ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING
FINITE POPULATIONS. III

By V. M. Josu1!

Unaversity of North Carolina

1. Introduction. In the Part I of this paper in Theorem 4.1 the Horvitz-
Thomson estimate (H.T. estimate for short) of the population total was shown
to be admissible in the class of all unbiased estimates. The restriction of un-
biasedness was removed in Part II, but there the estimate shown to be admissible
in the entire class, is different from the H.T. estimate. In Section 9 of Part I
however the H.T. estimate was shown to be inadmissible in the entire class if the
sampling design was not of fixed sample size, as defined there. Now in this part
of the paper it is shown that for any sampling design of fixed sample size, the
H.T. estimate is admissible in the class of all estimates satisfying a certain
“regularity” (refer to Theorem 3.1) condition. This result, thus is a generaliza-
tion of the Theorem 8.1 in Part I, where the H.T. estimate was proved to be ad-
missible in the class of all linear estimates. As in Theorem 8.1 of Part I the
present result is proved for a more general class of estimates of which the H.T.
estimate is a particular case. Actually, for this general class but excluding the
H.T. estimate, the admissibility is established following an argument due to
the referee, among all ‘measurable’ estimates, thus relaxing the above referred to
conditions of ‘regularity.’ In this connection we refer to Theorems 4.2 and 4.3.

One may note that the results, in this part of the paper are weaker than the
result proved in the Part II, in the sense that they need the regularity or measur-
ability conditions for their validation; and they are true for the fixed sample-size
designs only, while the result of Part II is true regardless of any such restrictions.

ApDED AT PROOF STAGE: It is now clear to the author that due to a property
of Laplace Transforms the results of this paper are valid without any reference to
the regularity condition. However this and the measurability condition in this
paper would be discussed in a subsequent publication.

2. Notation. The notation followed here is the same as formulated in Section
2 of Part I with the slight modification as adopted in Section 2 of Part II. The
definitions and preliminaries in Section 2 of Part I are also applicable to the
following discussion.

3. Admissibility of the estimate. As in Theorem 8.1 of Part I we shall prove
the admissibility for a more general estimate of which the Horvitz-Thomson
estimate is a particular case. We now denote the estimate by é(s,z). In Theorem
8.1 of Part I 8(s, z) was defined by &(s, £) = D b, , where the coefficients b,
satisfy (i) b, = 1,7 = 1,2, ---, N, and (ii) 2.1 1/b, = m. Retaining condition
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(ii) we now, for the purpose of the following Theorem 3.1, replace condition (i) by
the more stringent one, namely b, > 1, r = 1, 2, ---, N. We now state the
following

TrEOREM 3.1. If

(a) the sampling design is one of fixred sample size m, i.e. it satisfies p(s) = 0
whenever the sample size (Definition 2.4 of Part I) n(s) % m, a fired integer and

(b) é&(s, x) is an estimate given by

(1) é(s, x) = Zrts b, ,

where the coefficients b, satisfy

i) b>1,r=1,2 ---,N and

(i) 20% (b)) = m,
then the estimate é(s, x) s weakly admissible for the population total T(x) in the
sense that there exists no reqular’ estimate €' (s, x) such that

(2) 2ees p(8)(€'(s,8) — T(2))" £ s p(s)(8(s, ) — T())’

for almost all x ¢ Ry (Lebesgue measure) and further the strict inequality in (2)
holds for a non-null (Lebesgue) set in Ry . Further if any estimate €' (s, x) satisfies
(2), a.e. in Ry (Lebesgue measure) then for all s for which p(s) # 0, €'(s, z) =
é(s, x), a.e. (Lebesgue measure) in Ry .

Note. Throughout the rest of this paper the measure considered will be the
Lebesgue measure for the space Ry . So also for any k dimensional sub space R; of
Ry the measure considered will be the Lebesgue measure for the & dimensional
sub space. These points will not be repeated each time. The measure will be
made explicit only when there is any possibility of confusion.

Proor. Let €' (s, ) be an estimate which satisfies (2). We make a transforma-
tion of the variates by putting

(3) xr:yr/bfy 7"=1,2,"',N.
Further let
(4) f(sy y) = @,(S, x) - Zn‘s Ty .

Substituting (3), (4) and (1) in (2) we have

(5) Zscs p(8)(f(s,y) — Zrts (yr/br))2
= Zscs p(s)(Zres (1 - (br)—-l)?/r e Zrts (?/r/br))2'

We now take expectations of both sides of (5) wrt a prier distribution on Ry,
such that all the variates y, , are distributed independently with common mean
6, the distribution being absolutely continuous in Ry . Then putting

(6) A(s) = 2w ()7

2 An estimate e is said to be regular if for every s with p(s) > 0, the expected value (s
held fixed) of e(s, z) wrt the frequency function L in (14) is differentiable wrt 8, under the
integral sign. Evidently all the linear estimates (in (4) of Part I) are in this sense regular.
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we have
E(f(s, ) — 2wt (9:/0))" = E(f(s5,y) — 0-A(s) — 2o ((yr — 6)/,))’
= E(f(sy y) - OA(S))Z + E(Zrk ((yr - 0)/br))2

the product term vanishing due to the independence of the variates. Similarly in
the right hand side of (5),

E( Zru (1— br—l)yr - Zm (y+/b) )2
= E( thl (1 - br—l)yr - A(8)0)2 + E( Zrk ((yf - 0)/br))2

Thus by taking expectations of both sides of (5) we get by cancelling out the
common term,

(7) 2 p(8)E(f(s, y) — A(s)-6)°
s Zacs p(s)E(Zrm’(l - br_l)yr - A(s)'o)z’

where S denotes the subset of S consisting of all those samples s for which
p(s) # 0. We introduce this subset to avoid the bothersome repetition of the
condition p(s) # 0 which otherwise becomes necessary. Hereafter all samples s
considered will be such that s ¢ S.

Now using condition (ii) in clause (b) of the Theorem, since each s ¢ S con-
tains m units, we have in (6)

(8) A(s) =m — D reb ™ = D (1 — b7Y).
We now put in (7),

(9) G(8) = Dres (1 — b V)ys/A(s)

and

(10) 9(s,y) = (A(8))7f(s, y)

and get

(11) s p(8)A*()E(g(s, y) — 0)" = s p(s)A*(s)E(g(s) — 6)’,

where A*(s) as usual denotes (4 (s))%

We next make the further assumption regarding the prior distribution on Ry ,
namely that each variate y., r = 1, 2, --- | N, is distributed normally with
variance ,” proportional to

(12) (1 —=0b""" sothat ¢ =k/(1 — b.') where k is a constant >0.

Note that this assumption is permissible because by the assumed condition (i) in
clause (b) of the Theorem, 1 — (b,)™" > 0 for all . This (incidentally) explains
why for the present Theorem it was necessary to modify the corresponding con-
dition in Theorem 8.1, Part I and exclude cases in which any b, = 1. It is now
easily seen that for §(s) in (9)
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(13) B(j(s) — 6)" = k/A(5).

For E(g(s, y) — 6)® in the left hand side, we apply the Cramér-Rao lower bound.
Now for the variates y, for which r ¢ s the frequency function is

L= (2r)")  Jlrwo " exp (=% D2res ((yr — 0)*/0r")).

Hence
E(3log L/38)* = B(X s ((yr — 0)/a))’
(14) = Doy
= Do (1 = b7 /K
= A(s)/k.

Now, let Eg(s, y) = 0 + b(s, ) where b(s, 8) is the bias of the estimate. Then
from (14) by the Cramér-Rao inequality (validated by the preceding foot-
note 2),

Varg(s, y) = E(g(s, y) — Eg(s,9))" = (K/A(s))(1 + b'(s, 0))",
hence
(15) E(g(s,y) — 0)" 2 (k/A(s))(1 4 b'(s,0))" + ¥(s, 6).
Now substituting (13) and (15) in (11) we have
(16)  Dua P(8)A*()V'(s, 0) + k& 2eea P(s)A(s)(1 + b (s, 6))°
S & 2w P(s)A(s).
We now define the weighted mean bias b(6) by
(17) b(8) = 2ecs p()A(8)b(s, 0)/ Xses P(8)A(s).
(Note that by (6) A(s) > 0for all s¢S.) Then
1+5'(6) = 2 p()A(s)(1 4 b'(s,0))/ 2es p(5)A(5),
and hence using the usual property of the mean,
2o P()A(s) (1 4 (s, 0))" = (14 8'(6))" 2us p(s)A(s)
(18) + 2wz P(s)A(s) (V' (s, 0) — B'(6))"
2 (L4 5'(0))" 2ues p(s)A(s).
Now using (18) in (16) and noting that by (12), k¥ > 0, we have
(19) (s p()A(8)) K™ Xees p(8)A%(8)b%(s, 0) + (1 + 5'0))* < 1.

Now proceeding as in Problem 1 in the paper by Hodges and Lehmann (1951),
we show that b(8) vanishes for all 6. Since neither term on the left side of (19) can
be negative |b(s, 8)| for each s & .S is bounded above and hence sois |6(6)|. Hence
as [8] — o, b'(6) — 0. Hence from (19) as |6] — oo, |b(s, 8)| for each s & § and
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consequently [5()| — 0. But from (19) '(8) is never positive. Since 5(8) is
monotonic, 5(8) — 0 when 8 — =+ « implies that for all 8, 5(§) = 0and conse-
quently b'(8) = 0 for all 6. It then follows from (19) that for all s S, b(s,0) =

It next follows from (15) and (14) that g(s, y) is an unbiased, efficient estimate
of 8, and similarly from (13) §(s) is an unbiased, efficient estimate of 6. Hence by
the usual Cramér-Rao theory, (see for example p. 483, Cramér (1951))
g(s,y) = §(s), a.e. in Ry. Using (3), (4) and (10) it then follows that €(s,z) =
é(s, x) a.e. in Ry . Hence the strict inequality in (2) can hold at most on a null
set. This completes the proof of the Theorem.

4. Generalization of Theorem 3.1. Using the result proved in Theorem 3.1
we can now replace condition (ii) in clause (b) of that Theorem by the more
general condition > ¥..b " = m. To prove this, we consider the hyperplanes in
Ry obtained by assigning fixed values to some k of the variates. Let Qy_ be the
hyperplane in which say, the last k variates Ty_x4:, ¢ = 1, 2, , k have fixed
values = ay_i+: Tespectively. Let S be the subset of S, S, < S con31st1ng of all
the samples s which include each of the last k units uy—i4¢, ¢ = 1, 2, , k, ie.
s ¢ S if and only if all uy_rycesfort = 1,2, --- ,k,andse S. Now suppose that
for z £ Qs_r and s £ Sk, a regular estimate €' (s, z) exists such that

(20) ety P(8)(€(s, 2) — T(2))" S 2ues, P() (&(s, 2) — T(2))*

a.e. in Qy_i and further such that h(s, ) = €(s,z) — &s,x) # 0 for a non-null
set in Q_. . Now €' (s, ) is defined in (20) only for x £ Q—« an(_i s £ Sx . We next
extend the definition to other points x ¢ Ry and to samples s £ S; as follows:

(21) for sgS; andall zeRw, € (s, z) = &(s, x).

Next let Q% be the hyperplane CRy , given by Zy_i4: = aN_H, ,t=1,2, , k.
We now establish a 1-1 correspondence between the points z’ & QN_;, and xE QN_,,
by putting

(22) xr,=xr+a/bf, T=1’2’...’N_k
the constant a being so fixed that for s ¢ S,

(23) 8s,2') — T(2') = &(s,z) — T(z).

This can always be done because noting that every s e Sk 1ncludes each of the last
k units and hence m — k of the first N — k units, for ' ¢ Qu_ and s £ Sk,

8(s, ') = &(s,z) + a(m — k) + D vyt (@ — )b,
and
T(z') = T(z) + a 205 b7 + Ziiwan (@ — ),
so that (23) is satisfied if
(24) a( Qe — (m— k) = Do v (o — a) (b — 1).
In the left hand side of (24) D> *F b, — m +k =k — D *—y—s+1 b, > 0, using
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condition (i) in clause (b) of Theorem 3.1. Hence the constant a qatlﬁfyiug
(24) and therefore (23) can be always found for any set of constants «,,
r=N-—k+1,2, ---,N. Next for 2’ e Qz_, and s £ Si we define €'(s, ') by

(25) ¢(s,2') — T(@') = ¢(s,2) — T(x),

which requires €'(s, z') = €'(s, z) + Zf;" (a/b,) + > vty (& — a,). From
(23), (25) and (20) it follows that for z’ & Q. ,

(26) Dusp(s)(€(s, 2') — T(@))" = Dew (s)(¥(s, &) — T(2))’

a.e. in Q¢_; . It also follows that for z’ ¢ Qa, Jh(s, ') = €(s, ) — é&(s, z')
is 520 if and only if for the corresponding point = £ Qy—x , h(s, ) = 0. Hence cor-
responding to the non-null set P* C Qn— such that h(s, x) #0 if z £ P we have
a non-null set P* Q& such that h(s, z') = 0if z' ¢ P*".

Thus every hyperplane Q2_; has a non-null set
(27) P* and hence the set P = U, P* in Ry such
that h(s, z) # 0 for z ¢ P is a non-null set.

But from (20), (21) and (26) the estimate ' (s, x) satisfies

2asp(s)(€(s,2) — T (2))" S 2 p(8)(&(s, 2) — T(2))’

a.e. in Ry . Hence by Theorem 3.1 the set P C Ry on which i(s, z) £ 0 must be a
null set, thus contradicting (27). Hence in the orlglnal hyperplane Qy_: the set
P°® must be a null set. We thus have

TueoreM 4.1. If a regular estimate €' (s, x) satisfies (20) a.e. in Qy_x, then
€' (s,z) = &(s, ) a.e. in Qy_x .

Next consider the particular case of the hyperplane Q%_: given by putting
Tyryte = 0fort =1,2, --- k. Forze Q%—: the population total T(z) becomes
> Y=F z: equal to the population vtotal T*(x) for the subpopulation U * consisting
of the first N — k variates, i.e. U* = (uy, uz, -+, un_). Let s* denote the
sample obtained by omitting from each se S, the la.st k units uy—g41, - -, -
Then for z & Q¥ , é(s, = ) = &(s*, z) for all se Si . For the subpopulation U* let
the sampling design d* be such that p(s*) = p(s)/p(Si) where p(S:) =
Zses,‘ p(s). Suppose now there exists an estimate ¢ (s*, ) such that

(28) Lo p(s*)(€(s%, 2) — T*(2))" S wase p(sM) (s, 2) — T*(@))°

a.e. in the space Ry_; of the first N — k variates, S* denoting the subset of all
samples s* for which the sa,mple s¢ Sk , $ being the sample obtained by adding
the last k variates to s*. Since p(s*) is proportlonal to p(s) and since for
zeQv_x, é(s,z) = &(s* z) and T(x) = T* (x) putting €'(s, z) = e'(s* z) we
have from (28) 2.5, p(s)(€'(s, 2) — T(2))" = 2ot p(8) (8(s, 2) — T())’,
a.e. in Q%_x . It then follows from Theorem 4.1 that e'(s, ) = é(s, x) a.e. in
Q%_s which implies that e’(s* x) = é(s*, z) a.e. in the space Ry_i of the first
N — k variates. Thus Theorem 3.1 holds for the estimate &(s*, z). Clearly the
sampling design d* obtained by putting p(s*) = p(s)/p(S:) is a design of fixed
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sample size m — k from the subpopulation U*. Further, it is clear that any
given sampling design d* of fixed size m — k for the subpopulation U* can be
obtained in this way by taking for the population U, a sampling design d of
fixed size m such that for every sample s which consists of the sample s* from U*
and in addition the last k units, p(s) = ¢-p(s*) where ¢ is a constant, 0 < ¢ < 1.
It thus follows that Theorem 3.1 holds for every sampling design of fixed size
m — k from the subpopulation U* and for the estimate &(s*, ). But for the
subpopulation U*, D% b, = m — DNy 1 b, " which is > the fixed sample
size m — k as b, > 1 for all ». From this it follows that Theorem 3.1 holds also
for the population U, and for any estimate é(s, x) for which the coefficients b,
satisfy >, b," > m. Let

(29) b l=m o where n— 1 = ¢ <n,
n being an integer. We then determine additional coefficients byy1, -+, bate
such that )

(30) byer>1, r=12---,¢t and D viib ' =1t—c

This can always be done by taking ¢ = n. Then from (29) and (30),
Zf:f b, = m + t. We now add conceptual units uy4s, Uns2, - - , Unse t0 the

population U and obtain a population U**. For this latter population, by con-
sidering a sampling design of fixed size m + t, it follows as before that Theorem
3.1 holds for the subpopulation U and for the estimate é(s, ) whose coefficients
b, satisfy (29). We thus have,

THEOREM 4.2. Theorem 3.1 continues to hold if the condition (ii) in clause (b) of
that theorem is replaced by the more general condition D 3 b, = m.

Now the Theorem 4.2, through its dependence on Theorem 3.1, restricts itself
to the class of regular estimates. But in case Y3 b,"" > m, according to a method
suggested by the referee, the regularity restriction can be relaxed as follows:
since D1 b ' > m we have from (6), A(s) > D e (1 — b, "). Next put
o2 = EA(s) — Dres (1 — b,")]. Then from (7) we get

2 ees P(5) [Zu Elf (s, y) — A(s)6F'(210") ™ exp (—6°/20") do
(31) = Zses p(s) ffw E[Zres yr(l - br_l) - A(8)0]2
-(2m0") F exp (—6°/24") do.

Next assuming that the distribution of (y,, r £ s) is given by (14) and noting
that the distribution of 8 given (y,, r € s) is normal with variance

2 (1= b7") 4 7T = (kA(s)™
and expectation D e y,(1 — b, ")/A(s), we see that the Equation (31) above
implies
(32) 22 ()] - JU(8,9) = Ly (1 — 07N AF <0

where F is a non-degenerate normal distribution. Evidently in deriving (32) it is



ADMISSIBILITY AND BAYES ESTIMATION. III 1737

enough to assume that in (4) f(s, y) and therefore €'(s, ), for every fixed s,
s € S, are measurable functions of (z,, r £ s). Hence from (4) and (32) we have

THEOREM 4.3. Theorem 3.1 continues to hold by replacing in it the condition (ii) of
its clause (b) by XY b > m and the words, “regular estimate” by the words
“estimate which for every fized s, s € S, is a measurable function of (z,,r €8).”

Note. Now in the subsequent discussion whenever the estimate satisfies the
condition Y Y b " > m, the word “regular” should be replaced by the word
“measurable” in the sense of the Theorem 4.3 above. This is particularly so in
Theorem 5.2 to follow. '

6. Strict admissibility of the estimate. We now complete the argument by
stating the

THEOREM 5.1. Weak admissibility in the sense defined in Theorem 3.1 of the
estimate é(s, x) in Theorem 4.2 tmplies its strict admissibility in the sense that there
does not exist any regular estimate € (s, =) such that (2) is satisfied for all x ¢ Ry
and in addition the strict inequality in (2) holds for at least one x € Ry . Further if
any € (s, x) satisfies (2) then €' (s, z) = &(s, z) forall zx ¢ Ry and all s ¢ S.

Proor. Let ¢'(s, z) be a regular estimate for which (2) is satisfied for all points
z € Ry and let E C Ry denote the set of all the points x £ Ry for which i(s, z) =
€' (s,z) — é(s, ) = 0. By Theorem 4.2, E is a null set and we have to show that
it is also empty. Suppose it is not empty; then there must exist at least one point

z =a = (a1, @, -+, ay) and one sample sy & S such that h(sy, a) = ho #= 0.
Without loss of generality we may suppose the sample s, to consist of the first
m units uy, us, -+ -, Um . Now consider the (N — m)-dimensional hyperplane
Py_n defined by

(33) zePy_m ifand onlyif =z; = a;, i=1-,m.

Now for every = & Py_m, by (33).€ (s, ) = € (s, a) = &(s0, a) + ho and
é(sy, x) = é(s, a), and hence

(€ (s0,2) — T(2)}* — {&(s0, ) — T(2)}’
(34) = {&(s0, @) + ho— D Pa; — D tmmpr i)’
— {&(s0,0) — 2P0 — 2imnazd’

Next we define a subset Qy_» C Py_n as follows:

if he>0, zeQYm ifandonlyif
(35) SN 1 T < 8(s0, ) + ho/2 — YT a

and if hy >< 0, z £ Qy—m if and only if

1T > 8(s0,a) + ho/2 — Dmas.

As hy # 0, the set Qy_n is always defined. From (35) it easily follows that for
every point x &€ Qy—m , the right hand side of (34) >0 and hence at each such
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point k(s, ) # O for at least one other s &S, with s # so, as otherwise at the
point z, the left hand side of (2) would be >0.

In the following for any subspace R of Ry of k¥ < N dimensions, we shall de-
note the Lebesgue measure in k dimensions defined on R, by w; . Clearly the set
Q%_n has infinite measure (uy—m).

We next partition Qy_,, into (not necessarily) disjoint subsets indexed by the
samples s ¢ S. Let for a specified sample s ¢ S, Ly, be the subset consisting of all
those points z & Qy—m , for which h(s, ) # 0, ie. z e Ly, , if and only if,
2 & Qy_m and h(s, z) # 0. Then from the definition of Q%_., it follows that

(36) QN—m = UseS LN—m .

Since Q%_~ has infinite measure (uy_n), at least one of the subsets in the right
hand side of (36) must be non-null (uy_n). Further since for every z & Qy—m ,
h(s, ) # 0 for some s ¢ S such that s # s, there must be at least one non-null
(un—m) subset in the right hand side of (36) such that s & s, i.e. the sample s
does not include all the m units u; , - - - , U . If there are more than one such non-
null (p~y_n) subset we select any one of them arbitrarily. Let the subset selected
be Ly, where the sample s; includes some k (k < m) out of the first m units, the
remaining (m — k) units in s; being from the last (N — m) units %mi1, Umte,

a,s1

-, ux . Then take any point a' ¢ Ly, . Since a' ¢ Py_n, , we have
a’l = {a17a2’ )amraﬂln+17a}n+2) yaNl}-
Then for the point a' we define as in (33) a (N — m)-dimensional hyperplane,
al
Dy—m bY
(37) T = a;, for ies, 1< m,

1 . .
Ti = a;, for 7es, > m,

and a set Qv—n C Pi—n by
(38) D i @i > or < a certain number c.

The sign > or < in (38) being taken according as h(s;, @’) < 0 or > 0. (Here
7 € 8; Means u; € 8 .)

Now in (38) assign to all coordinates z;, for z'z& and ¢ > m, fixed values
equal to the correspondlng coordmates of the point a’, i. e. for ¢ satisfying ¢ 2 s, ,
and ¢ > m, z; = a;". Then from QN_,,, we get a subset Qm_k , defined by

(39) Zm,,i§m ;> or <c— Zigsl,i>m ai.
(The role of (39) is made further explicit in the Remark at the end of this
proof.)

Clearly (39) deﬁnes a subset Q% of lnﬁmte measure (un—x) in the hyperplane
p,,,_k , L.e. Qi C p,,,_k , the hyperplane P being defined by

(40) z; = ai, for ies,, i©=m,

1 .
T = a;, for 7> m.
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The hyperplane p_; is wholly orthogonal to py—= and hence the set Qy_» with
the set Q% defined by (39) for each a' & @4—n determine a set Dy C pv—x,
pa—i being the hyperplane defined by z; = a; for each ¢ such that 18,7 = m.
Combining (37), (38) and (39) the explicit definition of the set Dy_; is given
below :

(41) z= (21, ,2~) € Dy, if and only if

a,81

1 1
zeQ% ; forsome a &Ly2,,

the set Dy_x being of infinite measure (uy—r). Here 0 = k < m. Now let
E%_. C Piv—x be the set consisting of all those points z & py_ for which h(s, z) # 0
for at least one seS, ie. reEy—~ if and only if, zepy— and h(s, z) = 0
for at least one s ¢ S. Then D%_,  E%_: and hence the set Ex_ is also of infinite
measure (uy—i). Now we again partition the set Ey_; into subsets by

(42) E?V-—k = Uu‘B L?v::k )

the subset L%’ being defined for each specified s & S by z & Ly~ if and only if
r e E% . and h(s, z) # 0. Again at least one of the subsets in the right hand side
of (42) must be non-null (uy—). Further if there is only one non-null (u~y—)
subset L%, where s does not include each of the k units u;, withi e s;, 7 < mwe
select it; if there are more than one such subsets we select one of them arbitrarily.
Let L%*2, be the subset selected and let s; contain j (0 < j < k) out of the k units
u;, given by i & s, and ¢ < m. Then again proceeding as from (37) to (42) we
again obtain a set Dy_; C py—; where the hyperplane py_; is defined by z: =a:,
forall isatisfying s < m,ies;and i ¢ s; , the set Dy_; beingof infinitemeasure (uv—;).

Again denotlng by Ex_; the set of all those pomts x & Py_; for which h(s, z) % 0
for some s € 8, i.e. x ¢ Ey_; if and only if « & py—; and h(s, x) # 0 for some s ¢ S,

we have Dy_; C Ex_;, and hence the set Ey_; is also of infinite measure (u~—;)-

Clearly the process can end only when we

(A) either reach a set Ex C Ry such that Ey has infinite measure (ux) and for
every v &€ Ex, h(s, ) # 0 for some s ¢ S; or

(B) we reach a hyperplane py_;, defined by some j (0 < j < m), out of the
first m variates having fixed values equal to the corresponding co-ordinates of the
point @, i.e. z, = a,forr = 4,4, -+, 4; where 4, %5, - -+, 7; all =m, and a set
E%_;j C py—, such that Ey_; has 1nﬁn1te measure (py—,), and forevery x ¢ Ex_;,
h(s, z) ¥~ 0 for some s & S, and further such that for any sample s ¢ S which does
not include each of the j units w., , %i,, -+, ui;, h(s, ) = 0 for almost all
(un—3), T & P -

Now (A) leads to a contradiction because Ex = E and E is a null (ux) set by
Theorem 4.2. (B) also leads to a contradiction. For let S; be the subset of
S, 8; < §, consisting of all those samples se S, which include each of the units
Uiy m2 , +*+,ui; . Thenforse (8 = 8§;), € (s, x) = &(s, x) for almost all (ur—;),
z € py—; , and hence from (2), for almost all (un—j), T € Da—j ,

> D) (5, 2) — T@) = Xeas; P()E(s, ) — T2
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But then by Theorem 4.1 and 4.2 the set Ey_; C px—; such that h(s, ) # O for
some s ¢ S; is a null (uy_;) set. But (B) requires Ey_; to be of infinite measure
(#n—;). Thus neither (A) nor (B) is possible. Hence no point a ¢ E, exists such that
h(s, a) # 0 for some s € S and thus the set E is empty which was to be proved.

REMARK 5.1. Note the role of (39) in the development of this proof: What we
want to show is that there exists a non-null set K (either in Ry or in By_;) on
which h(s, £) # 0. The set is built up successively by increasing the number of its
dimensions. Suppose that at the first stage we find a non-null (u;) set K in the
3-space of x; , T2 , x5 . Suppose then that at the next stage we prove that for every
point x belonging to K there exists a non-null (g;) set L in the space of x;, x5, 2% .
Then from this we cannot deduce that the set K combined with the sets L de-
fined for each point of K would together build up a non-null (p;) set in the space
of 21, 22, 3, 24 and x5 . It seems necessary first to show that the set L entails a
non-null (us), set M in the space of x4, 5 which is orthogonal to the space of
(21, 22, x3). Thus, if we first obtain the set Qv—_m and then for each point of
Q¥—m , anon-null (uxy_n) set Q% , we cannot deduce that these would constitute
a non-null (p,_) set. It seems essential to first define the (m — k)-dimensional
set Q% which is wholly orthogonal to Qy_» . This is done by (39).

Combining Theorems 3.1, 4.2 and 5.1 the theorem may now be stated in its
most general form as

Tueorem 5.2. If

(a) the sampling design is one of fixed size m, i.e. p(s) = O whenever the sample
size n(s) # a fixed integer m, and

(b) &(s, x) is an estimate given by é(s, x) = >V b, where the coefficients b,
satisfy

@) b>1,r=12---,N;and
(i) 206"z m,

then the estimate é(s, ) s strictly admissible for the population total T(x) in the
sense that there exists no regular estimate ¢’ (s, x) such that

(43) Y p(s)e'(s,2) — T(@)] = Zs p(8)e(s, %) — T(2)]

for all x € Ry , the strict inequality holding for at least one point x ¢ Ry . Further if
any estimate € (s, x) satisfies (43), then e(s,x) = é(s,x) forallz e Ry .

REMARK 5.2. The conditions (i) b, = 1 and (ii) D_1—1 b, ' = m (see Section 6)
are not merely sufficient conditions for the theorem, but are also necessary in the
sense that when they are not satisfied, the estimate é(s, x) is not always ad-
missible. This is seen from the following simple, if artificial examples: The popu-
lation U consists of only 2 units u;, u, ; samples s; and s, consist respectively of
units u; and us, and p(s;) = p(s:) = 3. Then,

ExampLE 1. by = 3, by = 3,€'(s, ) = 221, € (8y, ) = 225

ExampLE 2. by = 3, by = &, € (81, 2) = 211, €(s;,x) = 3z
In Example 1 condition (ii) is broken while in Example 2 condition (i) is broken.
Now Example 1,
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Sz p(8)(&(s, 7) — T(2))? = (221 — )" + 3(202 — z1)’
= Ha® + ) + 4@ — ) = D p(s)(€(s, ) — T(z))’
Lo — 1) + 3 — ),

so that é(s, x) is inadmissible.
It is similarly seen to be inadmissible in Example 2.

6. Admissibility of the Horvitz-Thomson estimate. This estimate is given by
(44) e_(S, x) = Zres (xr/rT)

where =, is the inclusion probability of the unit u, , i.e. m, = o0, p(8). As is
well known for a design of fixed sample size m, > ¥ m = m. Hence if in addition
m, < lforr = 1,2, ---, N, both the conditions in clause (b) of Theorem 5.2 are
satisfied and the admissibility of the estimate &(s, z) follows from the theorem.

But even if some of the inclusion probabilities m, = 1, the estimate é(s, x) re-
mains admissible. We shall show this by taking the more general case ofthe
estimate (s ) = e bs,, for which some of the coefficients b, = 1. Without
loss of generality these may be taken to be the last k coefficients namely by_i+1,
by—k+2, -+ , by . We assume that the corresponding units uxy—t4e,t = 1,2, -+, k;
are included in each sample s for which p(s) # 0. Now suppose that for this
estimate &(s, ) a uniformly superior regular estimate ¢'(s, x) exists so that

(45) Zseﬁ P(S)(e,(sy x) - T(x))z = Zu‘s P(S)(é(S, x) - T(x))2

for all z € Ry .

Now as in (20) let Qyv— be the hyperplane given by Tw_iy: = ow_ite,
t=1,2 -,k Let U* be the subpopulation (u1, uz, - -+, un—s), T*(z) its
population total S ¥ Fz, , and s* the sample obtained by omitting the last k
variates from the sample s. Then for x £ Qy_. the last k variates being fixed
constants, we can define the estimate e’ (s*, z) by

(46) ¢ (5%, z) = €'(s,2) — ren-rnr .
Also clearly,
A7) &% z) = &(s,2) — 2 rnvana and T*(z) = T(x) — D r=r—it1 r.
Substituting (46) and (47) in (45) we have, for all z ¢ Qy—«,
P p(s¥)(€(s¥, ©) — T*(@))" = D (") (8(s%, 2) — T*(2))’,

where S* denotes the set of all samples s* for which the sample s ¢ S. But the
probabilities p(s*) form a sampling design of fixed sample size m — k and for
this sample size the coefficients b, of é(s*, ) satisfy both conditions in clause (b)
of Theorem 5.2. Hence by that theorem e’ (s* z) = é(s* ) for all s & §*5—x
and = ¢ Qy—x . As this result holds for every hyperplane Qy—_ , it holds for all
z &€ Ry . We thus have,
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TuEOREM 6.1. Theorem 5.2 continues to hold if some of the coefficients b, =1,
provided all the corresponding units u, are included in every sample s for which
p(s) % 0.

Now for the Horvitz-Thomson estimate e(s, z) defined by (44), if any =, = 1,
the corresponding unit u, is included in every sample s for which p(s) # 0.
Therefore as a corollary of Theorem 6.1 we have

CoRrOLLARY 6.1. The estimate &(s, x) defined in (44) is admissible in the entire
class of regular estimates.

Acknowledgment. The author is indebted to Professor V. P. Godambe for
general guidance in this work, to Dr. J. Hdjek for many helpful suggestions, to
the referee for a thorough going scrutiny of this paper, and to Miss Patkar and
Mrs. Mullen for doing the necessary typing neatly and carefully.

REFERENCE

Hobpaes, J. L., Jr. and Leamany, E. L. (1951). Some applications of the Cramér-Rao in-
equality. Proc. Second Berkeley Symp. Statist. Prob. 13-22. Univ. California
Press.



