MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE TESTS
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1. Introduction and summary. Let (X7, ---, X{P), ---, (X$%,, -+, X32)
be random samples of size n; from the ¢ continuous p-variate distribution func-

tions F;j(x) = F(x — 0;) where x = (%1, -+, p), 0; = (6:5, -+, 0p;) and
j =1, -+, c. This paper is concerned with the problem of testing the hypothesis
H:0, = 6, = --- = 0, against the alternative that all 0, are not equal on the

basis of the above ¢ samples. When we especially consider the asymptotic
efficiency of test, the following alternative K is adopted,

K:0; =0+ v/N',  wvi= (v, o), J=1-",c

We shall develop in this paper some test procedures for the hypothesis H which
are originated from the paper of Chernoff-Savage [2]. When ¢ = 2, that is multi-
variate two-sample tests, Sugiura [7] has proposed a test statistic of Wilcoxon
type. On the other hand, Puri [5] has derived univariate several-sample tests in
general type including the test of Kruskal-Wallis [4]. It will be shown that the
latter are corresponding to the case p = 1 in this paper and the former is a
particular one among the case ¢ = 2 of our tests.

2. Notations and definitions. NOTATIONS.

F$®(z) = marginal distribution of the kth component of the jth
distribution F;(x)

F{¥P(z, y) = joint marginal distribution of the kth and the ith com-
ponents of the jth distribution F;(x)

S¥(x) = (number of X5& < z,a =1, -, n)/n
8D (z y) = (number of (X2, X{¥) < (z,9))/n

HP(z) = 25a0F% (@),  Sv®(2) = 2ia >\jSJ('fC"2j(I)
Sy (x,y) = 25 )\jSJ('fc;l,-)z,u)

where N = D 5 1m;,n/N =0,0 <N =M, A ST —N<1,N=Z1/c
and we omit the subseript j of F,” if it is not dependent on the jth distribution.
DgriNITION 1.

(2.1) n T % = 2L B, (G=1,---,candk =1,---,p)

where Z¥ = 1 if the ¢th smallest among N observations of the kth component
is from the jth sample and Z& = 0 otherwise and E; is some given constant

dependent on N. Then T,;% may be expressed by the following well-known form
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(22) Tj(k) = foo JN[SN(k)(x)] dS:(,er,(x), JN(t/N) = E
Under)the following assumptions, Puri has proved in [5] the asymptotic normality
of Tj(k .

AssumpTioN 1.

(1) J(H) = limy.e Jx(H) exists for 0 < H < 1 and is not constant

(2) [ Un(8x®) = J(Sy®)] A8, = 0,(1/NY), Iy = {2:0 <Sy® <1}

(3) Jx(1) = o(N?)

(4) |d'J(H)/dHY| < K[H(1 — H)]"**for¢{ = 0, 1, 2 and some § > 0 and
almost all 2, where K is used as a generic constant.

DeriniTION 2. We define the test statistic for the hypothesis H,

(2.3) W = D5 D B mAM(T,® — w)(T,° — )
where u = [5J(¢) dt and [A*] = [A4]™
(2.4) fikk = fé Jz(t) dt — ;1,2

Au = [Za [Zo TSP (@)1Sx P ()] dSx* P (z,y) — W', fork =1.

3. Joint asymptotic normality.
LemMA 1. Under the Assumption 1, the random vector

(3'1) W, = N%(TI(D - F'l(l)’ ) Tc(l) - ﬂc(l)y B Tc(p) - F'c(p))
has an asymptotic normal distribution where
(3.2) w® = ET® = [2,J[H® ()] dF;* (X).

Proor. Following Puri’s works, it holds under Assumption 1 that N*(T,% —
;) — NYBY + BP) converges to zero in probability and N*(Bff-) + B®)
has an asymptotic normal distribution where

Bif + Bif = — 2iu (\/ni) 2ot {B® (X)) — EB®(X.))

(3.3) + (/) 2224 VIH® (X5)] — NBi® (Xia)
— EJH®(X,a)] + ENB;® (Xjo)]
B® () = [%, JIH® (2)] dF® ().
Since we may now express (3.3) as follows
BiY 4 B = 25 (1/m) 2250 € (Xoa),
then we apply the Central Limit Theorem for the n; independent vectors
Vie = (CF(Xw), -+, CR(Xia), -+, CP(Xia)) @ =1, -+, n

Thus the random vector iy Vie/n! has a limiting normal distribution and
hence

(3.4) i, S riivi/Owm)t = N(BP + BY, ..., BP 4+ BP®)
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has also a limiting normal distribution. The fact that the random vector w’
is asymptotically equivalent to the right hand of (3.4) leads to Lemma 1.

Lemma 2. Under H or K, the asymptotic covariance matrix = of W' is given by
the following (3.5) of rank p(c — 1) if |A| % 0.

(3.5) E=A®D where A=[4y] k1 =1, ---,p
(3.6) A = [t dt — (f3J(1) dt)*

A = [Z0 [2, JIF® (2)JIFY ()] dF*P (2, y) — u* for k = 1
and
(3.7) D=[-14@@/N), 4j=1_--,¢ &=1 i=j

= 0, 1.

_Proor. First denote oi:? = N Cov [T:® — w®, T;% — 4;%] and express
the covariance matrix X by the form

(o) -
z=[(% i i hi=12 -, c
(of%) +++ (alf”)

Then from (3.3) forj # s,
N7 = 2inie /) EIB® (Xia) BS® (X )]
(3.8) ~ (/1) BB (X (TIH® (Xu)] — MBS (X))
— (/) EIB® (X ;) (JTH® (X10)] — NB® (X o) }]

where B(X) = B(X) — EB(X),J(X) = J(X) — EJ(X).

We obtained the form (3.8) after some computations noticing that since the
first subscript ¢ of X refers to sample from the sth distribution F;* (z) and the
second « indexes observation within the subsample, the random variables
X..'s with different 7 or a are independent and consequently we get for 7 = r
or a # f the following

(39)  EB®(Xw)B®(Xs) =0, EB®(Xu)J[H®(X,5)] =0
EJH® (X ) JH® (X,)] = 0.
Now from the following expressions
B¥(Xu) = —[% (8i1(2) — Fi®(2)}J'[H® (2)] dF;* ()
(3.10) JIH®(X;a)] — NB;® (Xja)
= —[2.{8i2(x) — F/® (@)} TH® (2)] ks \s dF:P ().

we may obtain that
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EB®(X:)B® (Xia) = E [Z0 [Z0 {8i(z) — F¥(2)}
(8% (y) — FP )} H® () TH® ()]
(311) -dF,-(k)(x) dFs(k)(y)

= 2 [oqy 0P (2, y) dF; P (z) dF. P (),
a®(z,y) = F.% (@)1 — F.P @) H® @)W H® ()]

where we note in these computations that Fubini’s theorem permits the inter-
change of integration and expectation and for x < y

(312) E(SH () — B @)} SR (y) — FP)} = FP @)1 — F2 @),
The second term in (3.8) is first transformed to the form
—(/M)E [24 [Zo 48R (2) — F2@)}8: () — FP W) H® (2)]
J'TH® ()] dF® () 2o N dF P (y)
and the value is obtained by the similar techniques to (3.11)
(3.13) — (M/10)2 [ecy 6P (2, ) dF P (@) X \s dF P (3).
Analogously we get
(3.14) The third term = — (\;/n;)? [2<y ;% (2, ¥) dF,® (2) 2ii M dFP ().
Substituting (3.11) ~ (3.14) in (3.8),
i = 22 50 M [acy 0P (3, y) dF () dFP (y)
(3.15) — 2 [acy a® (2, ) dF® () 2 i M dF: P (y)
— 2 [ocy a; P (z, y) dF P (x) D izi N dFP (y).

By a similar argument noticing the identity ES D )SP(y) = F.*(x, y), we
also get

(3.16) off" = Tiwi A [Z [Z0 0 (2, y) AP (2) dF}" (1)
+ (/) Dy Mdr [ [20 0,7 (2, ) PP (2) AP (y)
S = S [P [P 0 (2, ) dF® () dF, (y)
(8.17) — 2 [20 @ (2, ) dFP (2) X N dF O (y)
— (% 20 (2, y) AP () Doy Ns AF P (2)

where a.%"(z, y) = (F:*(z, y) — F2(@)F: ()} TH® () H (y)]. The

variance o\ of N *T,-(k) has been derived by Puri

P = 230 N [acy 0P (x, y) dFP (@) AP (y) + (2/N)
(3.18) e A oy a® (2, y) dFP () dF P (y)
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+ (/N 2irstiiser MMl oy @ (2, ) dF® () dF,® ()
+ [ew 0% (2, y) dF P (y) dF,® (z)].
Now under the hypothesis H or K, we get the following after some computations
21iMyae [acy 0,7 (2, y) dF P () dF,® (y)
=2 [oe, F®(2)[1 — FP () [F® ()]
JEPWNAFP(y) = Au,
My [Za [Z0 0% (x, y) dF. P (z) dF.P(y) = A
where Axi’s are defined in (3.6). Thus we get under-H or K
(3.19) o = (=1 + B/A))Aw k1 =1, .-, pands,j=1--,c
Secondly some elementary computations show that
|D| =0, Dy = ANe/A1 - Xemt # 0

where D, is a submatrix obtained from.D by deleting the cth row and column.
From the identities above, all the cofactors of order pc — r (r = 0,1, --- ,p — 1)
of T vanish and a cofactor of the order p(c — 1)

AnDy -+ ApDy
: : = !Al ()\c/)\l e >‘~c—l)p

ApnDy -+ A, Dy

is not zero if |A| 5 0. Thus if follows that rank (£) = p(c — 1).
Lemma 3. Suppose that |J(u)| = Ku(l — u)]™ 0 < a < &, |J (u)]
Klu(l — w)]™ I (w)| £ Klu(l — u)]?, then fork = 1

(3.20) A= [Z0 [Z0 T8 (@) IS+ ()] dSx ™ (z, y) — u°

is a consistent estimator for Ay, and hence A% is also for A*.
The proof follows from Theorem 1 in Bhuchongkul [1]

4. The asymptotic distribution of the test statistic.
TuroreM 1. Under the hypothesis H, the asymptotic distribution of W AW is
central x5 1) with degree of freedom p(c — 1) where

(4.1) A=A"®@Tr, T =\ hj=12 ---,¢c

IIA

In order to prove this Theorem 1, we apply the following lemma which has
been established by Sugiura [6],

LemMA 4 (Sugiura). Suppose that the distribution of the c-variate column vector
X 18 normal with mean vector 0 and the covariance matrix X of rank r( £ c¢). Then
there exists an unique ¢ X ¢ matriz A such that

(4.2) BA=0, SA=I-B

where B s the projection of the c-dimensional Euclidean vector space to the eigen-
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space belonging to the eigenvalue zero of £. This A is symmetric and x AX s dis-
tributed as x. .
Proor oF THEOREM 1. X is given in (3.5) and we easily get

- Bl e B1 ¢
(43) B= (l/a)| : 0 Bi=Danl e =200
B, --- B =1

,j=1"-,c
Let A = (z)4,7=1,---,¢, -+, pc, then the first equation of (4.2) is ex-

pressed for all j, D 2 D i1 M@a—nerr,; = 0. Then we restrict to z;; satisfying
the following equations

(4.4) > i MEg—ners; = 0 for all j and k.

From the second part of (4.2), we get the following equations for the variables
z;; from the first column to the cth of A

—Au) i + (Au/N)xi; — AnD Tepr; + (A/N)Ters; —
(4.5) — A Y Toperi + (Ap/N)Teoverii = 85 — (\Aj/a)

—AuZ zij + (An/N)xij — -+ — AkpZ T(p—D)ct+i,j

+ (Akp/N)Tp-vetii = —NNj/a,

fork =2 --+,p;47 =12 ---,cand D means 2 .. Multiplying A’ on
both sides of (4.5) and summing up with regard to 7 noticing (4.4),
—Aud T — o — A2 Te-nerii = B/ — (B/a®)\; k=1,2,---,p.
Substituting these values in (4.5), we get
Auzii + -+ F AgZoverii = Ndi; — DO+ V) /] + (B/a")
Aty + -+ + Aroperi; = —(NN/a) + B/, & = 2, -+, p.
Under |A| # 0, we may solve the above equation as ZTg_neri; = Aidi;A™ +
arNj(N + Nj + ), where [A*Y] = [Aw] ™, k,1 = 1,2, -+, p and a, b are generic
constants. Analogously we get
(4.6) Tr-neti,a-neti = NdisA™ + aAhj(Ni + N + b).

By remarking the following facts

(1) D225 n(T® — 1®) = 0 for all k

(2) we concern with only the form of w'Aw,
we may neglect the term aX:\;(A\; 4+ A; 4+ b) in the form (4.6) of z;; and hence
get the form (4.1).

Now we propose the following test statistic

(4.7) W = 250 2R A (T — u) (T — p).
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TuroreM 2. Under the hypothesis H, W has a limiting X1 distribution.

The proof easily follows from Lemma 3 and Theorem 1.

TueorEM 3. Suppose that the density f%(x) of F®(x) be bounded and
dJ[F® (z)]/dz be also bounded as £ — = « . Then under K, the asymptotic distribu-
tion of W is noncentral xpe—y (1) with noncentrality parameter + given by

(48) 7= E;:ﬂ Zlf.b:l N(ves — o) (viy — 71)A“
(20 J'TF® (2))f® (2) dF® (2)][[ 2 TP ()1 () dF P (2)]

where B, = 291 Nvksi

Proof. From Lemma 2 and Theorem 1, asymptotic noncentral xp_1 dis-
tribution of W is easily shown under the alternative K where non-central param-
eter 7 is given by 7 = liMwow Qo1 O fi1 NA®(1;® — u)(® — n). On
the other hand, Hodges-Lehmann [3] and supposition of Theorem 3 lead that

w = p = [Z T (ZNFP (@ + (s — we/ND]) = JIF®(2)]} dF® (2)
~ N s — 5) [Z0 J'TF® (2)1f® () dF® ().
Thus we obtain (4.8).

5. Some discussions. First we consider the case ¢ = 2 as a special one. Then
(4.8) reduce to

(5.1) 7 = M2 L v AM 2, JTF® (2)]% () dF® ()]
| U2 S TFO @) (2) dFP(2),

where vy = via — me. Then the asymptotic efficiency of the test W with respect
to the Hotelling T"-test is given by

(52) ewr = Dr i vA [ 20 JTF® (2))f® (z) dF® (2)]
A2 JTFP (@)1 (2) dF P (2)]/ 2ok ™

where i = Cov (X®, X®) and [¢*'] = [o4]”". Putting J(u) = u, which is
corresponding to the Wilcoxon test, we get

(5.3) ew,m2 = Zk,l VszA“[ faof(k)(x) dF(")(x)][ffwf(l)(a;) dF(l)(x)]/Zk,leVwH

which is consistent in the result by Sugiura [7]. Secondly we set J(u) = &' (u),
which constructs the normal scores test, and we assume that the underlying
distribution be normal F(x) = ®(0, [si;]), then we easily get

A = [Z0 [Z0 oy d@* (2, y) — (JZazdd®(2))" = om
and
2o J' " (2)16® (2) d8® (2) = 1.
Therefore it follows from (5.2) that ew,r» = 1. Lastly consider the case p = 1,
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that is univariate c-sample test. It follows from (4.8) that
7= An 25 N(vs — )20 J'IF (2)]f(2) dF (2))

which is also equivalent to Puri’s result.

After the present paper had been submitted, the author learned that the same
results were obtained independently by M. L. Puri and P. K. Sen, and, for the
case ¢ = 2, by G. K. Bhattacharyya. An abstract of Bhattacharyya’s work
appears in Ann. Math. Statist. 36 (1965) 1905-1906.
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