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1. Introduction and summary. Let A; and A; be two symmetric matrices of
order of p, A, positive definite and having a Wishart distribution [2], [12] with
J1 degrees of freedom, and A, , at least positive semi-definite and having a (pseudo)
non-central (linear) Wishart distribution ([1], [3], [4], [12], [13]) with f, degrees
of freedom. Now let

A, = CYY'C'

where C is a lower triangular matrix such that A; + A; = CC’ and the density
function of Y: p X f2is given by

(1.1) ke ™ Do (M) TR + fo + DL, — YYD/
where I, is an indentity matrix of order p,
by = T2 TR + fo — i+ D/« T2 Tl — i + 1)/2],

A is the only non-centrality parameter in the linear case and yy is the element
in the top left corner of the Y matrix.

Now V* criterion suggested by Pillai and U® (a constant times Hotelling’s
T4%), [7], [8], [9], [10] are the sums of the non-zero characteristic roots of the matrix
YY and (I, — YY')™ — I, respectively. Here s is minimum (fs, p). Also we may
note that V' = trace YY' = trace YY and U = tr (I, — YY) — p =
tr (I, — YY)™ — f,. It can be shown that the density function of the character-
istic roots of the matrix Y'Y for f; < p can be obtained from that of the character-
istic roots of YY' for f» = p if in the latter case the following changes are made:

(12}, [5])
(1.2) (fr,for, ) = (A + o — 2,0, fo).

Hence, for the criterion V), (and similarly for U*), we shall only consider the
density function of L = YY' for f, = p which is given by [6]

(13) f(L) = ki3 (h + f2), 3, Nl [L[77707 (1, — L7,
where

k=a PP [T+ fo+ L= DV/ITBGR + 1 = )ITB( + 1 — )}
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lyy is the element in the top left corner of the matrix L and ;F; denotes the con-
fluent hypergeometric function. We shall call the distribution of L: p X p the
non-central (linear) multivariate beta distribution with f; and fi; degrees of
freedom.

Pillai {11] had noted that the elements of the matrix L can be transformed into
independent beta variables which he showed for p = 2, 3, 4.and 5. In this paper
we give a theorem which proves the general case. In addition, when X\ = 0 the
first and second order moments of l;; are obtained and used to derive the first
two moments of V” in the non-central case when f; = p. The moments of V"
for fe (<) p can be written down with the help of (1. 2) Slmllar results are obtained
for U™

2. Independent beta variables. Let

L= (i " \1 Ln = Ly — 1/
1 Lll p_l, 11 11 9 |
1p-—1

and we note that |L! = lj; [Ls| and
1, — Ll = {1 — lu)[Tpm — Lo — W'/[lu(1 — L),

Thew it is easy to show that Iy and {Le, v = 1/[lu(1 — Iu))"} are independently
distributed and their respective distributions are

(21) fila) =BG, ¥OT exp (=N (1 = W)V WRB(h + ), e, Nl
and

(22)  fullm,v) = ke [La/'"* V7O — Ly — W,

where k; = kB(4f2, 3f1).

For further independence, we can use two types of transformations given by

(2.3) u= La—Lo) o w=T,
where I,y — Ly = TT and T: (p — 1) X (p — 1) is a lower triangular matrix. it
‘s casy to show that u (or w) and Ly, are independently distributed and their
respective distributions are
(24) fu(u) = 27 "TGAH)/T(H - p + 1)/2)}

(1= w)TT for fu(w)]
and
(2.5) fo(Lay) = ks |L22{N(/:—l)—(p—l)—ll lI _ Lﬂl!lh-(r-“—-l]’
where ks = "™ (T[(fi — p + 1)/21/T(3f1)}k:. We may note that the dis-
tribution of Lgs: (p — 1) X (p — 1) is central multivariate beta distribution with

(fo — 1) and f1 degrees of freedom, and the similar reduction from Ly, can be
carried successively. We may also note that the transformation
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(2.6) o= ul/(1 —w’ — -0 — ulsy), 1=12----,p—1u=0

in (2.4) gives us the independent beta-variates and their density functions are
given by

(2.7) gi(zs) = {81, 3(fi — DN 2 = z)O,

From the foregone, we have the following theorem:
THEOREM 1. If the distribution of

n Y
L= ( 1 Lu)
is given by (1.3), then by, Lop = Ly — I'/ln andu = (-1 — Lao) 1/ [lun(1 — lu)]!
[or w = T/ [lu(1 — ln)])} where TT' = I,; — Ly and T is a lower triangular
matriz] are independently distributed and their respective distributions are defined in
(2.1), (2.5) and (2.4).

Tt can be verified for p = 3 that from the variates li1 , w and Lz , we can obtain
the independent 8-variates exactly the same as given by Pillai [11], but the use of
I« . u and Ly, will give independent 8-variates different from those of Pillai [11] in
spite of the identical 8-distributions.

3. The first and second order moments of I;; when A = 0. Let the density
function of L be given by

(3.1) k|L["“””‘” I, — LPUI—P-I)’
where k is the same as in (1.3). It is easy to see that
3.3 E(l;) = E(ly) when =7

E(L:) when 1 #j
and
E(ylep) = E(h) when i=j=1 =7

yiE]
= E(luln) when i=j1 %41 =7
(3.3) = E() when 1=14,j=4,i%j

= E(luls) when i=j17 %7 #1

= E(luhs) when 7=1,7%5 =1

= E(lply) when 7 5 j i 7.
It is easy to see that if v = fy + f2,

E(lu) = fofv, E(la) =0,

oL ©

= E(lulu) when 7 = ] =

-~

and

E(I}) = filfa + 2)/v(» + 2).
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For E(13;), we integrate over other variates except lu, L2 and L. . Then as in
Theorem 1 wm = llz/[(l - lu)(l - Z)Zu] ln and (l22 - llz/lu) = z are inde-
pendently dlstrlbuted Hence

E(ly) = E[(1 — b, EQ1 — 2)E(u’ = z1)
= fiffp(v — 1)(» + 2)},
E(luls) = E{lullu(1 — 2)(1 — W)} E(m) = 0,
and
E(luls) = E(luz) + E{lu(1 — ) (1 — 2)z}
= {f(fe — 1) + fifs/ (v + 2)}/v(v — 1).

Similarly for obtaining E(luls) and E(lszls), we consider (3.1) with p = 3 only.
Using the successive reduction of Theorem 1, it can be shown that E(luls) =
E(lhs) = 0. The same type of reduction gives us after some algebra B (lals) = 0.
Hence, we have the following theorem:

THEOREM 2. Let the distribution of L: p X p be given by (3.1). Then

(3.4) Elly)=fofr f i=3
=0 otherwise,

and
E(lijloy) = fo(fe + 2)/{v(v + 2)} if i=j=4¢=j
= fif/tr(v = 1)(v + 2)} if «=4d,5=7,
v 1% 7 and
(3.5) i=7,47 =7
1#]
=fl(— 1) +H/+ 2}/ -1} i i=51 =7,
i
=0 otherwise.

4. First two moments of V' criterion. We note that
(4.1) VP — tr L = Iy + tr Ly + (1 — hy)u'(I.1 — L)y,

where Iy, u and Ly are independently distributed and their respective dis-
tributions are given by (2.1), (2.4) and (2.5). With the help of Theorem 2, we
find that

(4.2) E(I,-1 — L) = La{fi/(v — 1)},
(4.3) E[(tr L) (Ip-1 — La)] = 0lp,
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and
(44) E(trLw)*=[(p — 1)(fi — 1)/6 — D2+ 1)/(» + 1)
+(@—2)(a—2)/¢—2) +filp—2)/(v+1)(» — 2)},
where
(45) & =I[r—-1/0—Dip—1)— (h+1)/(r+1)
—(h—2)(p—2)/(»—-2) — filp — 2)/(» + 1)(» — 2)}.
Moreover,
(46) E'(Iy — Lu)u) = {fi/(» — D}E(u) = (p — 1)/(» — 1),
(47) E[(tr Ln)u'(I,.1 — Lw)u] = &E(u'n) = &(p — 1)/f1,
and
E{u' (1,1 — Ly)u)’ = E{u'Su}® if S=1,4— Ly
= E(sh) 223 E(ud) + {E(suse) + 2E(sh)}
(4.8) 2P E(uayy)
=3p— 1)/ —1D@+1)+(p—1(p—2)/
=10 —-2)h+2)HHh—1)
+3(f — 1)/(» + 1)}
Hence, we get
49) EVP)=14+(p—-1D—1)/6¢— 1D+ f{lp— 1/ —1) — l}a
and
EVPY? =14+1p—- 1) — 1)/ - D2+ o+ 1)/(» + 1)
+ (p—2)(h—2)/(r+2) +filp—2)/ (v + 1) (v —2)}
—2hfl— -1/ =1+ @—1)({f—1)/(v = 1)}
+Ip—-1DH-1)/6=-D1l—p+ (L+1)/(r+1)

(4.10) + (.= 2)(p — 2)/(v = 2) + flp — 2)/(v + 1)
(v = 2)}am
+Ah+2)0=2(p - 1)/(» = 1) +3(p—1)/(»—1)
(v +1)

+(p =D —2)/0—-1@-—2)H+2)]
Afi = 14+ 3(f — 1)/(v + D}la:,
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where
(4.11) ar = {2 im0 (\)Y/[i(r + 20)]} exp (—N7),
and

(412) @ = (D O8Y/EI + 20) (v + 20 + 2)]} exp (—N).

The expressions for the moments of V® given by (4.9) and (4.10) reduce to
the results for s = 2 given by Pillai [11] when p = 2. However, Pillai has pro-
vided the first four moments of V® in that paper [11]. For obtaining the moments
of V* when f, < p replace in the expression of the moments in (4.9) and (4.10)
fiby fi + fo — p, fo by p and p by f2 as in (1.2).

6. The first two moments of U°. We prove first the following theorem for ob-
taining the moments of U [7], [8], [9], [10].
TuEOREM 3. Let M: p X p = (m;;) be distributed as

(5.1) k |M|%<fz-p—1) I, + M| gL

Then for fr > (p + 1),

(5.2) E(myg) = fi/(h—p—1) o 2=
=0 | otherwise

and for fy > (p + 3),
E(mima;r) = folfa + 2)/{(h—p — 1)(h — p — 3)}
if i=j=1= j'
=hth+tn—-p-D/{Gh-p)i—p—-1D(i—p—3)}

(5.3) 1f1,—-z_7—’71,;-‘3
= fol(h — P)(fl —p—DRh-D+E+h-—p—1)
-(fl—p—3)~l] if ¢=g,4 =7,1=4

=0 otherwise.

Proor. M is symmetric and positive definite and for evaluating E(ms;) and
E(mimg;r) it is easy to see from (3.2) and (3.3) the various cases which should
be considered separately. .

Moreover, we may note that

mu, w: (p—1) X 1= {mu(l+ mu)} T 'm and Mg, = My — mm’ /my
are independently distributed and their respective density functions are

(54) (B2, 3 — p + DI 7ML A m) O,

(5.5) TN + fo — p 4 1)/27HTIR + £)/2 (1 + w'w) 2,

and
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(5.6) Foa [ Mz 1Y |1,y + M22.1|—§(f1+f2—l)’
where
Mza = (mia,4,5 = 2,3, -+ ? ?)y Ipma + Moy = T1T1,;

Ti:(p — 1) X (p — 1) is a lower-triangular matrix and My, is obtained from
M by deleting the first row and column.
From the above results, it is easy to verify the following,

E(mu) = fo/(i —p — 1);
E(my) = (Bwy)Elmu(l + mu)(1 + mea)] = 0,
E(mi;) = E(w’)[Emu(1 + mu)][E(1 + ma1)]
=hth+fe—p—-D/th—p)h—p—1)(hLi—p—3)};
B(mums) = E(mumzs) + E(mi) = folfe —~ D{(hi—p)(h—p — 1}
+ E(m},);
E(muwms) = E(w)[Emif’(1 + mu)'mbsa] ='0;
E(myms) = E{mu(1l + mu)wimega} + E{mu(l + mu)[(1 + mas.i)
— m3a/(1 + ma1)Pwrws}
=0,

where w; and w; are the first two elements in w. Again E(mygms) = 0.

This proves the theorem 3.

Lemma 1. If L:p X p is a symmelric and positive definite matriz and
U® = tr (I, — L)™ — p, then

(57) 1+ U = {1 — )@ —vu)}]7" + 1 — uu)'(W'Mu) + tr M,

where
lll l,
1 Ly)’
1(p—1) X1 = {lu(l — ly)} T4 — Lp)y,
Le:(p— 1) X (p—1) =Ly —W/ly and M:(p — 1) X (p— 1) =
(Ipot — L) ™ — I,y

Proor. We may note that

. ((1 — ) 0 >< 1 — ()’ >“
(Ip - L) = _
0 (I — L) P\ = ()t L — (1 — ly)ud’

<(1 - lu)_* 0 >
0 (I — L) ?

L

Il

Il
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and

( 1 - (h’ >-1
—(lu)*u I — (1 — I)uu’

<1' + lhu'u/(1 — u'u) (h)*’/(1 — u'u) >
()lu/(1 — u'n) L4 wd/(1 — o)/

Hence
tr(I, — L)' =1— (1 —vu)™ + {1 - — du)}™
+ tr Iy — L) ™ + u'(T_1 — L) 'u/(1 — u'u).

From this, the lemma is obvious.
TueoreM 4. If the distribution of L is non-ceniral (linear) multivariate beta
distribution (1.3) and U® = tr (I, — L) — p, then for fi > (p + 1),

(58) E(UP) = (pfa + 22)/(fi — p — 1),

and for fi > (p + 3), | |

(59) Var (UP) = 2['(fi—p) + (N +ph)(h— D+ o —p — DY/
{h—p)(h—p—1(h—p— 3)}

Proor. By Theorem 1, we may note that &y ,uand M = (I,_; — Ly) ™ — I,
are independently distributed and their respective density functions are given
by (2.1), (2.4) and

kslMlé(/z—P—l) IIp—l + M!—%(!1+f2—1) .

Let l10 be the variate whose distribution is the same as that of li; when \* = 0.
Then

E(1 — )™ = E(1 — lno)™ + 2/(H — 2),
E(1— )7 = B(l — o) + 4{(h + £ — 2) + N}/{(h — 2)(i — 4)}-
If Uy be the U™ statistic when Iy is replaced by . , then
(5.10) E(U™) = E(Us™) + [2V/(fi — 2)]E(1 — u'u)™
and ‘ .

Ell + UP) = Ell + U™T + {4/ (1 — 2)}
(5.11) ‘B{(1 — u'n)[tr M + (1 — u'n)™ (u'Mu)]}

+ [N+ = 2+ N)/{(h — 2)(h — HHEA — u'u)™

That is,
(8.11a) Var (U®) = Var (Us®) + o,
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where
a = {4N/(fi — 2)}E{Q — da)[tr M + (1 — u'u)™(u'Mu)]}
+ WG+ - 2+ M/ — 2)(h — DIEQ — du)”’
- Y(h — NEQ — wu)TP — 22N/(fi — 2)IE(1 + U™)

‘E(1 — u'u)™.
We note that
E(Us™) = ph/(fi—p—1), EM) = (fi— DIo/(i—p),
E(tr M) = (p — D)(f: — 1)/(/h — p),
EQ-vw)’ = (-2)/(hi—-p - 1),

and

El—uw)? = (h—4)(h—2)/{h—p— 1)L —p— 3)}.
Putting these values in «, we get
(512) a=8/(h—p=1'(h—=p=3)+&Hh-Dh+f-p—1)/
hi—p)(hi—p—1(h—p—3).

From theorem 3, it is easy to find Var (U™ ). However the first four (central)
moments of Us'” are available in [7], [9], (10] and substituting the value of
Var (Us'”) in (5.11a), we get Theorem 4.

The expressions for moments of U™ given above check with those obtained
by Pillai [11] for p = 2.

The third and fourth moments of V*” and U® and some approximations to
their distributions will be presented in a later report.
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