ORDER STATISTICS AND STATISTICS OF STRUCTURE (d)

By HerBeErT T. DAviD
Towa State University

0. Summary and introduction. This note discusses the asymptotic independ-
ence of the “(d)-structured” order statistics F(X ) and some of the more usual
statistics of structure (d). (For a discussion of structure (d) and related concepts,
see references [2], [3] and [4].) Asymptotic independence holds, in particular, in
the case of the Kolmogoroff-Smirnoff statistic, and thus provides approximate
significance levels for the simultaneous test of the hypothesis that the population
c.d.f. has specified form and the hypothesis that the sample contains no outlying
observations.

If the Kolmogoroff-Smirnoff statistic is used in conjunction with the largest
order statistic X, the acceptance region of the resulting test can be character-
ized as follows: For acceptance (of the hypothesis that the population c.d.f. has
specified shape and that the sample contains no outliers), the n “risers” of the
sample c.d.f. must fall within a “three-sided” region. This region is the inter-
section of the usual Kolmogoroff-Smirnoff region with the half-plane to the left
of the critical value for X, The example of the last section deals with this case.

Section 1 contains the theory on which the subsequent development is based.
It involves the multivariate probability integral transformation T discussed in
[10], which has the property that T¢(X), X distributed according to G, is uniform
over the unit cube, so that Ty "T¢(X) has distribution H. The transformation
enters the argument in essentially this way: If Y is a vector distributed according
to H, f and g are two functions of ¥, and H (¢) is the conditional distribution of Y,
given g(Y) = ¢, then f(Y) and g(Y) are independent if and only, for essentially
all ¢, f(Y) and f(Tsx 'Trw(Y)) have the same distribution conditionally on
g(Y) = t. In the present application, Y is a random sample from the uniform
distribution, g is an order statistic of this sample, and f is the function of Y cor-
responding to a statistic of structure (d) such as the Kolmogoroff-Smirnoff
statistic or Sherman’s statistic [12].

It may appear that the above method recommends itself primarily on grounds
of novelty, rather than suitability. This is borne out by the fact that the rela-
tively weak requirement that the distributions of f(¥) and f(T# 'Taw,Y))
agree asymptotically is verified below by showing that in fact f(Y) and
f(Te ' Try(Y)) themselves agree asymptotically, i.e., that their difference con-
verges in probability to zero. This last is made to follow in turn from the very
rapid covergence of |Y — Ty ‘Tu(Y)| to zero.

One has the option of having H or g perform the ordering of the sample Y. By
this is meant that H can be the uniform distribution over the unit cube, and g
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the function “kth largest coordinate of ¥”’. Or H can be the joint distribution of
the order statistics of ¥ and g the function “kth coordinate of Y.

The second of these two approaches yields a form for Tz Ty, especially suit-
able (due to the common multiplier C,(z, ¢, [) appearing in Equations (1)) for
establishing the convergence to zero of f(Y) — f(Tw ‘Taw(Y)) for a fairly
large class of statistics f. These include the statistics of Kolmogoroff-Smirnoff
type, whose essential combining operation is “sup’, and also certain other
statistics with less tractable combining operations, such as Sherman’s statistic,
where the combining operation is addition. Section 2 is devoted to this second
approach, applied to Sherman’s statistic.

The first approach, though seemingly unnatural for statistics with combining
operations more demanding than “sup”, has the advantage of yielding expres-
sions as easy to manipulate for bivariate (e.g., two order statistics) as for uni-
variate g. Section 3 is devoted to this first approach, applied to statistics of
Kolmogoroff-Smirnoff type, with g bivariate.

The last section contains an application, together with a computation indi-
cating that independence sets in quite rapidly.

1. Theory.
DEFINITION 1. Yl, Yz, e, Yn y = (Xu), (X21 , Xzz), tee (an, an,
©y Xnn), -+, Xijreal, is a triangular sequence of random variables, with Y,

distributed according to the n-dimensional probability measure H(n) over the
Borel sets of Euclidean n-space E,, .

DEerFintTION 2. f, and g, are two scalar-valued measurable functions of Y, .

Assumprion 1. The c.d.f’s \,™ of ¢,(¥,) converge weakly to a c.d.f. N\, and
similarly for A", f,(¥,) and ;.

LeEMMA 1. Let t be a continuity point of N, such that A\,(¢) > 0. For large n, H(n)
tnduces a uniquely specified conditional probability measure H(n, t) of Y, , given
the condition C(n, t): g.(Y,) < t; the c.d.f. corresponding to H(n, t) is

Pr{Y, < y;0.(Ya) < /7).

Proor. By Assumption 1, \," (¢) — A, (t) > 0, so that \,"(¢) > 0 for large n.

AssumptioN 2. For every n, there exists a measurable transformation T, of
E, into the unit cube @, , such that the measure induced over the Borel sets of
Q. by the probability measure H(n, ¢) over the Borel sets of E, is Lebesgue
measure L(n).

AssumprioN 3. For every n, there exists a measurable transformation T'g(,y of
Q. into E, , such that the measure induced over the Borel sets of E, by the prob-
ability measure L(n) over @, is the probability measure H(n).

DEeriniTION 3. TWo sequences of random variables {f,} and {g,} are said to be
asymptotically independent if there exist two c.d.f.’s, \; and ), , such that the
c.d.f. sequences for {f.}, {g.} and {f., g.} converge weakly, respectively, to
)\/ y )\g and >\f')\0 .

THEOREM 1. Let t be a continutty point of N, such that \,(t) > 0, and let Z, , be
distributed according to H(n, t). For the asymptotic independence of f,(Y,) and
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gn(Y2) 4t is necessary and sufficient that, for all t, the c.d.f.’s of fu(Za,:) and the
c.d£s of fulTaim Tam.o(Znt)) converge weakly to the same c.d.f.

PROOF OF SUFFICIENCY. (a) Consider any continuity point ¢ of A, at which
), is zero. Then, for such a ¢ and any continuity point u of \;, we have, using
Assumption 1, that 0 < Pr {f,(¥,) = u, gu(¥,) = £} = N7 {) = N(1) = 0,
so that Pr {fu(Y,) = u; ga(Ya) < £} — 0 = N(u) -\, ('), without appeal to the
condition of the theorem.

(b) Consider any continuity point ¢ of A, at which A\, exceeds zero, and any
continuity point u of \; . Using in order Lemma 1, the condition of the theorem,
Assumptions 2 and 3, and Assumption 1, we then have

liMpe Pr {fu(Va) < w; gu(¥a) < 8}/0,7(2)
= liMpaw Pr {fu(Y2) < u|C(n, 1)} = limuew Pr {fu(Z00) < u)
= limpw Pr {fa(Tam Trn,0(Zn,e)) < )
= limywo Pr {£a(Y2) = u} = M(u).
And this yields
liMyas Pr {fa (Vo) < u; ga(V2) S 8} = M(u) -limpe N, (£)
= M(u) - N(2).

Proor or NEcEssITY. Part (b) of the sufficiency argument is easily inverted:
for any continuity point ¢ of A\, with A\,(¢) > 0 and any continuity point
of \;, asymptotic independence implies that lim,.. Pr {fo(¥,) < w| C(n, t)}
= N(u), i.e., that lim,.. Pr {fu.(Z.:) < u} = N\(u). On the other hand,
Pr {fu(TatnyTam.o(Zn.e)) < u} — N(u) by Assumptions 1, 2 and 3.

CoOROLLARY 1. Let t be a continuity point of N, such that \,(t) > 0, and let Z,,, be
distributed according to H(n, t). It is sufficient for the asymptotic independence of
Fo(Y2) and g.(Y,) that, for all t, pim |fo(Zn.s) — fol T2ty Tam.o(Zne))| = O.

Proor. By Assumptions 1, 2 and 3 the c.d.f.’s of fu(Tatm Taw.0(Zn:)) = An
converge weakly to A, for all ¢. But, by the assumption of the corollary, f.(Za,:)
= A, + ¢ , where plim ¢, = 0, so that the c.d.f.’s of ,(Z.,,;) also converge weakly
to A\s, and Theorem 1 applies.

Note that the arguments in this section remain essentially unchanged if f, or
g» are vectors rather than scalars. In Section 3, the random variables g, are two-
dimensional.

2. The asymptotic independence of Sherman’s statistic and extreme (d)-
structured order statistics. Consider the following specialization of the quantities
introduced in Section 1. Y, : the set of order statistics (U™, --- U,™) for a
random sample from the uniform distribution on [0, 1]; H(n): the uniform dis-
tribution over region 0 £ z; < -+ < x, < 1, f» : the function ®, of the uniform
order statistics corresponding to Sherman’s statistic, suitably normed to insure
convergence to a normal distribution N (0, ¢); A;: the c.d.f. for N(0, ¢);
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gu(@1, <+, ) = n(xa—y — 1); N, : the c.d.f. for a gamma distribution on
[0, — ) (see [6], p. 371); C(n, —t): U™, <1 — (t/n); H(n, t): the uniform
distribution over the region 0 < 2y < - <2, < 1;2,, < 1 — (¢/n).

Given an n-variate distribution @, define TG as in [10] A direct computation
then shows that TH(,, » satisfies Assumption 2, that Ty, possesses an inverse
T;(,,) , and that T'g(, satisfies Assumption 3. It then remains, only, to calculate
Ty Trn, and to verify the condition of Corollary 1.

To begin with, the transformation (y;, - -+, yn) = TH(,,)(xl , e, Xy) is given
by: Ypnm = Pr {U(”_)m S T | Uiy = Tpempr, -+, U, = Ta}:

Yo = (2,)"
Yn = (flf'n—l/xn)n—l

v = (1/22)
so that (z1, --+, 2,) = Tam (Y1, -~ -, Ya) is given by:
T, = (yn)l/n
Tna = (Y) " (gor)"™
2= (y)"" (Ya)" T () ().

As for Ty(m,t) , the subset of (), assigned probability one by H(n, ¢) is the
union Uj oSy of the sets S, : {(21, -+ ,2,):0 S a1 < -+ Sany <1 —t/n <
Tppp1 = -+ = 2, < 1}, and, for xeSb, Y = Tum.o(x) is given by: y,_, =
Pr{U% < T | Ut = Tair, -+, U™ = 2, ; C(ny, —t)}:

Yo = (2250 () (@ — (1 — t/n))"(1 = t/n)""]
2250 G (W/m) (1 = t/m)" T = Au(x, 1, 1)
[ f—ﬁ( (@ — (1 = t/n))’(1 — t/n)""7]
20 (D (@ — (1= /) (1 = t/n)" 1 = Aua(a, t, D)

yn—l

Ynsir = (22520 (T (@nrn — (1 = t/n))"(1 — t/n)" "7
12220 Y @i — (L= t/n)) (1 — t/0)" "7 = A (a1, 1)
Yums = (20s)" 1200 ("7 (s — (1 — 1/0)) (1 — ¢/n) 0707
= (Zus)""/Bas(z, 1, 1)

n—b—1
yn,—b—l = (rn~b—l/rn—b)
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Yo = (952/933)2
Y= T1/% .

., —1 .
_Il{ence, compositing Ty and Ty, , one obtains, for (yi, - -, y,) =
TamyTamy(®, «-- ,2,) and zin Sy,

(An(z, 1, )"
(An(z, £, )™ (Aua(z, t, 1)

Il

Yn

Il

yn—l

Ynopr = (An(z, 4, D)™ -+ (Anopna(z, 8, 1))V"HH
(1) oo = (Au(@, 4, D)+ (Auosa(@y £, D)2/ (Bus(z, ¢, 1)V"™)]
= (@no) (Cul(z, 8, 1))
Yns1 = (Zn-1) (Ca(z, 4, 1))

Y = (xl)(C’,.(x, t; l))

The next step is the evaluation of |®,(Tgtm Tawm,o(z)) — ®,(z)|. To this end,
recall that, for Sherman’s statistic, ®, is given by

D@1y ey Ta) = 0 (Dm0 i — & — (n + 1) — 2¢7Y),
so that, defining y as in (1),
[®n(y1, -+ Yn) — Pul@y, -+, 2a)]
=ln -+ DN+ lp—pn— (n+ 17+ -
F = o=+ DT+ L=y~ (n+ 17
— o= (e + D7+l — @ = (n+ D)7+
+lon = 2aa = (n+ D7+ 1 = 20 — (0 + 1)7))]
Sl — ol 4+ [ — ) — (22— 2)] + ---)
=ni(yn — o 4+ (g2 — @) — (11— 2)| + -+
F 1 — 20) = s = 2ac)| + [y — 2l
=ni(dy+ d + - + dus + dn).

It is now convenient, for z in S, , to partition this last summation at n — b, so
that we write

(2) [Paly) — ®u(x)| = 'n%( Z?;ob_l d; + Z;;n—b d;)
= ' (K1, + Ks.).
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Consulting (1), we find that
(3) Kin S |Culz, t, 1) — 1] o + 2157 (2 — )|
< [Culz, 1) — 1.

As for K,,, , bounding |(y; — ;) — (yie1 — 21)| by |ys — @ + 1yt — s
and recalling the expression for y,_5 in (1), one obtains

(4) Ko S @y [Cal2, 1) — 1] +2 22070 [Ynm — Tuoml,

and (2), (3) and (4) imply, for 2 in S, , that

(5)  [®u(y) = ®u(@)| = 20(|Culz, 1, 1) — 1] + 2020 [gnm — Tacml).
Now, for z in S, the factors A,_.(z, t, 1) in (1) satisfy

(6) (1—¢n)"" £ 4nm =1,

so that, in view of (1), forzin Spand0 < m <b—1, (1 — t/n)"" < yp_m < 1.
On the other hand, for such z and m, one also has that 1 — ¢/n < x,_, < 1, s0
that, for x in Sy,

(7) fn_=10 Iyn—m - xn—ml Zm=0 (1 - (1 - t/n)m+l)

" Finally, using (6) for each of the b factors 4, of C.(z, t, I) and noticing that
1> B,y = (1 —t/n)"" one finds that

(8) (1 —t/n)’ —1=<Culz, t,]) —1 =< (1 —t/n)" —1,

and (5), (7) and (8) imply that, for z in the region U} _, S assigned probability 1
by H(n, t),

lq’n(T;(n)TH(n,t)(x)) - (pn(x)l = ’q)n(y) - CIJ,,(J})I é K(t)/n%

This implies the condition of Corollary 1, and hence the desired asymptotic
independence.

It may be of interest to note, in view of (7) and (8), that the above argument,
and hence asymptotic independence, remains valid when [ is allowed to grow
slowly with n.

3. The asymptotic independence of the Kolmogoroff-Smirnoff statistic and
two extreme (d)-structured order statistics. (The argument in this section
applies as well, essentially without change, to the statistics proposed in [1], [7],
and [13].) The quantities of Section 1 now are specialized as follows: Y, : a ran-
dom sample (U, , ---, U,) from the uniform distribution on [0, 1]; H(n): the
uniform distribution over the unit n-cube @, ; f. : the function &, , symmetric
over @, , corresponding to the Kolmogoroff-Smirnoff statistic, suitably normed to
insure convergence to the Kolmogoroff-Smirnoff limit distribution; X, : the c.d.f.
for this distribution; g,(z) = (gn.1(x), gn,2(x)), where g, 1(z) = —(n)((k + 1)st
smallest coordinate of z), and ¢, o(x) = (n)((I 4+ 1)st largest coordinate of x — 1),
withn — [ > k 4+ 1; )\, : the bivariate c.d.f. for two mutually independent random
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variables, one with a gamma distribution on [0, 4 ), the other with a gamma
distribution of [0, — « ); the condition C(n, —s, —t): ga1(Ur, --+, Us) = —s,
gua(Uy, -+, Us) < —t, with 1 — t/n > s/n; H(n, t): the uniform distribution
over the sub-region of @, for which the (k + 1)st smallest coordinate is no
smaller than s/n, and the (I + 1)st largest coordinate is no greater than 1 — t/n;
this last distribution will be denoted by J (n, k, I, s/n, t/n).

In this application, a transformation Tat satisfying Assumption 3 is the
identity, and Ta,s , computed below in accordance wth [10], is found to satisfy
Assumption 2. Hence, as in Section 2, all that remains after computing Tz, 18
verifying the condition of Corollary 1. T, is computed as follows:

DEFINE.

A, j,n — (i + J), 8, €): the sub-region of @, for which ¢ coordinates lie be-
tween 0 and 8, j coordinates lie between 1 — eand 1, and n — (7 + j) coordinates
lie between 6 and 1 — e.

B(”: kv l; 6: é): UR(i.f)A(i; j: n — (Z + .7); 6} e))

where R(7,5) = [(4,7):i =0, -+, k;j =0, , ;0 4+7 = n].
For n, k and [ positive integers,

I(n, k,1,8,¢) = > ke nl/lilG(n — 7 — DNeE — e — 8"

where R(4, 7) is again as defined above.
For k or | a negative integer, I(n, k, [, 8, ¢) = 0;1(0,0,0, 8, ¢) = 1.

I =I(n — m, min (n — m, k — a), min (n — m, I =b), s/n, t/n)
IL=In—m—1,mnn-—m-—1,%k—a—1),

min (n — m — 1,1 — b), s/n, t/n)
I,=In—m—1,mn(n—m—1%k— a),

min (n — m — 1,1 — b), s/n, t/n)
Ii=In—m—1,minn—m-—1k— a),

min (n — m — 1,1 — b — 1), s/n, t/n)

We note that

(9) (s/n)(Iy) + (1 — s/n — t/n)(I3) + .(t/n)(1s) = I..

Now suppose that (X;, - -, X,) isdistributed according toJ(n, k, I, s/n, t/n);
then the conditional distribution of (Xmy1, -+, Xa), given that (Xy, -+, Xn)
= (21, -, Tm), is the distribution J (n — m, min (n — m, k — a), min (n — m,

1 — b), s/n, t/n) that has density 1/I, over the sub-region B(n — m, min (n — m,
k — a), min (n — m, 1 — b), s/n, t/n) of Qu_n , where a and b are respectively,
the number of z;’s less than s/n and greater than 1 — ¢/n. In accordance with
[10], the component ¥,1 of ¥ = Tre,n(2) now is simply the ensuing marginal
c.d.f. of Xpy1:
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For 0 < 21 = 8/0, Ymg1 = (Tmga) (Lo/11).

For s/n £ Tmia £ 1 — /1 Y1 = (s/0)(Ly/11) + (Tma — s/n)(Ls/1).

Forl — t/n < Tni1 = 1, Y = (8/n)(Le/) + (1 — s/n — t/n) (/1) +
(Tmr — (1= t/n)) (Ls/I1).

Using (9), it now follows that

FOI'O § Tm41 ___<_ s/n, lyﬂH-l —_ $m+1l == I(xm_;.l)(Ig —_ Il)/Ill § 28/”.[1 .

For s/n S i 1 — U/, lmis — @mss] = (/1) (I — I0)/Ts + (3mas)-
(Is = L)/L| = |(s/n)(Ia = Is) /Ty + (@msa) ((8/0) (I — L) + (¢/n)(Ls — 1)) /14|
= I(S/n)(Ia - Iz,)(xm+1 et 1) + (t/n)(Ia - I4)I/Il é 2s/n11 + Zt/nII

Forl — i/n £ 2pi1 £ 1, |Ymir — Twpd] = [(s/n)(To/I1) + (1 — s/n — t/n)-
(I/I) + (t/n)(L/I,) + (T — D)T/I) — Zpu| = |1 + (T — 1)
(I/I) = Tmpa| = (¥ — 1)({s — L) /1| < 2t/nl,.

It remains to notice that, for n large (specifically, n = 2(s + t)), I is bounded
away from zero uniformly in m: For n > 2(s 4+ t) and n — m =< 2(s + t), one
hasthat Iy 2 [1 — ((s + O)/m)"™ 2 ($)"™" 2 (3)™"”, while, for n — m =
26+ 8, Lz 1 = ((s+ /M 2z {1 - [(s+8)/(n—-m}"™ =z
{1 —[(s+ 8)/2(s + DI = (2)***”. Hence, for n large and z in the sub-
region B(n, k, I, 2/n, t/n) of Q, assigned probability 1 by J(n, k, I, s/n, t/n)
(indeed, for z in Q,), the bounds computed for |Ymi1 — Zm4a| in fact imply that

(10) MaXogmgnot|Ynyr — Zmy] = 2(s + )2°P/n = K(s, t)/n.

The bound (10) now is used to verify the condition of Corollary 1. The funec-
tion ¥, is given by

(11)  @,(z) = n'{max, [max (2, — (m — 1)/n, (m/n) — z.™)1},

where z,,™ is the mth smallest coordinate of z, and the bound (10) implies that,
for z in B(n, k, I, s/n, t/n), maxXi<m<n [ym™ — 2.™| < K(s, t)/n, hence that

(12) [#u(Tam Tawm.0(x)) — @u(2)] = [Ba(Ta@m,0(x)) — Ba()]
= lq)n(y) - ‘I)n(.’b)l = K(S, t)/néa
and this implies the condition of Corollary 1, and hence asymptotic independence.

4. Bounds for departure from independence, and an example. Consider the
quantities defined in Section 1, abbreviating Tz (mTrwm.n t0 Ts.c . Suppose that,
as was true in Sections 2 and 3, the condition of Corollary 1 is satisfied in the
strong sense that, for = in a region assigned probability 1 by H(n, t), |fo(Ts.:(z))
— fa(z)] = K(t)¢¥(n), where ¢(n) is of order less than 0. Then

Pr{fu(Ya) < ul|ga(Ya) < ¢}

Pr{fa(Za,) = u} = Pri{fa(Zn,) = u— K-}

+ Priu — Ky < fu(Zn,) £ u} £ Pri{fa(Tn(Zays)) = uj
+ Priu— 2Ky < fu(Tn,dZn:)) S u+ K-y}
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= N"w) + N(u+ K¢) — NP (u — 2K-y)]

= N"u) + A(n, u, K-y).
Again,
Pr{fa(Ya) = ulg.(Ya) <t}
Pri{fa(Zn:) = u+ K¢} — Pri{u < fu(Zne) £ u+ K-y}
Pri{fa(Tuni(Zn,e)) S ul — Pri{u— Ky < ful(Tn,e(Zns)) < u+ 2K-¢}
NP (u) = IV (u + 2K-9) — NP (u — K-¢)] = N (w) — B(n, u, K-9).
Then
(13) ~N"(O)B(n, u, K-¢) < Pr {fu(Ya) < u;9.(Ya) < 8}

NN () = N (W A(n, u, K-y),

and (13) furnishes bounds for the departure of f,(Y,) and g,(Y,) from inde-
pendence.

The bounds (13) are now applied in connection with an example involving a
specialization of the material in Section 3. In this example, 38 observations
Vi, --+, Vi were hypothesized to constitute a random sample from a popula-
tion distributed according to a certain c.d.f. F = F,. Alternatives feared were
(1) F # F,, and (2) the presence of one or more high outliers. It was therefore
decided to perform simultaneously (1) a Kolmogoroff-Smirnoff test at the
1 — (.95)} level, and (2) a1 — (.95)} level test based on max (V).

The random variables Fo(V;) now play the role of the random variables U;
of Section 3. If ®yx(Fo(V)) is deﬁned as in (11), reference to formula (5) of [8],
with n = 38, a = (1 — (95)H/2 = .01266, and A(a) = .17, shows that the
critical 100(1 — (.95)) % value for @5 (Fo(V)) is ((38)%)(.2347). Also, the critical
100(1 — (.95)") % value for Fo(max (V3)) = max (Fo(V.)) is ((.95)}) % —
.99932. As indicated in Section 0, simultaneously performing the test based on
P(Fo(V)) and the test based on max (Fo(V;)) amounts to verifying whether
the 38 “risers” of the sample c.d.f. lie within a region formed by the intersection
of the two-sided IXolmogoroff-Smirnoff acceptance band with boundaries Fo(v) =
.2347, and the half-plane to the left of v = F,'(.99932), which, for the particular
population c.d.f. in question here, equals 70. We now use (13) to bound the
actual level of this nominally 5 % joint test.

Consulting (10) and (12) of Sec tion 3, we find, since s = 0 in this application,
that K(s,t) = (2t)(2%);also that gb(n) = n~*. However, the further simplification
I = 0 of the present example enables us to replace (2¢)(2‘) by ¢; this because
Tw@,» now has the very tractable form Ty, »(2) = x(1 — t/n)_l, enabling us
to replace the right-hand side of (10) by ¢/x.

It remalns to identify the various quantltles appearing in (13): n = 38;

= (38)%(.2347) = 1447; ¢ = 1/(38), K = ¢t = 38(1 — .99932); K-y =
0042, B(n, u, K-y) = x,f38>(1.447 + .0084) — (1447 — 0042) =

v
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002, and A(n, u, K-¢) = N0 (1.447 + .0042) — A*(1.447 — .0084) = .002,
where A\,*® may be computed with the help of [8], or, to an approximation
adequate for the present computation, from tabulations of the asymptotic dis-
tribution A; ; AP = (.95)%. The actual level of the joint test is thus no less
than 4.8 %, nor greater than 5.2 %.
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