ON THE LIFTING PROPERTY (V)

By A. IonEscu TuLcea
University of Illinois

1. Let (X, ®, ) be a measure space (i.e. X is a set, ® a g-algebra of sub-
sets of X, u a positive countably additive measure on ®). Let
® = {Be®|u(B) < o}and N = {Ae®|u(d) = 0}. ForAe®, Be® we
write A = Bif AAB = (A — B)u (B — A) ¢ 9; this is an equivalence relation
in ®. We shall denote by B — B the canonical mapping of ® onto the quotient
o-algebra ®/9. Throughout this paper we shall assume that the measure space
(X, ®, u) satisfies the following conditions:

(a) The measure space (X, ®, u) is complete (i.e., the relations 4 ¢ % and
B C 4 imply Beq);

(b) Aset E C X belongs to ®& if and only if E n B ¢ ® for every Be ® ;

(c) For every E e ®, u(E) = sup {u(B) | Bc C 4, Be ®o} ;

(d) The quotient s-algebra ®/9t is a complete lattice. .

The measure space (X, ®, u) is then a localizable measure space in Segal’s
sense (see [21] and [13]).

Note that the above setting includes as a particular case (X, ®, 1) a complete
totally o-finite measure space. Also, if X is a locally compact space with a given
positive Radon measure, the conditions (a)-(d) are satisfied if we take for ® the
o-algebra of all sets measurable with respect to that Radon measure and for “
the essential measure (see [1]).

In what follows we shall denote by Mz the algebra of all bounded real-valued
measurable functions defined on X. For f £ Mz, g ¢ Mz* we write f=ygiffandg
coincide almost everywhere; this defines an equivalence relation in M r . As
usual, we denote by Lz" the quotient space of Mz* under this equivalence rela-
tion, and by f — J the canonical mapping of Mz° onto Lz*. Endowed with the
essential supremum norm, Lz” is a cummutative Banach algebra.

Let now T': f — T, be a mapping of M5 into M2 and consider the following
axioms:

I) Ty = f;
(IT) f = g implies Ty = T, ;
(II1) Ty = 1;

(IV) f = 0 implies T, > 0;
(V) Tapypy = Ty + BT, ;

(VI) Ty, = T,T, .

Let us recall that a mapping T: f — T, of Mz* into M* satisfying (I)-(VI)
is called a lifting of Mz"; a mapping T: f — T, of Mz into Mz> satisfying (I)-
(V) is called a linear lifting of M (see [10]).
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820 A. IONESCU TULCEA

Let now 6: A — 6(A) be a mapping of ® into & and consider the following

axioms:
(I') 6(4) = 4;
(IT") A = B implies 6(4) = 6(B);

(II') 0(F) = &, 6(X) = X;

(IV') 6(A n B) = 6(A) n6(B);
(V') 8(AuB) = 6(4) u 6(B).

Let us recall that if §: ® — ® satisfies (I')-(V’), then 8 is called a lifting of ®
(see [10]). Let us also recall here that in a certain sense there is identity between
liftings of M ;" and liftings of ®: every lifting of M induces a lifting of & (con-
sider the restriction to characteristic functions of measurable sets), and con-
versely every lifting of ® generates in a natural way a lifting of M (see [10]).

It is known (see [10], [14], [18], [19]) that for every measure space (X, ®, u)
satisfying (a)~(d) there is a lifting T: f — T, of Mz”.

For historical reasons (although this does not help to unify our terminology)
we shall use the term lower density of ® for a mapping 6: ® — ® satisfying (I')-
(IV').

Lower densities have been considered by many authors, for instance J. von
Neumann [16], O. Haupt and C. Paue ([8] and [9]), D. Maharam [14]; see also
[6], [7], [15], [20], [22]. We want only to remark here that a linear lifting T: f — T,
of Mz”™ induces in a natural way a lower density of ®; in fact, if foraset ¥ < X
we denote by ¢y the characteristic function of the set ¥, and if we define

0(A) = {z|T,,(x) =1}, for Ae@®,

it is easy to verify that 6: ® — ® satisfies (I')—(IV’) (this mapping : ® — &
will be called the lower density of ® induced by the linear lifting 7'.

The idea of defining a topology on X from a lower density of B was first pointed
out to us by John Oxtoby (see [12]); it has been exploited by many authors in the
past in one context or another (see [6], [7], [8], [9], [15], [22]). Since we shall make
constant use of it, we shall—for the sake of completeness—state and prove in
detail the result that we need below:

ProrosiTION 1. Let §: B — ® be a lower density of ®. Define 3y = {0(A) —
N|Ae® N eay. Then:

(1) 36 is a topology on X (= the topology on X induced by 0); a set A < X
belongs to 9 if and only if A is closed and nowhere dense 3y ;

(2) For a function f: X — R the following assertions are equivalent:

(2a) There is N & 9 such that f is continuous 3y everywhere on cN ;

(2b) f 1s measurable.

Proor. (1) We shall show first that J is a topology on X. If 8(4,) — Ny e,
0(Az2) — N:¢e3, note that

(6(A1) — N1) n (6(A42) — N2) = (6(41) n6(45)) — (N1u Ns)

0(1‘11 n Az) - (N]U N2)

I

I
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by (IV') and that
(6(41) u6(A42)) — (N1u Ny) C (6(A1) — N1) u (6(4;) — N»)
C H(Al) U G(Az) c 0(A1 U Az)

since 6 is increasing (i.e., the relations A e ®, Be ®, and A C B imply 6(4)
6(B)). (The monotonicity of 6 is a consequence of axiom (IV').) (Thus
(6(A1) — N1) n (8(A42) — N2) €3, (6(A1) — N1) u (6(A3) — N) €35 and 5 is
closed under finite intersections and finite unions. To prove that 7, is closed under
arbitrary unions, it is then enough to verify that for a directed (for ) family
(0(A:) — Ni)ir of sets belonging to 35, the set U...0(4:) — N, belongs to J :

Let A be the supremum of the family (A;)rin ®/9 (use d)). We shall show
that

(%) U.ib(4;) — N;e® and 6(4) = U,,6(4;) — N;.

Since #(A) D 0(A;) D 6(A;) — N for each i ¢ I, the relations (*) will obviously
imply that U,8(A4:) — N; & 3, and hence will complete the proof of the assertion
that 3o is a topology. In turn, to prove (*), it will be enough by (b) and (¢) to
show that

(#x) Uir(6(4:) = N)nBe® and 6(A) nB = U, (6(4;) — Ni) n B

for each B e ® . Let then B & ®, ; since (A) n B is in the class of the “su-

premum” of the family (6(4:) n B).r, there is an increasing sequence
((O(Azn) - Nin) n B)l§n<m such that

8(4) n B = U7-.(6(4;,) — N.,) n B.
On the other hand
6(4)nB > Uid(4:) n B> Uis(8(4:) — No)n B D UZ-i(8(4;,) — Ny) nB

and comparing with the preceding formula we deduce ().

To prove the second assertion in (1), let A < X be closed and nowhere dense
J¢ ; then A ¢ ® and since A = 6(4) = 6(A) n A and 6(A) n A is open 73 and
contained in 4, we deduce that u(A) = 0. Conversely, let 4 £9(; then 4 =
C(X —4) = C(G(X ) — A) is closed 3 and 4 is nowhere dense J; (remark that
a set which is open J, is non-void if and only if it has strictly positive measure).

(2) We shall first prove (2a) = (2b). Suppose that f: X — R is continuous
Js on [:N, where N ¢ 9. For each ¢ ¢ R we have:

{z]f(x) > ¢} = ({z]f(x) > ¢} n N) u ({z]f(x) > ¢} n ON);

since {z|f(x) > ¢} n Ne9t and {z|f(z) > ¢} n CNeCSo, we deduce that
{z | f(z) > ¢} € ® and hence that f is measurable.

We shall now prove (2b) = (2a). Suppose that f: X — R is measurable. We
may assume without loss of generality that f is bounded (the case f unbounded
can be reduced to the bounded case by composing with the mapping t —#/(1 + [t|)
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which is a homeomorphism of B onto (—1, 1)). In turn, since every bounded
measurable function defined on X can be approximated uniformly with simple
functions, it is enough to consider the case f = ¢z, where E ¢ ®. Since ¢z is
constant on §(E) n E C E and on 0(0E) nbE c (:E, and since (8(E) n E) u

(G(CE) n (:E’) = X, the assertion is completely proved. This finishes the proof
of Proposition 1.

The next result shows how one can define a lifting of M;” from a lower density
6 of ® by making use of the topology Js on X induced by 6; this result was sug-
gested by the technique used by Dixmier in |5], p. 177, to construct a lifting on
the Lebesgue space [0, 1].

ProrosiTioN 2. Let 6: ® — & be a lower density of ®. For each y ¢ X, let J,
be the set of all § € L™ for which there is f in the class f such that f is continuous
Joaty andf(y) = 0. Then:

(1) J, is a closed ideal in Lz™ and J, # Lz”;

(2) If for each y € X we let x, be a character of Lg™ vanishing on J, , then the
Sformula

Ti(y) = x(f), forfeMz® yeX

defines a lifting T: f — Ty of Mz".

Proor. The proof of (1) is elementary (the fact thatJ, == Lz~ follows from
the observation that 1 £J,).

(2) It is clear that the mapping T: f — T, defined by the above formula
satisfies (II), (III), (IV), (V), (VI). It remains only to show that T
satisfies (I). Let f € M;”; by Proposition 1, thereis N ¢ 9t such that fis continuous
Js everywhere on Cn. Fix Y& Cn ; then ¢ = f — f(y) is continuous J; at y and
g(y) = 0, hence § ¢J, . We deduce

Ti(y) — f(y) = x() — ) = x,(§) =0

and thus T;(y) = f(y). Since y ¢ CN was arbitrary, it follows that T; e Mz
and T; = f. This completes the proof of Proposition 2.

2. By an automorphism of (X, ®, u) we mean a mapping s: X — X such that:
(i) s is a bijection; (ii) B € ® implies s(B) £ ®, s '(B) ¢ ®; (iii) 4 & % implies
S(A) e, sH(A) eN.

The set @ of all automorphisms of (X, ®, u) is a group for the usual composition
(s, t) — sot; we shall denote by e the unit element (= the identity automor-

phism) of @. Remark that for each s e @, the mapping f — fos = fosisan
isomorphism of the algebra L;” onto itself.

Let G be a subgroup of @. We shall give the following definitions:

We say that a lower density 6 of ® commutes with G if

s(0(B)) = 0(s(B)) for every B e ®, s¢G.

Remark that if § commutes with G, then every s &G is a homeomorphism of X
when endowed with the topology Js (in fact, if U = 0(A) — N €3¢, then s(U) =
0(s(A)) — s(N), s (U) = 6(s(4)) — s (N) belong again to 3).
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We say that a linear lifting T: f — Ty of Mz™ commutes with G if
Tros = Tyos  forevery fe Mp", seG.

TureoreM 1. Let G be a subgroup of @ and suppose that G has the following
property:

(%) For every x ¢ X, the mapping s — s(z) of G inlo X 1is injective.

Then the following assertions are equivalent:

(1) There s a lower density of ® commuting with G;

(ii) There is a lifting of M " commuting with G;

(iii) There is a linear lifting of Mz” commuting with G.

Proor: (ii) = (iii) obviously.

(iii) = (i) is immediate. In fact, let T: f — T, be a linear lifting of Mz
commuting with G and let 8: ® — ® be the lower density of ® induced by T.
We have for each B e ® and s e G,

8(s(B)) = {xlTﬁ%(B)(x) =1} = {xlTlPBOS—l(x) = 1}
= {2| Typ(s7(x)) = 1} = s(6(B));

hence 6 commutes with G.

(i) = (ii). Let 6: ® — ® be a lower density of ® commuting with G. Consider
in X the equivalence relation: z ~ y if and only if there is s ¢ G such that s(z) = y.
Let (X;)«r be the corresponding partition of X into equivalence classes. For
each 7¢I choose x; ¢ X; .

With the notations of Proposition 2 it is now easily seen that for each 7 &1
and s ¢ G,

(1) ) =J:c¢°s—l(= {.f°3_llf~£Jn})

(use the fact that each s & G is a homeomorphism of X when endowed with the
topology J). It follows that if x,; is a character of Lz” vanishing on J,; , then
xz; defined by

(2) X:;(g) = Xxi(g°'5'>; forggLRw

is a character of L;” vanishing on J,,) .

We remark now that given y ¢ X, there are: a unique ¢ ¢ I such that y ¢ X;
and (by condition (*)) a unique s &G such that y = s(z;). Now for fe Mz"
define T by the equations

(3) Tiy) = xa:(f) if yeX: and y = s(=).

By Proposition 2 (make use of (2) above), the mapping T': f — T is a lifting
of Mz". It remains to verify only that the lifting 7' commutes with G:

Let fe Mg®, te Gand y ¢ X. Then y ¢ X, for some unique Z ¢ I and y = s(x;)
for a unique s ¢ G; it follows that {(y) = (¢{os)(x:). We have

Trol(y) = X;i(f° t) = X-‘l’i((fo t)os) = Xzi(f° (tos))
xa:' () = Ts(t(y)).

I
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Since f, t, y were arbitrary, 7 commutes with G and hence (i) = (ii) is proved.
This completes the proof of Theorem 1.

Remarks. (1) The implications (i) = (ii) and (iii) = (ii) in the above
theorem do not remain true if the group G does not satisfy the condition ().
If (X, ®, u) is the Lebesgue space of the real lineand G = {e, v} where y: 2 — —z,
then it is known that: there is a lower density of ® commuting with G and there
is a linear lifting of Mz™ commuting with G; however, as it was remarked in
[13], p. 4, there is no lifting of M;” commuting with G.

(2) Let G be a subgroup of @ satisfying the condition (*) of Theorem 1. Sup-
pose that T': f — T, is a linear lifting of M:” commuting with g and define
0'(4) = {x| T, (z) = 1}, 0"(A) = {x|T,,(z) > 0} for every A ¢ ®. Let D
be the set of all linear liftings S: f — S; of Mz” satisfying the inequalities ¢4 4y <
Ses = @orcay for all A £ B. Below we identify D with a subset of the Cartesian
product R”, where H = M;” X X (by identifying every S ¢ D with the element
(87(2)) .0y of R™). Let D, be the set of all S & D which commute with . Then
Dy 75 conver and an element S & Dy s extremal in Dy if and only if S is extremal in
D. In fact, assume that S ¢ D, is extremal in D, but is not extremal in . There
are then SV e D, 8P ¢®, 8 = §%and 0 < N < 1 such that & = AS® +
(1 — N8, Since S® 5= 8, there are g ¢ Mz” and z ¢ X such that 8, (2) =
8,%(2). As in the proof of Theorem 1, let (X;):r be the partition of X into the
classes of intransitivity of G and for each ¢ ¢ I choose a point z; ¢ X; ; moreover,
if 2 ¢ X;, , choose x;, = 2. For each ¢ eI and j = 1, 2, define z,/”: Lz;° — R by

/OF) = 8, P(x:),  for fe La®;

it is clear that x,/” ¢ (Lz®)". Now for j = 1, 2 and f & Mz define T, by the
formula

T, %y) = 2/9(Fos) if yeX: and y = s(a).

It is easily seen that T = T® 8 = \T®” 4+ (1 — M)T® and T e ©,, T? e D,
(see Propositions 3 and 4 in [10]). This contradicts the assumption that S is
extremal in 9, and thus proves the assertion made above.

(3) Remark (2) permits to give a different proof of the implication (iii) = (ii)
in Theorem 1. With the notations of Remark (2), it is enough to note that the
set D, is non-void, convex and compact in R” and hence contains an extremal
point S; but S is then extremal in © and hence S has the “multiplicative”
property (VI) (see Proposition 4 in [10]).

(4) If X is a Lie group, with corresponding left invariant Haar measure,
then using a ‘‘derivation theorem” and the ‘“‘ultrafilter device’” of J. Dieudonné
(see [4], p. 80; see also [17]) one can construct a linear lifting of Mz* commut-
ing with the group of all left-translations (see also [2] for the existence of a se-
quence of “‘quasi-spheres” in a Lie group and for the corresponding version of the
Vitali covering theorem). By Theorem 1, we deduce from this the existence of a
lifting of Mz” commuting with the group of left-translations. Although there are
many examples of locally compact groups which are not Lie groups and for
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which the existence of a lifting of Mz” commuting with the group of left-transla-
tions can be established (these will be discussed elsewhere), it is not known
whether or not this is true for an arbitrary locally compact group, with cor-
responding left invariant Haar measure.

Consider again, as in Remark (2) above, the locally convex space (= Cartesian
product)

H
R¥ = []¢ .o Riry

where H = M;” X X and R = R for every (f, ) ¢ H. We denote a general
element of R” by z = (2(f, 2)) .zex - In what follows we shall dentify a linear
lifting T': f — T of Mz with the element (T;(x)) ¢ »ex of R

For each s ¢ @, define the mapping U, : R¥ — R¥ by

Uz = (z(fos, s_l(x)))(f.z)cli if 2= (Z(f, x))(f,z)é‘H'

It is obvious that U, : R" — R is linear and continuous, hence U, ¢ £(R", R¥).

Note that if G is a subgroup of @, the mapping s — U, is an isomorphism of
g into £(R”, R"). We remark also that, with the above notations, a linear
lifting T: f — Ty of Mz” commutes with G if and only if UT = T for every s € G.

The following is an instance when the existence of a linear lifting of Mz" com-
muting with a group § C @ can be established by an application of a fixed-
point theorem:

TuroreM 2. Let G C @ be a countable, amenable group [in the sense of Day
(see [3])]. There is then a linear lifting T:f — Ty of Mz~ commuting with G.

(The author is indebted to C. Ionescu Tulcea for many valuable discussions
and in particular for suggestions that led to the formulation of Theorem 2.)

Proor. Let p: ® — ® be a lifting of ®; for each A & ®, define correspondingly
the “lower orbit” and the ‘“upper orbit” under G

09(4) = Nugs(p(s7(4))) and 6¥(4) = Uugs(p(s'(4))).

Since p is a lifting of & and G is countable, it is clear that 6% (4) e ®, 0¥ (4) e ®
and 6 (4) = 6% (4) = A. Note also that for each A & ® and each ¢ & G we have

(1) (691 (4))) = 67(A)  forj=1,2

(since the mapping s — ¢o s is a bijection of G onto G). Define now the set D
of all linear liftings S: f — S; of Mz” satisfying the inequalities

(2) G = Seu = o) for all A € ®.

Note that, since garay < @pt) <' @peoray for all A e ®, the lifting of Mz”
generated by p, belongs to ©. Hence the set D is non-void. Note also that D as a
subset of R¥ is conver and compact (see the proof of Proposition 4 in [10]).

Finally, note that
(3) U;:D—>D for each t e G.
In fact,let SeDand t £ G; for A ¢ B and 2 ¢ X we have
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(Uﬂq)m(-’”) = Smot(t_l(a”)) = Sm“u)(t_l(z))}
but by (2) and (1)

...l p—
Ser=100 (17(2)) Z eoen 10y (7(#)) = euan=10am () = open ()
and

Sw“m(t_l(x)) = §00(2)(t“(A))(t_l(x)) = Quo =14 (T) = a2 ().

Thus een 4 (2) = (US)e,(x) = @pnay(z); since A ¢ ® and z ¢ X were ar-
bitrary, we deduce that U,S e D and (3) is proved.

Since D is non-void, convex and compact, since U(D) € D for each teg
and since the group G is amenable, we can apply the Kakutani-Markov-Day
fixed-point theorem (see [3]) and we deduce the existence of a T ¢ D such that
U.T = T for every t e G; T is the required linear lifting of Mz” commuting with
G. This completes the proof of Theorem 2.

CoroLLARY 1. If 7 4s an automorphism of (X, ®, u) (in particular, if T is a
measure-preserving automorphism), there is a linear lifting T: f — T; of Mz such
that Tyor = Tyrot for every fe Mz>.

ReMARk. Theorems 1 and 2 above bring contributions to Problem 4 raised
in [13].

3. In what follows we shall denote by 91z the algebra of all real-valued measur-
able functions defined on X. Let g be the set of all f £ 91z which vanish almost
everywhere. For fe Mz, geMe we write f = g if f — ged. We denote by
M7z the quotient space 91z/9 and by f — f the canonical mapping of M,
onto M. As usual, for 1 £ p < o, we denote by £z” the vector space of all
f e Mg for which |f|” is integrable.

THEOREM 3. Let 6: ® — ® be a lower density of ® and G a subgroup of @ having
the property (x) of Theorem 1. Assume that 8 commutes with G. There is then a
mapping S: f — S; of Mg into Mr having the following properties:

() Sr=1;
(jg) f = g implies S; = 8, ;
(i) 81 = 1;

(3v) Saripe = aS; + BSy ;

(v) S; = fif f s continuous 3 ;

(Vi) Sjos = SyosforfeMzandseg;

(vij) The restriction of S to Mz” is a lifting of Mz

Proor. Here is a sketch of the proof:

Let y ¢ X. LetJ, and x, be as in Proposition 2 and H, = {f ¢ Lz° | x,(f) = 0}.
Let K, be the set of all §& My for which there is g in the class § such that g
is continuous J at y and g(y) = 0. Let V, be the vector subspace of M spanned
by Hy and K, ; clearly 1 £ V, . Finally let z,” be a linear functional on Mz such
that

(1) z,/(1) =1 and x,” vanishes on V, .

It is obvious that z,"(f) = x,(f) for each f e Lz
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Let now (X;)«:r be the partition of X into the classes of intransitivity of g
and for each ¢ e I choose a point z; ¢ X; . For f & Mz define S; by:

(2) S;(y) = ws(Fos) if yeX; and y = s(z).

It can be verified that (see the proof of Proposition 2 and of the implication
(i) = (ii) in Theorem 1) S satisfies (j)—(vij).

Remarks. (1) If G reduces to {e} the existence of the mapping S given by
Theorem 3 can be obtained by a ‘“convenient splitting.” In fact, let T be the
lifting of M»:" given by Proposition 2; let U be the vector subspace of 91 spanned
by {T;|feM=z"} and {g e Mz | g is continuous J}. Then V n g = {0}, hence V
can be “completed” to a direct summand W of g in Mz and the projection of
IMr onto W gives the required mapping in Theorem 3.

(2) It may be of interest to compare Theorem 3 above with the observation
made by von Neumann in [16]. He showed there, that in the case when (X, ®, u)
is the Lebesgue space of the real line, there is no mapping S: f — S; of Mz into
My satisfying (j)-(jv) and the additional condition of multiplicativity: S;, =
SyS, for fe Mz, ge Mz

(3) Theorem 3 above remains true if in its formulation we strike out condi-
tion (jjj) and we replace everywhere 9Nz by £z” (here 1 < p < ). It is known
that (see [11], p. 791) under the assumption that (X, ®, u).is non-atomic, there
is no mapping S: f — S, of £z” into £z” satisfying (j), (jj), (jv) above and the
additional condition of positivity: (P) f = 0 implies S; = 0, or the weaker con-
dition of continuity: (Co) Thereisaset A € X with 0 < p*(4) < « such that
f— 84(y) is a continuous linear functional on £z” for each y ¢ A (see also [13],
Problem 5).
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