the weak™
topology (generated by the functionals of the form » — [ zdv for z ¢ C(R)).

THEOREM 3. Let w — K., be a map from Q into ® such that for any z ¢ C(R)

o — ho(2) = sup {fzda: a € K,}

18 £-measurable. Let v be a probability measure in R. In order that there exist a
Markov kernel P from Q to R such that

(14) v = P
and
(15) P(-,w) eK,

Sfor u-almost all w, it 7s necessary and sufficient that

(16) Jzdv £ [he(2)u(de)

for all zeC(R).
Proor. If K ¢ ®, then

h(z) = sup {fzda: a e K}
defines a continuous support function & on C(R) (see (5)) satisfying
(17) h(z) = supz(R).

If o is a probability measure, write o < h instead of [z da < h(z) for allz ¢ C(R).
Then a =< h for a probability measure « is equivalent to a ¢ K (see (5)). So we
can express (15) by

(15") P(-,w) < h,.
Clearly (14), (15") imply (16). So assume (16). Let U be a class of closed
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sets in R containing all compact sets and all complements of some countable
base closed under finite union and intersection of the topology of R. Let X be
a separable subspace of C(R) such that for any 4 ¢ % and any ¢ > 0 there
is an z4,e& X such that

xA,G(A) - {1}; xA,E(R - AE) < {0}7 xA»é(R) - (O’ 1);

where A. is the e-neighborhood of A and (0, 1) denotes the closed unit interval.

The assumptions of Theorem 1 are satisfied for X, and putting » = z* we see
that (i) follows from (16). So Theorem 1 provides us with a map w — z,* such
that z,*(z) < ho(z) and

(19) [zdv = [2.5(x)u(dw)

for z ¢ X. Applying the Hahn-Banach theorem, extend z,” to a linear functional
£,* on C(R) dominated by h,. Because h,(z) < sup z(R) for all z¢C(R)
(see (17)), Z," is a nonnegative linear functional on C(R) (consider negative z).

By a theorem of Alexandroff (see [21], p. 161) there is a finitely additive non-
negative set function P(-, w) defined on the set algebra generated by the to-
pology satisfying

P(E, w) = sup{P(4, w): A closed, A C E},

which is connected with &," by

(20) £,%(2) = [2(r)P(dr, »)
for z ¢ C(R) and by

(20a) P(4, 0) = liMisw &0 (Ta1/k)
for A ¢ A.

We show that P(-, w) is a probability measure for u-almost all w.
Let 6 >0, n =1 and A™ be a compact set such that

W(A™) >1 — 827"
(see [21], p. 161). Then by (19) and (20a)
wwP(A™ w) >1 -2 >1—827",
so that
ww:P(A™,w) >1 — 2" foralln} > 1 —é.

For w in this latter set P(-, w) is a measure (see [21], p. 161), so that P(-, w)
is a probability measure for w-almost all w. P(4, -) is ®-measurable for any
A ¢ U, so P is a Markov kernel (because ¥ contains enough sets). For the same
reason (20) implies (14). (15") follows from (20) and the fact that &,* is
dominated by h, . P. A. Meyer’s result (see Acknowledgement) can be stated
as the following

CoROLLARY. Let R and Q be compact metric and let w — K, be a map from Q into
® such that Uyen {0} X K, s closed within Q@ X the set of probability measures in R
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endowed with the weak™*-topology. Let v be a probability measure in R. In order that
there exist a Markov kernel P from Q to R such that v = Pu and P(-, w) ¢ K, for
u-almost all w, 1t 1s necessary and sufficient that

Jzdv < [sup {[Jzda: a ¢ Kw}u(dw)

for dll ze C(R). ,

It is important to know under what assumptions one can replace (15') by a
similar condition involving only sets instead of continuous functions. Let 11 be
the topology of E. Then a (normalized) capacity alternating of order 2 (see
Choquet [5]) is a real function f on U such that

(&) =0, [f&B)=1, [fU)=HV)

whenever U C V,
JO) +7(V) 2 f(UuV) +f(UnV),

and
f(U) = lim, f(U,)

whenever U is increasing and U = U, .U, . Let (Q, ®, u) be a probability
space. A kernel alternating of order 2 from @ to R is a function F on 11 X Q
such that for any w e @, F(-, ) is a capacity alternating of order 2 and for any
Uell, F(U, -) is ®-measurable. Define

F(U) = [ F(U, w)p(dw)

for U ¢ U. Then f is a capacity alternating of order 2.

THEOREM 4. Let v be a Borel probability measure in B. Then v < f (i.e., »(U)
= f(U) for every U e W) if and only if there is a Markov kernel P from Qto R
such that v = Pu and

P(-,0) = F(-,0)

for u-almost all w. (We remark that » < h and » < f have a different meaning:
for support functions 4 it means fzdu =< h(z) for all ze C(R), for capacities
f it means »(U) = f(U) for all Uell.)

Proovr. The “if”’ part is trivial. So assume » < f. For any w

(21) hu(2) = inf2(R) + [ F(r:z(r) > inf 2(R) + t, w) dt < sup 2(R)

defines a support function on C(R) such that for any probability measure =,
7 £ F(-,w) is equivalent to = < h, (Choquet [5]). To see, e.g., that h, is a
support function, remark that inf 2(R) in (21) can be replaced by any smaller
constant (the same in both occurrences) without changing the value of h,(z)
and use the defining properties of capacities alternating of order 2. The sub-
additivity of A, follows from Theorem 54.1 in [5].

Because an analogous statement is true for f in place of F(-, w), Theorem 4
follows immediately from Theorem 3.

Now let R be a complete separable metric space with distance d. Then the
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set @ of all nonempty closed subsets w of B endowed with the distance (intro-
duced by Hausdorff)

8(w, @) = MAax{sup,e, d (7, @), SUPses d (0, 8)}
where
d'(r, @) = inf,5 min{d(r, s), 1}

is a complete separable metric space (compare [16], p. 20).
Let u be a Borel probability measure in 2. The set function f defined on all
open subsets U of R by

fU) = woiwnU = &}

is the capacity alternating of order « corresponding to u in the sense of Choquet
[5].

The following result has been proved in [23] for compact metric R in a different
way.

TuEOREM 5. Ifvisa Borel probability measurein R, thenv < f (i.e.,»(U) < f(U)
for every open U) if and only if there s a probability measure a in R X Q with
marginals v and u such that

afrew} =1,
Proor. Put
F(U,w) =1 fUnw=d

=0 otherwise.
Then F is a kernel alternating of order 2 and
f(U) = loton U # @} = [ F(U, 0)p(dw).

So by Theorem 4 » < f implies the existence of a Markov kernel from @ to R
such that v = Puand P(R — v, 0) < F(r — w, w) = 0, therefore P(w, w) = 1.
a = P X u (see (2)) has marginals » and u and

afrew) = [ P(w, w)u(dow) = 1.
The converse is trivial.

As an application, let £ be a random variable with values in RB. An observation
of £ will usually be corrupted by errors, so that it may be considered as a random
variable 5 different from & About the connection between & and 5 one might
assume, e.g., that '

(22) Prid(& 1) >0[8 = e
for certain positive e and 8. Or more generally
(23) Pr{d(&n) > a8 = o(a, £),

where ¢ is a nonnegative measurable function on R* X R (R' = real line) such
that (0, s) = 1 and ¢(-, s) is right continuous and nonincreasing for every
s ¢ R. The question naturally arises about the possible distributions of 5 for a
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given distribution of ¢ (assuming (23)). For simplicity let us suppose that
(R, d) has the property that forany UeU,se Uandre R — U

d(r,s) > d(r,U),

where d(r, U) = inf,.y d(r, w). This is not a serious restriction because, e.g.,
Banach spaces and complete Riemann manifolds have this property. Then we
claim that a probability distribution » is a possible distribution of a random
variable 5 satisfying (23) if and only if

(24) v(U) = Be(d(§ V), §)

for any U ¢ Ul, where F means expectation. Also, the right side of (24) is a
capacity alternating of order .
It follows from the above assumption on (R, d) that if » satisfies (23) then

Pr{ne U} < Pr{d( 9) > d(§ U) or £ U}
= [roPr{d(r,n) > d(r, U) | £ = r}Pr{t e dr} + Prite U}

= Eo(d(¢, U), §).
Therefore the distribution » of £ satisfies (24).

Conversely if v satisfies (24), let T' be a random variable with values in Q
such that almost surely I is a sphere in R with center ¢ and radius pr (we allow
por = o, in which case I' = R), where Pr{pr > a | & = ¢(a, £) for any a = 0.
So Pr{l' = R | & = limssw ¢(a, £). Let f be the capacity alternating of order «
corresponding to the distribution I'. Then

f(U) = Pr{Tn U = &} = Pripr > d(§ U)} = Ee(d(¢, U), §),

so that by (24) v < f. By Theorem 5 there is a random variable 5 with distribu-
tion » such that Pr{yn ¢ '} = 1. But then

Pr{d(& n) > a8 = Pripr > a8 = o(a, §),

which proves the claim.

In [23] an analogue of the lemma of Neyman and Pearson has been proved for
capacities alternating of order « (such as the right side of (24)) in the case
where R is finite. It would be worthwhile to generalize this result to Polish spaces
R (with some modifications involving, e.g., the role of the relative entropy).
It appears that the mentioned result holds true if one replaces capacities of order
by those of order 2 and that in fact capacities of order 2 may in a sense be char-
acterized this way. In this connection it is important to observe that the set of
possible distributions of the observed random variable 7 given the distribu-
tion of ¢ will not be defined by a capacity of order o if one replaces (22) by
Pr{d(& n) > 8} = ¢ but it will be defined by a capacity of order 2 (see (31)).

Now let (R, ¢, ») and (2, ®, u) be probability spaces, m a measureon ¢ X ®
with a o-finite ®-marginal m, . Fréchet [8] has asked under what conditions there
exists a probability measure « on ¢ X ® with marginals » and u such that

a = m.
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For finite R and © a necessary condition (see (26) below) has been suggested by
Fréchet and its sufficiency has been proved by Berge using graph theory (un-
published) and by Dall’Aglio [6]. The general case has been settled at the same
time in a different context by Kellerer [10], see also [11], [12], [13], [14]. We will
prove below a slight variant of Kellerer’s result under the assumption that R is
Polish and # is the s-algebra of Borel sets. Then there is a Markov kernel M
from Q to R such that for any D e, M (D, -) is a copy of the conditional ex-
pectation of D with respect to ® and the measure m, i.e.,

(25) m(D X B) = [5 M (D, w)ym(dw),

where D ¢ ¢4, Be ®.
TaEOREM 6. There is a probability measure a < m on & X ® with marginals v
and w if and only if for all D ¢ ¥, Be ®

(26) v(D) + u(B) =1+ m(D X B).

Proor. The necessity of (26) is trivial. So assume (26). Without loss of gener-
ality we may also assume my << u. Put

F(U, &) = min {‘%‘0 ()M (U, ), 1}

for open U C R and w ¢ ©, where dmy/du denotes a fixed B-measurable copy of
the density. From (26) follows u =< my,, so that dmy/du = 1 may be assumed
everywhere. It is easily checked that F is a kernel alternating of order 2. Now if

B = {2 (M0, 0) 5 1

then by (26) and (25)
wW(U) £ w(@ — B) + m(U X B)

=fn-31d'u+/M(U ) dmo(w)#(dw)

= fF( U, w)u (dw),

so that by Theorem 4 there is a Markov kernel P from € to R such that Pu = »
and P(-, w) < F(-, w) for u-almost all w. So if « = P X g, then the marginals
of o are v and u and '

a(U X B) = [ P(U, w)u(dw)
= [5F(U, 0)u(dw)
[ M (U, w)mo(de)
m(U X B)
for open U C R and B ¢ ®. The theorem follows by approximation.

lIA
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6. Probability measures with given marginals. Let S, T be complete separable
metric spaces, ¢ and 2 positive (not necessarily bounded above) continuous func-
tions on S and T respectively, bounded away from 0. Put

t=gops+iopr,

where ps (resp. pr) is the projection of S X T onto S (resp. T'), and let X be
the Banach space of continuous real functionsz on S X T such that

llz|| = sup{|z(s, t)|/£(s, {):se 8, te T} < .

Similarly let Y (resp. Z) be the Banach space of continuous functions y on S
(resp. z on T') such that [ly| = sup(|y|/9)(S) < o« (resp. ||| = sup(|z[/2)(T)
< ). Then, e.g., y ¢ Y is equivalent to y o ps e X.

Let II be the set of all (Borel-) probability measures = in S X T such that £
is w-integrable, endowed with the topology 3 generated by the functionals = —
f z dr for © ¢ X (i.e., the relativized weak™ topology, when II is considered as a
subset of X*). Let A be a nonempty J-closed convex subset of II and u and »
(Borel-) probability measures in S and T respectively such that § and 2 are
u- and v-integrable, respectively.

THEOREM 7. A necessary and sufficient condition for the existence of a probability
measure \ € A such that

#: )\O —1
(21) e
Vv = )\Opr
18 that
(28) [ydu+zdv < sup{[(y ops+ 2opr) dyiv e A}

Jor all yeY, z¢eZ.

Proor. The necessity of (28) is trivial. So assume (28). Let M be the set of
all pairs (e, 8), where a and 3 are probability measures in S and T respectively
such that ¢ is a-integrable and 2 is 8-integrable. Then (u, v) ¢ M. M is a subset
of (Y X Z)* by the agreement

(a,8)(y,2) = [yda+ [zdp.

The relativized weak™ topology in M is denoted by 3. 5, is metrizable: Re-
placing 8 X T by S for simplicity it is sufficient to show that the set IIs of prob-
ability measures « in S such that § is a-integrable is a metrizable subset of ¥*
in the weak™ topology. But if

(<Psa)(E) = fE g?da

for any Borel set £ C S, then ¢g is a homeomorphism from IIs onto the closed
subset {m: [(1/9) dm = 1} of the set of finite positive measures in S in the weak™
topology, i.e., endowed with the Lévy-Prokhorov distance (see [21], p. 166).
Therefore IIs is metrizable. Consider the set M, consisting of all (a, 8) e M
such that there is a v ¢ A with « and 8 as marginals. M, is convex. (u, ») is in
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the 3;-closure of M, , for otherwise (u, ») would not be in the weak™ closure of
M, (within (¥ X Z)*), so that there would exist (y,2) € Y X Z with

(1, v)(y, 2) > sup{(a, 8)(y, 2): (e, B) & M}

(see [15] 14.4 and 17.6), in contradiction to (28). Let (a. , 8.).>1 be a sequence
of elements of M, J;-converging to (u, ») and let A\, ¢ A have marginals «, and
Br . Then

dim, [£d\, = lim, ([ §dan + [2dB.) = [§du+ [2dy,

so that sup, f £ d\, < 0. It follows from [21], p. 170 and the above discussion
about the map ¢s that for any ¢ > 0 there are compacts Ks* C Sand K, C T
such that

sup, [ s_xge 9 dan < ¢
and
sup, fT__KTeé s, < e.
Therefore if K* = K5° X K° we have
sup f(sxr).my’c‘ dh\, < 2e,

so if ¢ is defined by (¢y)(E) = fEaﬁ dvy for any Borel set £ of S X T, it follows
from [21], p. 170 that the sequence (¢A.)n»; is relatively compact. The same is
true for (\;).z>1 (with respect to the 3-topology). If A is any cluster point of
(Aa)nz1, then N e A (because A is closed), and (27), because the projections are
continuous. It is clear from this proof that an entirely analogous result holds if
one replaces S, T' by any finite number S, T, - - - , R of Polish spaces.

Theorem 7 enables us to obtain a generalization of the Blackwell-Stein-
Sherman theorem to the noncompact case. We remark that in the following the
k-dimensional vectorspace R* can easily be replaced by any separable Banach
space, if one keeps in mind the two well known facts: Any continuous concave
function is the infimum of continuous affine functions, and, any lower- (or upper-)
semicontinuous concave function is continuous.

THEOREM 8. Let (pn)nz1 be a sequence of probability measures in R*. Then a
necessary and sufficient condition for the existence of a k-dimensional martingale
(En)nz1 (see [7], [19]) such that the distribution of &, s u. for all n is that oll u,
have means and that for any concave function x on R the sequence (fx An)nz1 18
nonincreasing (the values of the integrals may be — ).

Proor. The necessity of the condition is well known (Jensen’s inequality, see
[7]). To prove sufficiency, it is enough to prove the following: If two probability
measures x and » in R* have means and satisfy f rdu = f z dv for every concave
x, then there is a probability measure A in R X R* with marginals x and » such
that the conditional expectation of the last k coordinates given the first k co-
ordinates is the first k coordinates. For if we know this, we can clearly construct
a martingale (£,).>1 for the theorem as a Markov process. To prove the existence
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of a \ we use Theorem 7, putting § = T = R,
g(t) = &(t) =1+ 14
(Jt| being the Euclidean length of ¢t) and

A = {A:X e II and for all bounded continuous functions y on S

Jpe(yops) d\ = [ ps(y o ps) dA},

i.e., A is the set of all probability measures in S X T which are the joint distribu-
tion of some k-dimensional martingale (the last equation simply is the martin-
gale equation written in a form which makes it transparent that A is 3-closed).
Because the assumptions before Theorem 7 are satisfied, our proof will be com-
pleted, if we can show (28).

Let 2y be the smallest concave function = 2, i.e., 2 is the infimum of the set of
affine functions on R* which are = z if this set is nonempty and 2o = « other-
wise. Then

Jydu+ Jzdv = [ydu+ [20dv = [ (y + 2) du < supses (y(s) + 20(s)),

where y 4+ 2= o if 2zo= . Let r be any real number < supf{y(s)
+ 20(s):s & S}. Then for some s e S, r < y(s) + 20(s). We have to show

(29) r < sup{ [(y ops+ zopr) dyiy e A}

For any ¢ e T let A, be the set of probability measures in T with expectation ¢.
The function z; on T defined by

z1(t) = sup{ [ zdata e Ay}

is concave and = 2, 80 21 = 2o and hence r < y(s) 4+ 2,(s). By definition of z;(s)
there is an a & A, with

r<y(s)+ [eda= [(yops+zopr)dr,

wherey = 8, X a ¢ A. That proves (28) and the theorem.

In an analogous way one gets the following

THEOREM 9. Let (f,)nz1 be a sequence of probability measures in R'. Then a
necessary and sufficient condition for the existence of an upper semimartingale ([8],
submartingale in the sense of [19]) (£.)nz1 such that the distribution of &, s un for
all n 1s that all p, have means and that for any concave nonincreasing function x the
sequence ( [ dpn)nz1 4 monincreasing.

Now let 8 be a topological group whose topology is Polish (so, e.g., any second
countable locally compact group). For any two (Borel-) probability measures u
and « in S the convolution u * « is defined by

(uxa)(B) = [ p(Bs")a(ds) = [ a(s"E)u(ds)

for £ Borel.
TreorEM 10. Let u and v be probability measures in S. Then u * o = v for some
probability measure o in S if and only <f for all bounded continuous real functions
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on S
fwdv =< sup {fx(ts)y(dt):seS}.

Proovr. This can be deduced from Theorem 7. However, a direct proof seems as
simple. Let X be the Banach space of bounded continuous real functions on S.
The set

K = {B:8 = u* a for some probability measure o}

is convex. It is also a closed subset of the set of all probability measures in S with
respect to the relativized weak™ topology (i.e., with respect to the Prokhorovy
distance [21]), for if 8, = u*a, for n = 1 and lim, 8, = B, then by Theorem
1.12 of [21] or Proposition 1 of [17] given ¢ > 0 there are compact subsets K.
and K of R such that

fan(s_lKe)y(ds) = (p*xan)(Ke) >1 — ¢
forallm and u(K) > 1 — e. Hence
oan(K'Ke) = [k an(s'K)u(ds) > 1 — 2

for all n, so that {ax:n = 1} is relatively compact and therefore (a.)q.>1 has a
cluster point a. Clearly 8 = u* a.
Therefore, applying (5) to the closure K of K in X* we see that for any

probability measure v, » ¢ K if and only if
Jxdv < sup{[xdB:BeK]}
for all z ¢ X. But
sup { [z dB:8e K} = sup {[ zdB:8¢ K]}
sup {f (f x(st)u(dt) )a(ds): a any probability measure in S}
sup { [ z(st)u(dt): s e S}.

H. Kellerer told me an even simpler proof of Theorem 10 applying the fact
that a positive linear functional I can always be extended (where I(y) = [z dv
if y(s) = [x(ls)u(dr)).

As in the case of Theorem 3 it is important to know under which conditions one
can replace functions by sets in (28). One would expect that this is possible if the
set A can be defined in terms of a capacity f alternating of order 2 (compare
Theorem 4). That, however, is not true in general even if f is alternating of
order .

One needs the additional assumption that the probability measure in the space
of closed subsets of S X T corresponding to f (f alternating of order « ) has a
support which is linearly ordered by inclusion. We will prove only a special case
of this, which seems to imply the more interesting applications.

Let » be a nonempty closed subset of S X T and ¢ = 0.

TuaeoreM 11. There is a probability measwre N in S X T with marginals u and v

[
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such that NM(w) = 1 — ¢, f and only if for all open U C T
(30) »(U) = w(ps(on (8 X U))) + e

(ps(wn (8 X U)) is analytic (Souslinien [3]) and therefore u-measurable).
ReMarxks. In (30) open sets U can be replaced by closed sets.

(31) min {u(ps(wn (8 X U))) + ¢ 1}

as a function of U is a capacity alternating of order 2.
Condition (30) can be replaced by the following: for all open U C T and
Ves

(V) +v(U) =sup{y(V X T) ++(8S X U):
v is a probability measure in 8 X T and v(w) = 1 — &}.

So Theorem 11 serves the purpose of replacing functions by sets in condition
(28). We know that Theorem 7 holds for any finite number of spaces S, 7', - - - ,
R. This is not true for Theorem 11 even if ¢ = 0, as the following example shows
(compare Kellerer [12].

S=T=1{1,2}, R=1{1,23},
w=1{(1,1,1), (1,2, 2), (21,2), (2,2 3)},
sl = wf2) = {1} = »{2} = 3 ofl} =3 &2} =3 of3} =4
then w(V) 4+ »(U) + (W) S sup {v(V X T X R) +~v(8S X U X R)
+ Y8 XT X W):v(w) = 1}

foral VC S, U C T, W € R, but thereisnoy in S X T X R with marginals
u, v and « such that y(w) = 1.

Proor or TrEOREM 11. The necessity of (30) is clear. To prove sufficiency we
apply Theorem 7, putting 4 = 2 = 1, A = {A: A eI, Mw) = 1 — ¢. We have
to verify (28). We may assume that y and z are positive (by adding constants)
and that ps(w) = S (by adjoining a point ¢ to T and enlarging » by S X {#}).
Then using (30)

[edv = [ oft: 2(t) > 1} dr
< 5% min {u{s: sup 2(ws) > 1} + ¢ 1} dr,

where w;, = {t: (s, 1) € w}. Now if 2(s) = s{lp 2(ws), then 2 is a bounded non-
negative u-measurable function and

[zdv = [3" min {u{s: 20(s) > 1}, 1 — ¢ dr + esup 2(T)
= [3%9 min {ufs: 20(s) > 1}, 1 — ¢ dr + esup 2(T)
sup { [ 20 d@: i is a finite measure on S, 3(S) = 1 — ¢

and 4 = u} + esup 2(T),
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as is easily seen. Therefore
Jydu+ Jzdv < sup{[ (y + %) di: 4(S) =1 — ¢ and 4 <
+ e(sup y(S) + sup 2(7))
= (I — ¢)sup (y + 20)(8) + esup (y(8) + (7))
= (1 = ¢)sup {y(s) + 2(): (s, 1) e} + esup (y(8) + 2(7))
= sup { [ (yops + zopz) dy: v e A},

proving the theorem.

As an application one may take S = T and w a closed nonempty partial
ordering.

Another application concerns the Lévy-Prokhorov distance:

Let (8, d) be a complete separable metric space. As has been shown by Prok-
horov [21], the set of (Borel-) probability measures in S with the distance

L(p, v) = inf {e: v(4) = u(4e) + ¢ forall closed A C S}
inf {e: u(A) = »(4e) + ¢ forallclosed A < S}

where A, = {s: d(s, A) = ¢}, is a complete separable metric space whose topology
is the relativized weak™ topology.

CorOLLARY. L(pu, v) = min {e: there is a probability measure A in S X S with
marginals u and v such that M{d(s, s') > ¢ = €.

That the two distances whose equality is asserted in the corollary induce the
same topology is known (see Hammersley [9] if S is a finite dimensional vector
space and Skorokhod ([22], p. 281) if S is Polish, were an elegant proof of an
even stronger statement concerning almost everywhere convergence is given).
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