RATE OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM
FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS'
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0. Summary. Simultaneous consideration of n statistical decision problems
having identical generic structure constitutes a compound decision problem. The
risk of a compound decision problem is defined as the average risk of the compo-
nent problems. When the component decisions are between two fully specified
distributions P, and Py, Py ¢ P;, Hannan and Robbins [2] give a decision func-
tion whose risk is uniformly close (for n large) to the risk of the best “simple”
procedure based on knowing the proportion of component problems in which P is
the governing distribution. This result was motivated by heuristic arguments and
an example (component decisions between N(—1, 1) and N(1, 1)) given by
Robbins [4]. In both papers, the decision functions for the component problems
depended on data from all » problems.

The present paper considers, as in Hannan and Robbins [2], compound de-
cision problems in which the component decisions are between two distinct com-
pletely specified distributions. The decision functions considered are those of [2].
The improvement is in the sense that a convergence order of the bound is ob-
tained in Theorem 1. Higher order bounds are attained in Theorems 2 and 3
under certain continuity assumptions on the induced distribution of a suitably
chosen function of the likelihood ratio of the two distributions.

1. Introduction and 'notation., Consider the following statistical decision
problem. Let X be a random variable (of arbitrary dimensionality) known to
have one of two distinction distributions Py, 6 £ 2 = {0, 1}. Based on observing
X, we are required to decide whether the true value of the parameter 6 is 0 or 1.
We incur zero loss for correct decision and loss a6 + b(1 — 6),a > 0,b > 0,for
wrong decision.

If we simultaneously consider n decision problems each having this generic
structure, then the n-fold global problem is called a compound decision problem.
More precisely, let X;, k = 1, --- , n be n independent observations, X} dis-
tributed according to Py, with 6, = 0 or 1. Based on all n observations, a decision
dx , dr = 0 or 1, is made for each of the n component problems. Note that in the
case considered here all n decisions are held in abeyance until all n random
variables X, k = 1, - -+, n, have been observed. This is the same problem as
treated in [2], [4], and [6]. The sequential problem, where the kth decision depends
only on X;, 7 < k, is studied in [1] and [5], and is not dealt with in the present

paper.
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1744 J. F. HANNAN AND J. R. VAN RYZIN

Before proceeding, we introduce the following notation. Define @ as the set
of all 2" binary vectors 6 = (6,, --+,6,), 6,62 k = 1, --- , n. Note that Q is
the parameter space of the n-fold compound decision problem. For any 6 ¢ Q, de-
fine P as the product probability measure Xj—; Py, . Thus under the assumption
of independence of the X,’s, the observation X = (X, ---, X,) of the com-
pound problem is distributed as P, 6 ¢ Q. Expectation with respect to P, P, and
Py will be denoted by E, E; and E, respectively.

With X as the generic name of the X,’s, we have the following notation. Let
be a dominating measure for Py and P; . Then there exist densities, § = 0, 1,

(1) fo(z) = dPy(z)/dp.

We can (and do) assume throughout the paper that max, f(z) < K’ a.e. u for
some K’ < « (eg,u=Py+ P ,K =1). Furthermore, we assume without loss
of generality that both densities fo(x) and fi(z) do not vanish at each z.

2. Decision functions. A randomized decision function for the compound de-

cision problem is any vector of n measurable functions of x, t = (t,, -+, ¢,),
where #(x) = Pr{d, = 1|x}. A decision function t is called simple if
t(x) = t(xx), k = 1, -- -, n for some function ¢. A simple decision function will

be denoted by t. For any 8 ¢ @ the risk function for the decision t which is defined
to be the average of the component risks is given by

(2) R(6, t) = n" D51 E{abi(1 — (X)) + b(1 — 6,)t(X)}.

The risk (2) may be considerably simplified in the case of a simple decision
function. For 86 Q, § = n™" D i 6, is the relative frequency of problems in
which P; is the governing distribution. For the simple decision function ¢, (2) re-
duces to
(3) R(6, 1) = aBE:{1 — t(X)} + b(1 — 8)Eoft(X)}
ab + [ (b(1 — 8)fo(z) — aBfi(z)}i(x) du()

where the second equality follows from (1). The choice of ¢ which minimizes (3)
is any Bayes solution of the component statistical decision problem with
(1 — 8,6) considered as an a prior: distribution on 2, which is found by minimiz-
ing the integrand in (3) for each z. We arbitrarily choose the non-randomized
admissible Bayes rule t5(x), where for 0 < p < 1

t(z) = 1 if apfi(z) > b(1 — p)fe(x)
(4) =1 if fo(x) =0 and p=0

= 0 otherwise.

Defining the measurable transformation Z(z) into [0, 1] by

(5) Z(z) = bfo(z)/lafi(z) + bfe(2)],

we rewrite (4) conveniently for later use as

Il

Il
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to(z) =1 if Z(z) <p and Z(=z)e(0,1)
(6) =0 if Z(z)2p and Z(z)e(0,1)
=1-—-Z(x) if Z(z) =0 or 1.
Define ¢(8) as the minimum of R(8, ¢) with respect to ¢ Then
(7) #(8) = inf, R(3, 1) = R(, ).
Note that from (3), (5), and (7) we have '
(8) R(b, ) — 6(8) = [{Z(x) — 8}{t(x) — ti(z)}{afi(z) + bfo(2)} du(x).

In [2], the following decision procedure is proposed for the compound problem.
Let h(x) be an unbiased estimate of 6 £ ©, i.c.,

(9) Eofh(X)} =6 for 6 =0 or 1.

(Existence of such h will be discussed later.) Then form as an estimator of
6 the average h given by

(10) b= 07" 3k h(X0).
Let 2* = h*(x) be the truncation of & to the unit interval, i.c.,

=k if 0sh=<1

(11) =0 if h<0
=1 if A> 1
Now define the non-simple decision procedure t* = (4,*, --- , t¥), where the

component functions are obtained by substituting 2* for 8 in the simple rule
tj given by (6). Hence, we have the rule t* where

5(X) = tix(Xi) = 1 if Z(Xi) <h* and Z(X:)e(0,1)
(12) =0 if Z(Xy) 2 h* and Z(X:)e(0,1)
1 —Z(Xy) if Z(X,) =0 or 1.

Let 3¢ be the class of all u-square integrable functions which are unbiased
estimators of @ (i.e., satisfy (9)). This is a non-void class since it contains the
bounded function h(z) = (cocu — co1) {coofi(z) — cofo(z)}, where cp; = Eyf;
for 6,7 = 0, 1. Since Py = P, , Schwarz inequality yields cocy — ca; > 0. For a
fixed member of 3¢, we also define oy’ = Ey(h — 6)* for 6 = 0, 1, 5* = max, 0100
and for any p in the unit interval [0, 1], ¢,° = po,” + (1 — p)oc. In [2], a con-
structive procedure is given for obtaining, for fixed p, 0 < p < 1, a bounded
kernel h, satisfying (9) which minimizes ¢, in the class 3e.

Finally, the class 3¢ is important because of the following inequality on A
with A in 3¢. We have, for any 6 ¢ Q,

(13) E(h —8)° = n""%% £ n'&.
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Henceforth in this paper, we shall concern ourselves only with decision pro-
cedures t* of the form (12), where the estimator 2* is defined through (10) and
(11) with h € 3C.

3. The regret function. The question immediately arises: How good is the
procedure t*in (12)? As a partial answer to this question, consider the function

(14) R(8, t*) — #(8)

for the decision function t* and 6 ¢ Q. This function will be called the regret
function of the procedure t* against the class of simple procedures. In Theorems
1-3 uniform (in 8 ¢ Q) upper bounds on (14) are given as functions of n.

We now develop a useful inequality (see (15)) for the regret function (14).
Let Whbetheset W = {z |0 < Z(z) < 1} and let [# denote integration restricted
to the set W.

In the remainder of the paper we make extensive use of the characteristic
function of a set A, which we denote by A enclosed in square brackets; that is
[Al(a) = 1 or 0 according as ac A or a g A.

The regret function for the decision procedure t* defined by (12) satisfies
the following decomposition lemma.

LemMA. Let X be a random variable independent of X and let h satisfy (9). With

e = w7 i h(X;) + W(X)}, then for 8¢ Q,

(15) R(6, t*) — ¢(f) = A + B, + Ca,

where

A, =E [5 (Z(zx) — 0){[6 < Z(z) < h] — [ = Z(z) < 8]} {afi(x) + bfe(z)} du(x)
B, = n7'a) 1nE [w [ < Z(z) < h] dP\(x)

Co = W02 kerE [w [k < Z(x) < ha] dPo(z)

with Iy = {k |6, = 6},6 = 0, 1.

Proor. If 6, = 0, we apply the definitions of #* in (12) and Z in (5), a change
of variable x; to z, an added integration on x; and the fact that Po{Z(z) = 0} = 0
as follows:

E{t:*(X)} = [[Z(z) < B* (@1, -+, %, =+, %a)] dPs,(21) dPs,
<o dPy,_, dP8k+1 e APy,
= [[Z(z) < h*(z1, s Ty w0, Tn)] dPo(z) dPy,
o dPy,_, dpak“ e AP,
= [wlZ(x) < B*=1, -+, 3, -+, Ta)] dPo(z) dPs,
-+ dPg,_, APy, dPg,,, - -+ dPs,
= E [y [Z(z) < ¥ dPo(x).
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Similarly if 6, = 1, E{1 — 4*(X)} = E [ {1 — [Z(z) < I&*]} dPy(z). Hence,
foreachk = 1, -+, n, we have

afE{l — 4,*(X)} + b(1 — 6,)E{t,* (X))}
(16) = abE [ {1 — [Z(z) < I*]} dPy(x)
+ b(1 — 6)E [ [Z(2) < I*]dPo().

Now, add and subtract afiE [w {1l — [Z(z) < K*)} dP(x) + b(1 — &)
E- [w[Z(z) < k*] dPy(z) from the right hand side of (16) to obtain

R(, t*) = an™' 2 uer, E [w {[Z(2) < &Y — [Z(z) < R} dPi(x)
(17) + 07 X knE [w {[2(z) < B*] — [2(z) < R¥]} dPo(z)
+ E{R(B, tis)}.
Note that by (8) with 2* = p we have,

(18) R(B,tw) — ¢(8) = [ {Z(z) — 8}{tin(z) — ta(2)}{afu(z) + bfo(2)} du(a).

From the definitions of ts , t; and W, the expected value of the right-hand side of
(18) with respect to P reduces to the term A, with 2* replacing &, which in turn
is bounded by 4., .

The term B, is an upper bound for the first term on the right-hand side of (17)
because the pointwise inequality [Z(z) < A*] — [Z(z) < I*] < [* < Z(z) < 7¥]
< [l = Z(z) < k] holds for k ¢ I, . Similarly, C, bounds the second term on the
right-hand side of (17), and the lemma is proved.

4. A bound for the regret function. Sufficient conditions for a bound a 7},
where o, is independent of 8 ¢ Q, on the regret function of the procedure t*
will be given. Before proceeding to the theorem, we state the following inequality :
If y is a positive real number and if ™' < p < 1, then

(19) nip min {1, (np — )Yy} < (1 + o)},

Verification of Imequality (19) is straightforward: If (np — 1) = ¢° then
wp(np — D7 = p(1 — () ™)y = PP + )Y and if (np — 1) < 4},
then n'p = p'(np)? = p'(1 + P

TueEoREM 1. If h(x) is such that Eo{h(X)} = 6 and Eo/h(X)[* <  for§ = 0
and 1, then there exists a constant oy = au(h) such that R(8, t*) — ¢(8) < am™.

Proor. In Inequality (15) we bound (i) the term n*4, and (ii) the term
n}(B, + C.). )

(i) Since [w {(Z(2) — 8)([0 < Z(z) < & — [k < Z(z) < 8)}{afi(z) +
bfo(z)} du(x) < |h — 6|(a + b) a.e. P, Schwarz inequality implies 4, <
(a+b)E[h — 8] < (a+ b){E(h — 8)*}!. Inequality (13) yields n’A, < (a + b)3,
where the bound is independent of 6 ¢ Q.

(ii) In bounding the term B, , we can assume without loss of generality that
I, is non-void and ¢; > 0. If o; = 0, then &, = & + n 7" {h(z) — h(z)} = F a.e.
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P x Pyforallkel,, and hence [h < Z(xz) < h] = Oae.P x Py forallkel,,
that is, B, = 0.

Fix ke I, and let o, > 0. Define S = Dty i {h(X:) — 1}, 6" = Var (S),
T = n{Z(X) — 8} +1 — X .z h(X,). Then

(20) e £ Z(X) <hl = [T - h(Xy) <S =T - h(X)]
Apply the Berry-Esseen theorem (Loéve [3], p. 288) for fixed z, z:, and z.,
iely, to the normalized sum ¢ 'S at the endpoints ¢ '{T — h(xz:)}and

o {T — h(z)} and bound the resulting absolute difference of normal df’s by
(2r)Hh(x) — h(xze)|o . Noting that ¢ = (n — 1)¢, this Berry-Esseen
bound for the P x P; integral of (20) yields

(21) E [yl < Z(z) < h]dPi(z) < EEiJl < Z(X) < k]
< min {1, (i — 1)7((2r) o "Eg Bi|A(X) — h(X4)| + 28a1)},

where a; = o1 "EyJh — 1[* and g is the Berry-Esseen constant.
Weakenmg the bound in (21) by the Schwarz inequality Eo Er|h(X) — h(Xy)|
Yo E1lh(X) — h(X4k)] }5 = 2%, and summmg (21) over all k ¢ I, , we have
B,, § @b min {1, (n0 — 1)}, where b1 = 7 ' + 2Ba; . Inequality (19) yields
the desired bound n'B, < a(1 + b1 )i (0)’

A similar argument shows that n 0, £ b(1 4+ bHH1 — 9)% where by = =} +
28ay with ap = a¢ "Eo|h|’. The Schwarz i mequahty on the sum of the bounds for
n'B, and n!C, implies n}(B, + C.) £ {d*(1 + b’) + b*(1 + b))}, which is
independent of 6 ¢ Q.

The theorem now follows from (1) and (11) and Inequality (15) by defining

= (a + b)s + {a’(1 + b’) + b*(1 + b))}

5. Higher order bounds. Bounds for the regret function of order higher than
that in Theorem 1 are obtainable under successively stronger sufficient condi-
tions. Under Py, 8 = 0 or 1, let Py* denote the induced probability measure on
the unit interval [0, 1] under the measurable transformation Z defined by
(5). Let Fy(z) denote the corresponding distribution function. The following
conditions on the continuity of the induced distributions are pertinent for the
theorems to follow.

(I) The function Z(z) in (5) has an induced distribution function Fe(z)
which is continuous on (0, 1) under P, for 6 = 0 and 1.

Observe that under (I), Py* may assign positive probability to the values
z=0andz = 1. '

It is an immediate equivalence of (I) that

H(z) = [wZ(z) < 2{afi(z) + bfo(2)} dp

and Hy(z) = fw [Z(x) < 2] dPs(x) for § = 0 and 1 are continuous (and hence
uniformly continuous) on the closed interval [0, 1].

Consider also the following condition:

(I') Let L(z) = fi(x)/fo(z) be the likelihood ratio of the densities in (1)
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(with the usual interpretation when fo(z) = 0). The function L(z) has an
induced distribution function which is continuous over (0, «) under P, for
6 = 0and 1.

It is an easy matter to show that Conditions (I) and (I') are equivalent, since
the transformation from (0, «) to (0, 1) given by 2(I) = b(al + b)™"is 1-1
and thus it and its inverse preserve singleton points of Lebesgue measure zero.
In application, the Condition (I') is often easier to check than (I). However, the
proof of Theorem 3 takes a simpler form under (I).

(IT) The function Z(z) in (5) has an induced probability measure P,*
which is absolutely continuous with respect to Lebesgue measure (\) and there
exists a K < o« such that a.e. \,

(22) ¥ (2) = dPy*(2)/d\ < K

for 8 = 0 and 1.

THEOREM 2. Let h(z) be such that Eo{h(X)} = 6 and |h(z)| < M a.e. Py for

= 0 and 1. If Assumption (II) holds, then there exist a constant oy = o(h)
such that R(8, t*) — ¢(8) < amn .

Proor. We bound the terms 4, , B, , and C, in (15). With ps*(2) as in (22)
express A, in the integral form below, and use (22) to obtain

A=E[{z—0(0 =z <h — [k =z<8)}ap™2) + bpo*(2)} de
S@+bDKE[(z—b)ff<z<hl—[h<z<0)de _

(a + DK(E([3(z — 8) e}k 2 8] + E{fE (8 — 2) de}k < @)

i(a + b)KE(h — §)

< n—l%(a + b)K&Z,

where the last inequality follows from (13). _
The term B, can be treated in a similar manner by bounding A = h +

n " {h(z) — h(xx)} from below by & — 2Mn™" for each k ¢ I, to obtain
B, < aBEE\[h — 2Mn™' £ Z(X) < k]

abE [[h — 2Mn™" < 2 < Rip*(2) de

< n'2 KM,

where the last inequality follows from (22). In a similar manner, we have
C. < n ' 20KM.
Substituting these three upper bounds for A,., B,, and C, respectively into
Inequality (15) yields the theorem with a; = (a + b)K{35* + 2M}.
Assumption (II) is quite stringent as can be seen from examining the ex-
amples in Section 6. However, as the following theorem illustrates, a convergence
rate of o(n?) is still obtainable even without (II) by imposing Condition

(I) or (I').
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THEOREM 3. Let h(z) be such that E¢{h(X)} = 6 and Egh(X)|* < « for6 = 0
and 1. If (I) or (I') holds, then for every ¢ > O there exists an no = no(h) not
depending on 8 £ Q such that R(8, t*) — ¢(8) < en foralln = ny.

Proor. In Inequality (15), we bound (i) the term 7’4, and (ii) the terms
n'B, and n*C,, .

(i) Let ¢ > 0 be given. Under (I), H(z) is uniformly continuous on [0, 1]
(and hence on the real line). Therefore, there exists a § > 0, such that

|H(z:) — H(z)| < (32) 7% e

whenever |2z — 2| < 8. Choose m; sufficiently large such that m =
32(8¢)*(a + b)’". Let E = {|h — 8] = 5} and observe that by Tchebichev’s
inequality and (13),

(23) [edP < 6°E(h — 8)* = w7 % .

Let dv(z) = {afi(x) + bfe(z)} du(z). Consider now the term A3, =
n{E [# (Z(z) — 8)[0 < Z(z) < h]dv(z)}’. Using the pointwise inequality
(Z(z) — 8)[6 < Z(z) < hl < |h — 8|6 £ Z(z) < h)in A}, followed by the
Schwarz integral inequality yields the bound

Al S GE{[w [0 = Z(z) < Rl dv(2)}.

In the second factor of this bound, partition the space under the P integral into
E and its complement E°, noting that on E°, [ [0 < Z(z) < hldv(z) =<
|H(R) — H(8)| = (32) % ¢, whileon E, [ [0 < Z(z) < hdv(z) < (a+ b).
Hence, A3, < 67°'{(32) 76 "¢ + (a + b)* [z dP} < (32)7'¢ + (a + b)’s" [& dP.

Inequality (23) and the choice of n; yield forn = n;, A1, < Le.
By a similar argument, we obtain for n = n;,

Ay = nME [5 {6 — Z(2)}[h £ Z(z) < 8] dv(z)} = Le

Since nl4, = Ain. + A., the previous two inequalities yield nid, < 1e for
n = n;. Note that n; was chosen independently of 0 £ Q.

(ii) Let e > 0 be given. Choose v > 0 such that ay{y + 4 28a1v} < e
where a; = 01_3E1|h — 1|3 and B is the Berry-Esseen constant as in Theorem 1.
By uniform continuity of Hi(z) on the real line, there exists a 6 = §(y) > 0
such that [Hy(z) — Hy(z)| £ 3 if |2e — 21| < 8. The proof for the term B,
depends on properly bounding the two terms on the right-hand side of the ex-
pression

(24) B, = n7'a) ke, [wor {Elle £ Z(z) < Kl}dPy(x)

+ 170D ker, Jwnee {Elh < Z(z) < ]} dPy()

where F = {|Z(z) — 8] < 8}. The two terms on the right-hand side of (24) will
be denoted B, and B,” respectively.

We first bound B, in (24) by a Berry-Esseen approximation argument. As in
the proof of Theorem 1, we assume without loss of generality that ¢; > 0 and
I, is non-void. By a Berry-Esseen approximation for fixed z, i, and z;, i&Jlo
applied to the kth summand in B,, we have by (20) and (21),
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(25)  fwnr {Elh < Z(z) < Rl} dPy(z) < min {[pnrdP1, (nd — 1)~
((2m) Y0 B, [war [h(z) — R(X:)| dPi(z) + 28a: [wnrdP1)}.

Weakening in (25) by Ey,[wnrlh(z) — h(X:)|dPy(z) < 20 [war dPy)? ”
observing that our choice of & implies [wnr dP; < H1(0 +8) — Hy(6 — 8) £ 7,

and summing over all k ¢ I;, the definition of B,” and Inequalities (25) and
(19) yield

(26) n'B,’ < ay*n}d min {1, (nd — 17 4y 2Bay)
< ay(y + 7 + 28ary) < 3

where the last inequality follows from our choice of +.
We now bound B,” in (24). Observe the following set inclusion:

{[Z(x)—é|§8,ﬁk§Z(x)<E}C{E—9;6}U{ﬂk—9§—6}.

Substituting this set inclusion in B,” and observing that a simple change of
variable implies E [ [[hx — 8] < —4] dPl(x) <Ef [lh;c — 8| £ —8dPy(z) =
P{h — § < —¢} for all ke I,, we obtain B,” < afP{|h — 8| = §}. Hence, by
Tchebichev’s inequality and (13) we have,
(27) B," < afP{|h — 8] = 5}
< a’E(h — 8)® £ a(as )L

Note that the bound in (27) is independent of 6 ¢ Q, and when multiplied by nt
approaches zero as n — o, Hence there exists an n; independent of 6 £ Q such
that n!B,” < %e for n = n,. This result together with (24) and (26) implies

B, < feforalln = ns.

By a similar argument there exists an n; such that e, < e for n = ng,
and Part (ii) of the proof is completed.

By choosing ng = max (n;, ns, n3) the results of (i) and (ii) substituted into
(15) completes the proof.

6. Examples. As remarked earlier the estimator
h(z) = (coocn — 1) {eoofs(z) — corfo()}

where ¢, = Eo{f;(X)} for 8,7 = 0, 1 is always a bounded (a.e. ) member of
3¢. Hence, the examples given below illustrate when Condition (I) or 1)
and (II) are satisfied.

ExampLE 1. This example exhibits a whole class of pairs of distribution for
which Assumption (I') and hence Theorem 3 and (I) are verified. Let the
generic random variable in the component problem be X. If § = 0 or 1, assume X
has Lebesgue (u) density fo(x) = as(z) exp {wT(x)}, where T(z) has a non-
zero derivative in , w; ¥ wo. Then, by the deﬁnltlon of the likelihood ratio
L(z) in (I'), we have L(z) = fi(z)/fo(z) = mas ' exp {(w, — w)T(x)}. Note
that T = T(z) having a non-zero derivative and X having a density (either
under P, or P;) implies T has a density. But L as a function of T having non-
zero derivative implies L has a density. Thus, in particular, (I') is satisfied.
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ExampLE 2. This is an example for which (II) and hence Theorem 2 holds.
Let X be the generic random variable of the component problem. Take a = b. If
0 = Oor 1, assume X has a Lebesgue () density fy(z) = (2r)} exp {—3(z — 6)%).
Then, Z(x) defined by (5) is

(28) z2=2Z(x) ={14+exp(z— L}L

Note that Z(x) in (28) is monotone and approaches 0 or 1 as z — + o or — x,
Then, the density ps*(2) in (22) is

(29) po*(2) = fo(x){|Z(x)]}
= fy(x)2 " exp {} — ).

But (29) clearly approaches 0 as z — 0 or 1 (that is,asx — + o or — ),

Since the densities ps*(z) are continuous on the open interval (0, 1), the
above convergence to 0 as the endpoints z = 0 and 1 establishes continuity on
the closed interval [0, 1]. Thus, boundedness on [0, 1] follows and (II) is verified
for this example.

ExampLE 3. An example where (I) or (I") holds but ( IT) fails is the following
special case of Example 1. Let fy(z) = wj exp (—wgz), z > 0, and assume w; >
2wy > 0. Then, Z(z) defined by (5) is

z=27Z(x) = {1+ (awl/bwo) exp [(wo — wy)z]} ™
and

B0) p*() = wo {exp (—w2)} 27 (bwo/awy) {exp [(w1 — w)z]} (w1 — wp) ™.

Observe that the density (30) — » asz— 1(z — »), and, hence, is unbounded
on (0, 1). Therefore Assumption (II) of Theorem 2 is violated for this example.
Whether or not the conclusion of Theorem 2 can still be proved for this example
we have not been able to show.
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