ON SOME ROBUST ESTIMATES OF LOCATION!

By PETER J. BIiCcKEL

Unaversity of California, Berkeley

1. Summary. During the past 15 years various approaches have been proposed
to deal with the lack of robustness of the sample mean as an estimate of the
population mean when the distribution sampled is contaminated by gross
errors, i.e., has heavier tails than the normal distribution. First, Tukey and the
Statistical Research Group at Princeton in [9] suggested and investigated the
properties of “trimmed” and ‘“Winsorized”” means. More recently, Hodges and
Lehmann [6], proposed estimates related to the well-known robust Wilcoxon
and normal scores tests, among others. Finally Huber in [7] considered essen-
tially the class of maximum likelihood estimates and found those members of
this class which minimize the maximum variance over various classes of con-
taminated distributions. For a review of work in these directions in testing as
well as estimation the reader is referred to Elashoff [3].

In Theorems 3.1 and 3.2 we state the main results of the asymptotic theory
of the Winsorized and trimmed means and outline the proof. An alternative
method of trimming and Winsorizing (not equivalent to that of Tukey) which
encompasses the efficient estimates proposed by Huber and which generalizes
to higher dimensions is discussed in Section 2.

The fourth section (Theorem 4.1) gives the minimum efficiency with respect
to the families of all symmetric and symmetric unimodal distributions, of the
Winsorized and trimmed means with respect to the mean. The lower bounds
found for the trimmed means (for small trimming proportions) in the unimodal
case compare well with that found by Hodges and Lehmann in [5] for the median
of averages of pairs, the Hodges-Lehmann estimate. However, the Winsorized
mean (for unimodal distributions) has minimum efficiency % with respect to the
mean whatever be the trimming proportion used. For all distributions, the
minimum efficiency is 0.

Also in the fourth section (Theorem 4.2) we compare the trimmed mean to the
H-L estimate and find that while the latter can be infinitely more efficient than
the former, the H-L estimate, for small trimming proportions, a = .05, is at least
90 per cent (approximately) as efficient. This would suggest that unless the com-
putations involved are prohibitive, the H-L estimate is to be preferred in any
situation where the degree of contamination and type of distribution is not known
with great precision. The same remarks apply to the Winsorized mean with only
somewhat less force since the lower bounds involved are .74 for all symmetric
distributions and .79 for symmetric unimodal distributions.

Finally we compare the principal estimate proposed by Huber in [7] (Proposal
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848 PETER J. BICKEL

2) to the mean and the Hodges-Lehmann estimate, both for all symmetric
densities and for the symmetric unimodal family. Results similar to those al-
ready mentioned in connection with the trimmed mean are obtained in Theorems
5.1 and 5.2.

2. Some definitions. We shall assume, henceforth, that X, , for1 < 7 < n are
a sample from a population with a continuous strictly increasing distribution
F(x — 6) where ¢ is unknown and F is symmetric about 0, i.e., F(z) = 1
— I'(—x). We denote by x(a) the a quantile of F, i.e., the solution of the equa-
tion F(x) = «. We shall also assume that 77 is absolutely continuous with respect
to Lebesgue meuasure and possesses a density f continuous and strictly positive
on its convex support C = {2: 0 < F(x) < 1}. Finally we denote by W, < W,
< -+ < W, the order statistics of the sample X, ---, X,.

FFollowing Tukey we first define the a-trimmed mean of the sample by

(2.1) Xo = {n — 2en)}™ rtleml, W,

where [an] is the greatest integer in an for 0 < o < L.

Similarly we define the a-Winsorized mean by
(2.2) Xo* = 0 [an)Wian + 2 rZtemla W, + [an]Wa_iangsl-

The mean will be referred to as usual by X and the Hodges-Lehmann estimate,
medqé,» (XL -+ X;)/Z by M.

We will also consider the estimate given in Proposal 2 of Huber, which is ob-
tained as the unique solution 7' of the system of equations

2obaylk, (v, = T)/s) =0, 2 rayi(k, (x: — T)/s) = 0,
where ¢ (\, t) = p,/(t). We shall denote this estimate by H (k).
As an alternative to the method of Tukey which seems capable of extension to
higher dimensions we define the X trimmed and Winsorized means about 6, as

follows. Let 6§ be a consistent, asymptotically normal, estimate of .
Define the X metrically trimmed mean about § by

(2.3) X)) = N7 X XX — 8] £ \),

where N = D> %, I(|X, — 0] < )\) and I(A) is the indicator of the event A.
Similarly, the \-Winsorized mean about § may be defined by

(24) X\*(6) = n7 (6 — N)N.(6 — )
+ 2R X (X — 6] £ N) A+ (6 + NNo(6 + M)

where Ny(6 — A) = 220 I(N; <6 — N), Na(B+N) = 20 I(Xs 2 6+ ).

If trimming and Winsorizing metrically about a point are considered as oper-
ations, clearly two estimates of particular interest are those points which re-
main invariant under each of these operations. Winsorizing leads to the estimate
proposed by Huber in [6] (scale known), the point which minimizes
>t p(Xs — 6), where pi(t) = 1 for [tl <\ oi() = Nt] — 3 for [t = A
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Trimming leads to the estimate characterized by Huber as minimizing
Domy (X — 6) where pao(t) = 1t for [t] <\ p(t) = E\for |t = A

The first of these estimates has been shown by Huber to possess a minimax
property for the contaminated normal model. The asymptotic normality of the
second has not yet been established. Asymptotic normality of metrically trimmed
and Winsorized means seem in general to hold only under regularity conditions.
We hope to investigate this class of estimates in a subsequent paper.

3. Asymptotic theory. We now state three theorems which give the necessary
formulae for the asymptotic variance of X, , X,*, and H (k) which we shall need
in Sections 4 and 5.

TuEOREM 3.1. Under the conditions of Section 2.

(a) £(n (X — 0)) = N(0, 0/'(a)) a5 n— o,

where oi’(a) = (1 — 2a)7[[200% £ dF () + 2024
(b) If moreover E(X{®) < « then also

Var (n}(X, — 0)) — o’(a).

TuroreM 3.2. Under the above conditions
(a) e (X" — 0)) — N(0, os’(a)) as n — o, where

oi(a) = [Z” £dF(t) + 2a2(1 — @) + o/f(za)]
(b) If E(X{®) < o we may also conclude that
Var (n}(X.* — 6)) — o7(a).

Theorem 3.1(a) was stated in Tukey and Harris [4]. Theorem 3.2(a) appears at
least implicitly in [9]. Both parts of both theorems follow readily from Bickel [1].
For convenience we sketch here a different method of proof for 3.1 and 3.2(a)
first used by Sethuraman in [8] in another connection.

Let R, = n~ Zk—[an]ﬂ Wi — EWi | Wiony , Wartani1)], S = 58 (Wian
— z(a)), T, = nX(W. —tani4+1 — (1 — a)). It is well known that condltlonal on
W,, We, r < 8 Wea, --+, W._; are distributed as the order statistics of a
sample of s — 7 — 1 from a population with density f(z)[F(W,) — F(W,)]™ for
W, = x = W, and 0 otherwise. It follows from the above, Theorem 1 of [8] and
the normal convergence of quantiles that (R, , S,, T,) are jointly normal with
mean 0 and covariance matrix ||d;;|| where dw = 0fori s 1, dg = o*/f(z(a)),
du = [3057 £(8) dt, dy = dys = (1 — a)/f(z(a)). Upon remalklng that,

(X — 0)
= (n/n — 2m)R, + WM [3m7=+ 4f(8) dt/[F(Wo_ppags) — F(Wina)]}

and employing Taylor’s theorem, Theorem 3.1(a) follows. Theorem 3.2(a) may
be proved similarly.
We also state without proof the following theorem due to Huber [7].
TrEOREM 3.3 (Huber). Under the above conditions,
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£(nt(H(k) — 6)) = N(0, o’(k)) as n— o,
where
o’ (k) = (J2dF (1))([2, £ dF (1) + 2" [ dF (1))
and q satisfies
(3.1) qB(k) /K = [L £ dF(t) + 24" [7 dF(t)
and
B(k) = [Lf da(t) + 2 [7 dd(t)

where ® is the standard normal distribution.

It is interesting to note that for each fixed F, H(k) (a metrically Winsorized
mean) has an asymptotic variance which is the same as that of an a trimmed
mean (in the sense of Tukey).

4. Comparison of the Tukey estimates to X and M. Let & be the family of
all symmetric distributions possessing the regularity conditions of Section 2. Let
G be the family of all symmetric unimodal distributions which possess the above
regularity conditions. Define e;(a) to be the efficiency, in terms of the ratio of
asymptotic variances, of X, to X and similarly e,(a) the efficiency of X.* to X,
where dependence upon F is understood. Then we have,

(4.1) infrg (@) = (1 — 2a)%
(4.2) infreg €s(a) = 0.

Equation (4.2) follows immediately by choosing distributions with arbitrarily
small z(a).
Equation (4.1) is also immediate since

2 £dF(t) = [3057 EdF(t) + 2 [fa-a £ dF(t)
> [205° £ dF (1) + 2021 s

and the lower bound may clearly be approached by distributions concentrating
their mass outside (z(a), (1 — a)) more and more closely to the endpoints.
We can also establish
THEOREM 4.1.

I

(4.3) infreg e1(@) = (1 + 4)7,
(44) infrg ex(@) =, 3.
Proor. We prove (4.4) first. Let (1) z(a) = —)\, (2) f(z(a)) = k, (3)

JA 2*f(x) de = c. We wish first to minimize
es(a) = [2.2%(z) dx/{c + 2\ + a/k]}

for all F ¢ g which also satisfy (1), (2) and (3).
This is equivalent to minimizing [¥ 2’f(x) dz subject to the above side con-
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ditions and upon applying the method of undetermined multipliers we find that
x (2" — &)f(z) dz is minimized by

f(z) =k, NSz 2 alk+ ),
0) x;a/k'l')\,

for 6 = a/k + ), yielding as a minimum
(45) e(c, kN @) = 1 — [2a"\/k + $(o/k?)]

(¢ + 2aN* + 4’2\ /k + 2a°/k) 7L
Hence e, is minimized when ¢ is. The minimum of f A 2f(z) dx subject to f
unimodal, f(A\) = f(—\) = k, f symmetric, and fle(x) dr = 1 — 2« may

clearly be approached and, if £ = (1 — 2a)/2), is achieved for f(z) = kfor all
—A = 2 = \. The minimum of e,(¢, k, \, @) = ex(k, \, @) is given by

(4.6) ek, )\ @) = 1 — 3a’{[(Me + &) — 2al/[(M + )® + (2° + 3a’\k)]}
Letting ¢ = M 4+ «, we obtain

(47) ek, )\ @) = e(t, @) = 1 — 3a°(t — 3a)(f + 3% — a*)™"

By the unimodal property of f the range of ¢ is clearly the open interval (e, 1).
It is easy to see (by differentiation) that (¢ — 1a) (£ + 30’ — o®)™" approaches
its maximum as ¢ — « and since appropriate sequences of distributions may
readily be constructed we find that inf e, (¢, &) = 1.

We now prove (4.3). As before, fix z(a) = —\, f(\) = k, ﬁ‘.)‘ 2f(z) dz = c.
We wish to minimize

(1 = 20)*(JZ5 2f(2) dz) (J22 2f(2) dz + 202.)™" = ex(ar).

Under the full set of side conditions we first minimize f x 2’f(z) dz which as
before yields a minimum of

(48) (e, ¢,k N) = (1 — 2a)[1 + (2°\/k + $a*/k) (c + 2ar2)7Y.

The problem is now to maximize ¢ subject to the given side conditions. We
readily find that the maximum value of ¢ which is approachable but in general not
attainable is (1 — 2a))\?/3 from the following

LEMMa 4.1. f 2. 2°h(zx) dz is maximized among all symmetric unimodal prob-
ability densities by h(z) = ia, |z| < a.

Proor. Suppose h* is any other such density. Without loss of generality take
R* continuous. Then there exists a t, where 0 < ¢ < g, such that h*(z) < ia for
a>z>tand h*(z) = 2afor 0 < z < ¢. Then

Je2'* (@) de — (20)7 [§ 2% de = [L27h*(z) — (20)7Y dz
— [12°1(20) W ¥ (@) dz < E{[5h*(z) — (20)7Y da
— [t1(20)™ — h*(z)]dz} = 0.  QED.
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It follows that the infimum of e (e, ¢, k, \) equals
(4.9) ee, kb, N) = (1—2a) (1 + (22"\/k + 2°/K) (1 — 22)N*/3 + 2a2%) 7).

It remains only to maximize k. The maximum is clearly ¥ = (1 — 2a)/2\. So in
this case the least favorable distribution always exists and is any uniform dis-
tribution on a symmetric interval. We readily conclude that the minimum value is
given by (4.3).

For a = .05, a rather usual trimming proportion, we obtain an infimum value
of .833 which is very close to that of the estimate M with respect to X.

In the next theorem we consider the behavior of the o trimmed mean, the more
successful of the two estimates proposed by Tukey with respect to M, the esti-
mate considered by Hodges and Lehmann.

We have

THEOREM 4.2. Let es(a) be the efficiency of M with respect to the trimmed mean
Xeo. Then

(4.10) infrg es(a)
= (27/2000)[(1 — 2a)c(a) + 10a](1 — 2a)*(3¢ — 10c + 15)°

where ¢c(a) = 1 + #[[8(a® + )] — 3a](1 — 2a)™". Also the supremum of the
efficiency s equal to

(4.11) SUprg e3(a) = .
Proovr. Let us recall that
(4.12) es(a) = 12(1 — 2a) 7 ([2 fA(2) da)’[[200% £1(t) dt + 2ax.]].

Equation (4.11) clearly follows by letting () tend to — «, keeping all other
terms fixed. Intuitively this corresponds to taking distributions with heavier and
heavier tails, i.e., guessing wrong about the trimming proportion. On the other
hand,

(4.13) infeg es(@) = infeg 12(1 — 22)7([20° fA(2) dz)’

2”2 (2) dz + 20w,
since clearly one can make f:(l_a) fi(z) dz arbitrarily small subject to
ffa_a)f(x) dr = a. Let h(z) = [1/(1 — 2a)]f(z) for z(a) = 2 < 2(1 — ), 0

otherwise, and denote the quantity whose infimum is taken on the right of (4.13)
by es(e). Then

(4.14) es(a) = 12(1 — 22)*([2(0% K¥(2) dx)®
11 = 2a) [25%2" h(z) dv + 20x.]].

Let z(a) = —), fﬁx 2’h(z) dx = c¢. Minimizing f)L)‘ B*(z) dz subject to
X\ 2’h(z) dz = cand ﬂ‘_)\ h(z) dr = 1 we find by using undetermined multipliers
in a fashion similar to that used by Hodges and Lehmann in [4] that the minimum
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is achieved by

(4.15) h(z) = bi(d® — a), 2t £ N\,
= 0, otherwise,

if 5¢/3 < N < 3¢

(4.16) h(z) = by(as — 2°), 2 £ N,
= 0, otherwise,

if 3¢ < X° < 5c.

(4.17) h(z) = bs(as — 2°), z* < 5e,
= 0, otherwise,

for \* = 5c¢, where,

(4.18) a = ait = 23N — 5e)|\ — 3|7,

(4.19) by = by = 1.87507° |\* — 3¢,
(4.20) ass = 5c,
(4.21) by = .75(5¢) 2.

Solution of the variational problem for the range ¢ < \* < %¢, for densities, is as

we shall see unnecessary. We remark only that formally the solution given by
(4.15) though no longer a density continues to minimize fhz(t) dt subject to
[ h(t)dt = 1and [£h(t) dt = c.

Substituting (4.18), (4.19) in (4.15), (4.16) we obtain after some computa-
tions, infr.g es(a) equal to

(4.22) es(a, \, ¢) = (108/64)\7°(1 — 2a)*(3\* — 10e\* + 15¢°)°
(1 = 2a)c + 2a)\%).

Since the infimum is clearly independent of the choice of A s 0 we choose A = 5
(leading to the restriction ¢ = 1) and obtain

(4.23) es(a, ¢) = (27/2000)((1 — 2a)c + 10a) (3¢ — 10¢ + 15)*(1 — 2a)*

For the range ¢ = 1 it is easy to show that the minimum of the above expression
is reached for ¢ = c¢(a) given in the statement of the theorem. Now, for ¢ = 3,
this expression though not giving thé¢ true infimum gives a lower bound to the
efficiency and (from the preceding remark) since the minimizing c(a) is always <3,
(4.10) will be established if we can dispense with the case ¢ < 1. But, evaluat-
ing the corresponding lower bound as a function of ¢, we find that it assumes its
minimum for ¢ = 1. The conclusion of the theorem now follows.

Table 1 gives values of infy.g e3(a) for various common values of «. Since
they are all very high, we conclude that the Hodges-Lehmann estimate is pref-
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erable to the trimmed mean unless very precise knowledge of the required o
is available.

Let es(e) denote the efficiency of M with respect to the @« Winsorized mean.
Then, it is easy to see that,

(4.24) infres €s(a) = infreg e3(a)(l — 2a)*

since it is clear that in general one can approach the least favorable densities of
Theorem 4.2 so that all the quantities involved in e5(«) remain fixed but f(z(a))
tends to . This is however clearly not possible if we restrict ourselves to G.
Computation of the exact lower bound in this case seems to be especially tedious.
However, we can approximate the bound as follows. For fe g, f(z(a)) <
(1 — 2a)/22(1 — o). From this remark and the arguments of Theorem 4.2 it

TABLE 1
a = l .01 .02 .03 .04 .05 .06 .07 .08 .10
infpg es(a) ' .89 .90 .91 .91 .91 .91 .90 .89 .865
TABLE 2
a = .01 .02 .03 .04 .05 .06 .07 .08 .10
infreg e5(a) .85 .83 .80 77 .74 .70 .665 .63 .55

Lower bound of es(a) .85 .84 .82 .80 .79 77 .75 .73 .70
for FeG

follows that
(4.25) infrges(a) = infa (27/2000)(1 — 2a)°
(1 = 2a)% + 10a](3¢* — 10c + 15)%

Values of the bound as well as the infimum for all distributions are given in
Table 2 for selected values of a. Computation of e(M, X,*) for various distri-
butions at & = .05, indicate that the bound is within 2 per cent of the actual
bound. Its accuracy of course improves for increasing «. For @ = .01 the bound
would seem to underestimate the true infimum considerably, but since the value
given by the estimate is already quite high (.85) this would seem to be satis-
factory. '

6. Comparison of H to X and M. Let + = 2k*/B(k). Since 7 is a strictly mono-
tone increasing function of £, we can and shall use it as an equivalent parametriza-
tion of the lower bounds we shall consider. We have

THEOREM 5.1. Let e5(7) denote the efficiency of Huber’s (Proposal 2) estimate
with respect to the mean. Then,
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(5.1) infrges(r) = (1 — 2/7)%
(52) jIlfpeg 66(1') = T/6, 2= = 3.6,
= (1 — 2u)* (3 — 2u)’[r(1 — W), T = 3.6,

where u(r) = 15[(10 + 7) — (7* + 20r — 44)}].
Proor. Fix g, [7 dF(t) = «, [L, £ dF(t) = c.
Relation (3.1) may now be rephrased as

(5.3) ¢c=[2(1 = ar)/7l¢".

From (5.3) it is clear that & < 1/7, and hence by the same argument used to
establish (4.1), it follows that infrg €s(7) 2 (1 — 22)* = (1 — 2/r)% and that
the last bound may be approached by distributions concentrating a mass of
1 — 2/ + 2¢ near the origin and of 1/7 — ¢ on the outside of the points =g in
such a way as to satisfy (5.3), and letting e — 0, and the outside mass converge to
point mass at =q.

To obtain (5.2) we proceed as in the proof of Theorem 4.1 by fixing f(q) = v
ensuring always that (5.3) is satisfied.

We readily obtain that the infimum over all unimodal densities satisfying the
given side conditions is given by

(5.4) es(a,v,¢,¢,7) = (1 — 20‘)2{1 + (20!2Q/'U + %aa/v2)(c + 2¢¥q2)_l}

as in (4.8).
Upon substituting from (5.3) and letting ¢ = 1 with no loss in generality we
obtain

(5.5) e(e, 0, 8) = (1 = 2a)°[1 + (a’r/3)(3/v + o/s")].

We now wish to maximize » subject to fixed « and ¢ given by (5.3). We require
Lemma 5.1. Let 5 (c) be the family of all symmetric unimodal densities on [— 1,1]
such that

[Li () dt = e, (¢

IIA
o

).

Then, supag@ f(1) = $c.
Proor. Clearly unimodality and f(1) > $c imply [ £(t) dt > ¢, while then the

densities
f(t) = §c — ¢ asY =
- b, U
where a = {[(1 — 3¢)* + 16¢]" — (1 — 3¢)}(4e) ™ and b = (1 — 3¢)/2a + 4,

are members of F(¢) and approximate the supremum.
From the lemma it follows that the lower bound of e(«, v, 7), equals, if u = ar,

es(u, ) = (1 — 2u)*(3 — 2u)*[r(1 — 2u)] %

The theorem now follows upon minimizing with respect to u and employing the

IA

L
a,

IIA
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TABLE 3

,1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00

infr.g eq(k)
infp.g es(k)

.27 .31 .35 .39 .43 .46 .50 .53 .60
.65 .72 .75 .80 .81 .85 .87 .88 .94

restrictions (6 — 7)/4 < u < 1, of which the first follows from ¢ < 71 —2a)/3.
Table 3 gives values of infr.g €5 and infr.g e5(7) for various values of k.
Finally we have the comparison of M and H (k) in
THEOREM 5.2. Let e:(1) denote the efficiency of M with respect to H(k). Then,

(5.6) suprger) = o,
(5.7)  infrge(r) = 21 — 20)7°

-[32a%7% + (87 — 80r)a + (37" — 207 — 60)]?

Jor2 =7 7415 a(7) = .5 — .685(1 — 2/7),

(5.8) infrg er(r) = 21(r (37" — 207 + 60)%), for 7.45 <1 £ 10,
= .864, for = = 10.

Proor. (5.6) follows readily upon taking ¢ = 1 and defining a family of densi-

ties by

fé(t> = 5_3/4 on (—5) €),
= a(e, a) on (—1,1) — (—¢€)
= b(é, Ol), on (—]-7 1)0,

where (6 — 7)/4 < a < 1/7and a(e, ), b(e, a) are chosen so as to satisfy (5.3)
with [7 dF(t) = a and b < q. This is clearly possible for e sufficiently small since
[ £f.(t) dt, and 6 f<(t) dt both converge to 0 as e — 0.

Then clearly as ¢ — 0, f () dt— =, a eventually becomes less than ¢ ¢, a
are fixed and (5.6) follows.

Equations (5.7) and (5.8) are obtained in the same fashion as Theorem 4.2.
Fixing «, ¢, ¢ = 5 we find as in (4.17) to (4.20) that, if ¢ = ¢/(1 — 2a), the
lower bound is given by,

er(a, 7, ¢) = (27/2000)((1 — 2a)¢ + 10a)

(5.9)

(38 — 106 + 15)*(1 — 2a)® for 1<
= .864(1 — 2a)*(1 + 10a/c) for &

1A

3.
1

IIA

Upon substituting (5.3) we obtain the infimum given by

67(&, T) =
(5.10)

1(1 — 2a)’-{32a°" + [87° — 80r]a + [37° — 207 + 60]}°
for (10 — 37)/47 < « <(10 — 7)/87
864(1 — 2a)*(1 — ar)™ for a = (10 — 7)/8r.
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TABLE 4
k= 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.00
infrg e1(k) .65 .85 .87 .90 .91 91 .90 .88 .86
TABLE 5*
Normal Rectangular Laplace Cauchy
e1(a) .995 .970 .960 .833 1.06 1.21
es(a) .997 .980 .986 971 1.01 1.05
es(a) .960 .985 1.040 1.200 1.41 1.24 6.72 2.67
es(a) .958 974 1.010 1.030 1.48 1.425 8.35 5.88

* The first column under each distribution is for « = .01, the second for « = .05.

TABLE 6*
Normal Rectangular Laplace Cauchy
eo(k) ‘ .965 .990 .963 1 1.31 1.18
er(k) .990 .964 1.040 1 1.14 1.29 1.35 2.06

* The first column under each distribution is for £ = 1.5, the second for k£ = 2.0.

As before, we remark that the right side of (5.10) still provides a lower bound,
though not the infimum if o < (10 — 37)/4r,¢ = 3.

Upon minimizing the expressions given in (5.10) we find that the first is
minimized for « given in (5.7) which lies in the given range for + < 7.415 and
by a(r) = 0for 7.415 < 7 < 10. The second is minimized by a(r) = (6 — 7)/4r
for < 6 and by a(7) = 0 for = 6. Upon comparing the expressions so gotten
we obtain the given result.

Table 4 gives the values of infz.g e;(7) for various values of k.

Tinally, we give Tables 5 and 6 which give actual values of e, , e, , e; and es for
selected values of a and e, e; for selected values of & and particular classical
underlying distributions.

The conclusion of this investigation would seem to be that whereas all the
proposed ‘“nonparametric’” estimates of location behave satisfactorily when com-
pared to the mean, with the possible exception of the Winsorized mean, the
Hodges-Lehmann estimate M would seem to be the “safest” among them.

I should like to thank Professor E. L. Lehmann for many valuable comments.
I am also indebted to Professors R. Elashoff and R. Purves for helpful dis-
cussions.
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