A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON
PROCESSES!

By H. Kestex axp B. P. Sticum

Cornell University

1. Introduction. In this paper we consider a positively regular, nonsingular,
vector-valued Galton-Watson process. Specifically we consider a temporally
homogeneous, k-vector-valued Markov chain, {Z, ;n = 0, 1, - - -}, with among
others the following properties:

1. Z, is taken to be one of the vectors,

e = (8ia, *++,8ix), 1=7=2Fk;

2. if P denotes the probability measure of the process, if Z, = (Za', -+ -, Z."),
n=0,1,---,and if foreachn, Fi j(z) = P{Zwn S 2| Zn=e},1 £ 4,5 S k;

x>0, then Z,, 1 £j £k 0 <n < =, takes on only non-negative integer
values and

P{Zoa S x| Zo, ++, Za} = FL3 5 Fi5 5 - % Fi3 (2),
where the right hand side is the convolution of Z,* times F. fori =1, -, k;
3. if E denotes the expectation functional, if m:; = E{Z: | Z, = e}, 1 £ 4,
j £ k, and if M denotes the matrix (m:;), then
(1.1) mi; = [oxdF:;(z) < o, 1=4,j5k,
and there exists a finite positive integer ¢ such that
(1.2) (M*):; >0, 14,7 Sk

4. if p denotes the largest positive characteristic root associated with M, then
(1.3) p> 1.

We will prove a limit theorem for these processes that we state succinctly be-
low. In the statement of this theorem u and v will be positive right and left
eigenvectors of M corresponding to p, normalized such that their inner product
is 1. (For the existence and properties of p, u, and v see our comments below and
for a more detailed description of Galton-Watson processes see Chapter II of
(31)- ,
TaEOREM. There exists a random vector W and a onedimensional random variable
w such that

(1.4) liMpaew (Za/p") = W with probability 1,
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1212 H. KESTEN AND B. P. STIGUM

and
(1.5) W = w-v with probability 1.

Also one has etther

(16) E{w l Zy = 6,’} = Ui, 1=¢= k,
or
(1.7) = 0 with probability 1.

Moreover (1.6) holds if and only if
(1.8) E{Zlog Zy | Zy = e} < o forall 1 =4,5 <k

Finally if Zo = e, 1 = 1 = k, if (1.8) holds, and if there is at least one
Jo, 1 = jo =k, such that

(1.9) k 1 Z{u;  can take at least two values
with positive probability, given Zy = e;, ,

then the distribution of w has a jump of magnitude q; at the origin and a continuous
density function on the set of posttive real numbers. (The constants q:; will be defined
later.) If (1.9) fails to hold for all 1 = jo = k, then the distribution of w is con-
centrated on one point.’

To give the reader a better perspective we point out that (1.5) and (1.6) were
proved from (1.8) in the onedimensional case by Levinson [6] and in the multi-
dimensional case from stronger conditions than (1.8) by Harris [2]. The fact that
w either satisfies (1.6) or (1.7) and that (1.8) is necessary and sufficient for
(1.6) is new even in the onedimensional case. The fact that we have here a
necessary and sufficient condition seems to be the main novelty of our result,
even though it could already have been obtained by sharpening Levinson’s
argument. Also the absolute continuity of the distribution of w in the onedimen-
sional case was proved in [6] (see also [7]). Finally we point out that while our
proof in the case of multidimensional processes is somewhat involved, the proof
of the theorem for onedimensional processes is quite simple.

In the proof of our theorem we will make heavy use of certain important
properties of positive matrices which are subsumed under the Perron-Frobenius
theorem, [5], Section 2 of Appendix. Specifically, the matrix M has a positive
eigenvalue, denoted here by p, that is simple and exceeds all other eigenvalues in
absolute value. Moreover there exist row vectors » and » with positive components
which are eigenvectors of M corresponding to p; i.e.

(1.10a) oM = pv, v;>0,1<7=Zk,

2 Qur argument below shows indirectly that if ¢; > 0 for some #, then (1.9) must hold
for some jo .
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and
(1.10b) My = pu, wi> 0,172k,

where u’ denotes the transpose of u. We assume throughout that » and v are
normalized so that vu’ = 1. Finally

(1.11) ((M™):,5/0") — uw; = O(|p1/p|") as n— o,

for some |p1| < p.

The proof of our theorem will be obtained in several distinct steps. We begin
by constructing an auxiliary process, {Y, ;n = 0, 1, - - -}, that is not appreciably
different from the Z-process. Thereafter we use this process to show firstly that
if (1.8) does not hold, then (1.4), (1.5), and (1.7) must hold, and secondly that
if (1.8) is satisfied, then (1.4), (1.5), and (1.6) must hold. Lastly, we establish
several important properties of the characteristic function of W that enable us to
give a simple proof that the distribution of w has the required properties.

2. Proof of the Theorem. To construct the Y-process mentioned above we
proceed as follows: We observe first that it is well known (see [3], p. 49) that
T = (1/0") 251 Z,'u;,m = 0,1, - -+, is a non-negative martingale and that

(2.1)  E{(1/p")Z4| Zo = e} = (M")s/p") = uw; as n— =,

Hence T, converges with probability one and since each u; > 0 we can for each
8> 0find an A = A(d) such that

(2.2) P{|Z,| = Ap" for any n} = (§/2),

where as usual |Z,|* = {2 %1 (Z,7)?}. For an arbitrarily chosen 8 > 0 and an A
satisfying (2.2) we shall now define an auxiliary Markov chain Y, ,n = 0,1, - - - ,
by truncating Z, . Of course Y, = (Y.}, ---, Y,*) is also a k-vector and Y,’ is
the number of particles of type j in the rth generation of the Y-process. The
definition of the Y,’s is obtained by induction. Let B be a large positive number to
be chosen later, let Yo = Z;, and assume that Y, has already been defined for a
given r = 0. We then define Y,,; as follows. Consider any particle in the rth
generation of the Y-process. If it has less than Bp" descendants of type j in the
(r + 1)st generation, these all survive. If, however, the number of descendants of
type j is Bp" or more, these descendants are all killed off. This process is carried
out for each type of descendants of each particle in the rth generation separately.
We now let Y, denote the total number of particles of type j surviving in the
(r + 1)st generation which descend from a particle of type ¢ in the rth generation
of the Y-process and define Y7,; to be the total number of particles of type j
surviving in the (r 4+ 1)st generation. Thus Yo, = > s Yidi,j =1, -, k.

From the preceding description of the Y-process we can deduce immediately
the following facts:

(2.3) Y < 27}, 127k, with probability one;
(2.4) P {any particle is killed off in the (» 4+ 1)st generation | Y.}
< |Z,| Zlgi,jgk f:p' ar;;(z); and
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(2.5) Yo |\ Yy =Y, [ xdF. (x), 1247k
Thus if we introduce the matrix

(2.6) M(r) = (mi(r)) = (J¢" zdF.;(z)),

then it follows from the fact that Y, Y1, - -+, is a Markov chain that

(2.7) E{Yeu— Y.M(r)| Yy, ---,Y,} =0, r=0

In particular, for each fixed 7o , the sequence of random variables
2t (Yo — YIM(r)),  nmo=ro,mo+1, -,

is a martingale.

Next we will show that we can choose B so large that the Y-process is not
appreciably different from the Z-process.

LemMma 1. For each § > 0, B can be chosen so large that

(2.8) P{Y, # Z, foranyn = 0} < 6.

Proor. Let 8 > 0 be fixed and let A = A(8) be as defined above. Then
P{Y, # Z, for any n} £ P{|Z.| = Ap" for any n} + X n-oP{Y, = Z, for
0 =71 =n,l|Z < A" Vo1 # Zupa} S (6/2) + Dm0 P{|Za] < Ap" and some
particle in the nth generation has at least Bp" descendants of one type in the
(n + 1)st generation}

< (8/2) + Zn—O Apn21§i,j§k f;p" dr.: j(x)
(8/2) + A Diciier [5dF:(2) (D pmeap”)
< (8/2) 4+ [Ap/B(p — 1)) D icii<k [ 5 x dF: j(z).

It follows from this observation and from (1.1) that we can find a B so large
that the inequality, (2.8), is satisfied. Q.E.D.

Having shown that the Y-process represents a good approximation of the
Z-process, we will proceed to give a sufficient condition that w = 0 with prob-
ability one.

LemMa 2. If for some pair, (%0, 70), 1 < 40,50 =k,

(2.9) [? zlog z dFy, o (x) = o,

then limuse (Za/p") = 0 with probability one.
Proor. It suffices to show that (2.9) implies that

(2.10) lim,.o E{(Y./0") | Zo = &} = 0.

For then (Y,/p") converges to 0 in probability and because of (2.8) (Z./p")
converges to 0 in probability as well. Since we already know that (1/p") Sk Z s
converges with probability one and that u; > 0, Z 20,121k r=0,it
will then follow that lim,.. (Z,’/p") = 0 with probability one, 1 < j < k.

To show that (2.10) holds we observe that M(s) = M — e(s), where ¢(s)
is the matrix with entries

IIA
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€(8)ii =[50 wdF: (),

1
Clearly, 0 = e(8):; < mij;,e(s);;—0ass— o foralll < 4,7 < k, and thus
by (1.2) we can find a positive constant C such that

(M — e(r)(M — e(r+ 1)) -+ (M — e(r + 20)))s;

2¢+1 t t
= ms,;  — My ioeio.jo(r + t)mio,f

2t+1

S mii (L — Ceigso(r + 1)) £ mif" exp {—Ceiso(r + 1)}, 1
Hence forall N, 1 = N = r
(1 BY, | Zo = 61} = (/)M 0)M (1) -+« M(r — D)) ;
(211) = (/) IM"M(N)M(N + 1) -+ M(r — 1)},
= (1/p") (M),
rexp {—C YT LN+t 4+ (2t + 1))

IIA

ij = k.

Since
2ore0€inio(r) = 200 [ 5o @ dF s 50(x)
fB x dFio,jo(x)(ZBp"gz 1) g >\ f: z logx dF’:Oij(x)

for suitable A = N(B) > 0, (2.9) implies that there exists an integer a such that
Doeoeigis(N +t+ s(2t + 1)) = o whenever N = a (mod 2t + 1). This to-
gether with (1.11) and (2.11) in turn implies (2.10) and the proof is completed.

Q.E.D.

Next we will use the Y-process to show that if (1.8) is satisfied, then (1.4) and
(1.5) must hold as well.

Levma 3. (1.8) tmplies (1.4) and (1.5).

Proor. To prove this lemma we begin by observing that the sequence of
random variables, | 2 re, (Yo — Y. M (2)) /0" n = 70,70 + 1, - -+, form
a sub-martingale (or semi-martingale). This is an immediate consequence of
(2.7). From this observation it follows (see [1], Th. VII, 3.2) that

P{max, <n<r, | Z;;ro (Vou— Y M(T))/p7+ll > e
(212) (1/6 )E IZ,E,O (Yr+l — YTM(T))/pT+l|2}
= (1/e )2k E{|(Yoir — Y. M (1)) /0 .

Moreover since
E{|Ven — VMO Y = SELB{(Yiy — Y V,ime(r)?| Y
(2.13) = DA EB{( i (Vi — Vime (1)) V)
= Z’E i B{(Yrh — Yi'ma () | Y
< i Y [87 4 dF s, (a),
we deduce from (2.3), (2.1), and (1.1) that
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T B{|(Yrr — YoM (1) /0™ | Zo)
(2.14) S Diim 2o BUYT | Zof (1/%) [37a" dF s 4(2)
= 0( 2551120 [32° dF: () Zpprza (1/07))
= 0(|Zo| 2% j=1 [5 2" dF; j(z) (min (B/z, 1))) < .

Thus, as 1o — <o, the right and hence left hand side of (2.12) tends to zero.
This implies that D .o ((Ye — Y.M(r))/p™™), converges with probability
one. (This convergence can also be derived from the fact that each component of
ZLTO (Yepr — Y. M) /o™ n = 710,70 + 1, -+ -, is a martingale.)
Next we will show that the series

(215) Z:‘;O ((Yr+1 - YTM)/pr+1)7

also converges with probability one. This assertion is an immediate consequence
of (1.8) and the following inequality which holds (see (2.2) and (2.3)) with
probability one:

o (Y. M(r) — Y, M) /o™

sup,so | (Yo/p™)| 2270 2205 m1 mas(r) — ma il
sup,zo [(Yo/p™™)| 225 5m1 270 [5or @ dF s 5()
sup,zo [(V,/o"™)| 228 5m1 [3 @ dFsj(2) (Xppra 1)
O (suprso [(Yo/p™™)| Dt m1 [3 xlogx dF: j(2)) < .

The preceding result can be used to show that there exists a random vector,
W, and a random variable @, such that

IIA

(2.16)

A TIA

(2.17) lim,., (Y,/p") = W with probability one,
and such that
(2.18) W = #-v with probability one.

In view of (2.8), (2.17) and (2.18) will then imply (1.4) and (1.5).
To establish the a.e. convergence of the (Y,/p")’s we observe that (1.11) im-
plies that for any given ro < 71,

Dby (VoM™ = Y, M) /74

S (Yo — Y.M) /o) (M™/07T)
2otk (Yo — YoM /™) 'y

+ O(suprsr, |(Yes — YoM) /0™ loa/0]™).

The convergence of the series (2.15), and |o1] < p imply that the right hand side
of (2.19) tends to zero as 7o tends to «, r; = r, . But the left hand side of (2.19)
telescopes and we obtain

(2.19)
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i gsn,ry 2rg (Yega/0™ ) — (Yoy/p") (M0 /7700 = 0
with probability one. Finally when invoking (1.11) once more we find that

(2.20) iy ry—rgoe (Vipar/p™ ) — (Yi/0™)-uv = 0
with probability one. Clearly (2.17) and (2.18) are immediate consequences of
(2.20). Q.E.D.

We will next conclude the proof of the first half of our theorem by showing that
(1.8) implies (1.6).

Levma 4. (1.8) <mplies (1.6).

Proor. To establish the proof of this lemma it will suffice to show that for each
fixed & > 0 we can find a B so large that
(2.21) E{lim,.o (Y./0) | Zo = e} = (1 — 8)uw,;, forall 1 = 4,7 =k,
since then by (2.1), Lemma 3, Fatou’s lemma, and (2.3),
limsw E{Z, /0" | Zo = e} = uw; = E{limy.e (Z./07) | Zo = e

= E{lime.w (Y/0) | Zo = e} = (1 — 8)uw; .
To show that (1.8) implies (2.21) we will first show that the (Y,/p")’s are

uniformly integrable. This fact is an immediate consequence of the following
inequality which in turn can be deduced from (2.7), (1.11) and (2.14).

BU(Yrqa/o™™) — (Yo/p7 )M (ro) -+ M (1) /o """} | Zo)
(222) = B{ X (Yo — Y. M@)o M (r 4 1) -+ M(r) /0" | Zo}
= 20 B{{[(Yes — YoM (r) /o™ M (r + 1)« M(r0)/0" 7" | Zo}
S Ot B (Yo — YoM (1) /0™ P | Zo) £ Cy <

for certain constants C; and C, that are independent of 7y and 1. In view of
(1.11) and 0 = m;,;(r) = m,,; for all rand all 1 = ¢, 7 = k this implies that
E{|(Y,/o"|| Z¢} is bounded, which is even stronger than uniform integrability.
Next we observe that (1.2) and (1.11) together with the facts e(s):; = 0
and €(s);; — 0 as B — o« uniformly in s, imply that we can find a positive con-
stant Cs such that with Cy = max.; (Cs/(M"),;) and B sufficiently large,

(M — e(r))(M — e(r 4+ 1)) - (M — e(r 4+t — 1))
= (Mt>io:o CsDizijzk 2ovmr  €ii(s)

> (M"ii0l1 = CaDrcissk 2 omr  €i(8)]
= exp {—2C; Zl<”<k ZTH - €i,i(s)} (M )io.do
and hence
[M(0) -+« M(mt — )]s
(2.23) = exp {—2Ci X 1gijk 2oemt e i(S)IM'M(t) -+ M(mt — 1)]i.

2 e 2 exp (=204 Xagigzk 2amo () (M™) 0., -
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Finally it follows from (2.7), (2.23), and (1.11) that
B{Y3 /o™ | Zo = e} = [M(O)M (1) -+ M(mt — 1))
(2.24) Z exp {—2Cs 2 r<ejzk Dvmo €s(8)} (M™ )i 50/ o™
= exp { =204 2 1sizk Dm0 €,5(8) iy (1 4+ O(|py/p]™)).
Since under (1.8)
2omo€ii(s) = 2amo [me v dFii(2) = [5adF:i(x)(Xpprzel)
‘ = 0([3xlogzdF:;(z)) = o(1) as B — o,

we conclude that for sufficiently large B

lim infpaw E{Y7%/0™ | Zo = e} = (1 — 8)uigpj, -

This result together with the uniform integrability of the (Y,/p")’s implies
(2.21). Q.E.D.

The results obtained in Lemmas 1 through 4 can be conveniently summarized
as follows:

If conditions, (1.1)—(1.3), are satisfied, then (1.4) and (1.5) must hold. More-
over, the limiting variable w satisfies either (1.6) or (1.7). Finally w satisfies
(1.6) if and only if (1.8) holds.

Having established the a.e. convergence of the (Z,/p")’s and the properties
of the mean value of the limiting variable w, we shall now proceed to show that
if (1.8) holds and if there is at least one jo, 1 < jo < k, such that (1.9) holds,
then for Zo = e:, 1 = 7 < k, the distribution of w has a jump of magnitude g¢: at
the origin and a continuous density function on the set of positive real numbers.
The constant g: is the th component of the vector ¢, defined in (2.29) below.

To prove this part of our theorem we introduce some more notation. Let

s = (81, "+, s) be a complex k-vector with |s;| = 1,1 < ¢ < k, and let r =
(ry, + -+, r) run through k-vectors with r; = 0, »; integer, 1 < ¢ < k. Then we
define the moment generating function, f.(s) = (f.'(s), -+, fa*(s)) by

£(8) = ZP{Zu=r|Zo=e}s’, 1=2iZknz]l,
where s" stands for s;"'s, - -+ s*. For real k-vectors, t = (t1, ---, ), o(t) =
(@'(t), --+, &°(t)) will denote the characteristic function of W ; Le.

(Pj(t) = E{exp ’[Z,:n=1 thm | Zo = e,-},

Similarly we let

—
IA
<.
IIA
=

el (t) = E{exp i D om1tn(Za"/p") | Zo = &}, 1=j<kn20,
and let o () = (on (1), -+, 0a"(2)). It is easily shown that
(2.25) en(t) = fena(t/p)).

(Compare [3], Equation 1.8.6.) Since (Z./p") converges to W, it follows that
on(t) — (1) as n — . Hence
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(2.26) o(t) = fle(t/p)).
Moreover since W = w-» with probability one, it is also true that
(2.27) (1) = ¢’ (Xiatws), 127k,

where ¢’(t) = E{exp itw | Zo = ¢;}.

To establish the fact that the distribution of w has a jump at the origin and
that its magnitude is exactly ¢: if Zo = e;, 1 £ ¢ = k, we begin by recording the
following properties of the f,(-)’s which can be found in [3], Chapter I1:

(2.28) Jasr(8) = ful(fu(s)), n k= 1;
there exists a unique vector, ¢ = (q1, -+, qx), with0 £ ¢: < 1,1 £ ¢ £ k, for
which

(2.99) o) = ¢

As in [3], p. 14, Remark 1, this implies that

(2.30) PW =0|Z=e} = q; 1242k
f

or if ¢;* denotes the left hand side of (2.30), one must have ¢* = f (¢*) and since
E{w|Zo=e} =u:>0,1 <4 =k by (1.6),¢" < 1foreach 7 Thus ¢* equals
the unique solution ¢ of (2.29).

Next we will show that for some § > 0,

(2.31) l'()] < 1, 1 <4<k,
whenever
(2.32) It = (5t =6,  Dticitws = 0.

To establish this fact we will need to use assumption (1.9). Clearly (1.9) implies
the existence of two vectors, 7 and * such that

(2.33) Sk artus = Dy i

and such that

(2.34a) P{Zy=1|Zy=¢;,} >0
and

(2.34b) P{Zy = 1| Zo = €} > 0.

On the other hand, since as is easily shown from (1.6),
EBlw|Zo= e, 2 =1} = (1/p)E{w|Zs = 1} = (1/p) Dicirous,

(2.33), and (2.34a and b) imply that the conditional distribution of w given
Zy = e;, cannot be concentrated on one point. As is well known ([4], Section 14,
Theorem 2) this in turn implies that for sufficiently small ¢ 5 0, |¢°(¢)| < 1 and
hence that (2.31) holds for ¢ = jo and sufficiently small ¢ with D_j_; tw; 5 0. To
prove (2.31) for all 7 we observe that
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(2.35) o' (t) = fa'(e(t/6")), 1<ish
because of (2.26) and (2.28). Also by (1.2) there must exist an n with
P{Z,° > 0|Zy = e} > 0 forall q.

Since
ko' ()] = | 200 P{Zn = 7| Zo = esdo(t/0")"]
(2.36) < >nsoeemzoPlZa = 1| Zo = ed|o (t/0")|™" -+ |5 (t/0™)]™
<1

if there is a vector r with positive jth component, such that
P{Z, = | Z, = e} > 0and if ¢ is sufficiently small so that |¢(t)| < 1, we can
conclude from the preceding remarks that there exists a 6 > 0 such that (2.32)
implies (2.31).

Our assumption (1.9) played an essential role in estabhshmg the existence of
a neighborhood around the origin in which the absolute values of the character-
istic functions of w are different from one everywhere except at the origin itself.
Before continuing our proof of the absolute continuity of the probability dis-
tribution of w on the set of positive real numbers we want to point out here that
if (1.9) fails to hold, then the distribution of w is concentrated at one single point.
To establish this fact we assume that there exist constants b;, 1 = ¢ < k, such
that if Zo = e:, D s—1 Z1'u; = b: with probability one. Then b: = pu, and for all
n> 1, 251 Zu; = p"us with probability one if Z, = e;, 1 < ¢ < k. Indeed,
since Ef Za—l 7y ﬂj | Zo = e} = pui, 1 =1 <k, the first part of the assertlon
is obvious. As for the second part for each pair,1 < 4,7 < k, let Z,"? denote
the total number of particles of type j descending from a particle of type ¢ in the
(n — 1)st generation. Then, given Z,_, ,

Z?‘:l anuj = z=1 Zk—l Zn g Jug ZI;=1 Zi—lbi =p Z?:l me—lui
with probability one.

Our assertion now follows by induction.

We return to the proof of the absolute continuity of the distribution of w if
(1.9) holds. Using (2.31) we shall show that the functions ¢’( - ) have absolutely
integrable derivatives. For this we shall need the following lemma.

LemMA 5. Let

msi(s) = 3f'(s)/ds; and mi;(n;s) = 8fa'(s)/ds;, 1=4,j <k
Then for each 0 < b < 1 there exists a constant Cs and a N\,0 < N < 1, such that for
all 24,7 £ k,andalln = 1,
(2.37) mi,j(n; s) S C\" whenever |si| = b,---,|ss| £ b

Proor. Since f.(-) has positive coefficients, we can only increase m. ;(n; s)
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when replacing si, -+, s, by [si, - -+, |ss]. Thus we may assume 0 < s; < b,
1 £ ¢ = k. It follows from the relation, f,(s) = f(fs—1(s)) that
(2.38) M(n;s) = M(faa(s))M(n — 1;5),

where we have written M (n; s) for the matrix with entries m, ;(n; s) and M(-)
for the matrix with entries m: ;( - ). To study the behavior of M (n; s) we begin by
showing that M (q) has a non-negative eigenvalue p < 1 which has the largest
absolute value among all the eigenvalues of M (q). Since M (g) has non-negative
entries only, the existence of a non-negative eigenvalue of largest absolute value
is well known (c.f. Theorem 2.4 in Appendix of [5]). Hence we need only show
that p < 1. In the case when M (¢) = 0, which is not included in [5], Theorem 2.4
of Appendix, p = 0 and the remarks below become mostly trivial. If the entries of
M(q) are not all zero, we observe that (2.38) and the relation, f.(¢) = ¢,
n =12 -, imply that M(n; q) = M(q)" for all n. Hence M (n; q) has the
eigenvalue, (p)". On the other hand the largest eigenvalue of M (n; q) cannot
exceed

(2.39) k max;,; mi,;(n; q)
(see p. 476 of [5]). However
mi (M @) = 2apotiP{Zn = 17| Zo = edq™ -+ ¢ - @™,
and for each r # 0,
(2.40) PlZ,=r|Zy=e}—>0 as n— o, 1=¢=k,

(see [3], sect. I1.6). By (2.40), ¢: < 1,1 = 7 < k, and the dominated convergence
theorem lim,.o m:j(n; q) = 0,1 £ 4,7 = k, and thus by (2.39) (3)" — 0 as
n — . This proves our statement that p < 1.

We return to the study of M (n;s). Because eigenvalues are continuous functions
of the matrix entries, there exists aé > Osuchthat0 < ¢; + 6 < 1,1 = ¢ =k,
and such that A, the largest eigenvalue of M (g + 6) satisfies 0 < A < 1 (of course
g+ 6= (qu+ 8 -, q —+ 8)). But it is easy to show (see proof of Theorem
I1.7.2, p. 42 of [3]) that lim,.. fo(s) = ¢ uniformly in |s;| < b, ---, |s] = b.
Consequently if we take into account that m. ;(s), 1 = 4,5 = k, is non-decreasing
in each argument, we can find an N such that forn =2 Nand0 £ st = b, -+,
0= =D

IIA
lIA

m(fa(8))is = mii(q + 6), 1=4j=k
By iteration of (2.38) we finally obtain
M(n;s) = M(faea(s)) -+ M(fyvsa(8))M(N + 1;s)

< M(g+8)" " M(N + 1;5),
where the inequality is meant to hold for each entry of the matrices and for
0<s:<b1=7=k (2.37) now follows from (M(q + 8)"):; = O(\") as
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n — o, which in turn is a consequence of the Perron-Frobenius theorem. (To
see this observe that Theorem 2.3 of the Appendix of [5] is applicable because
¢+ 6> 0,1 =4 =k, together with (1.2) shows that (M (g 4+ 6)%):; > 0 for
all 7, 7.)

Levmma 6. If (1.8) and (1.9) hold, then (d/dt)g’(t) exists, is bounded and con-
tinuous and [Z,, |(d/dt)g’(t)| dt < o, forallj,1 £j < k.

Proor. Foreachj, 1 £j < k,¢’°(-) certainly has a bounded, continuous deriva-
tive since E{w | Zo = ¢;} < «.To show that the derivative of ¢’( - ) is also abso-
lutely integrable we proceed as follows. Let a > 0 be chosen so small that

(2.41) b® = SUDasiy, o inspa lo'(8)| < 1, forall i, 12i2k
Such an g exists by (2.31). From (2.35) and (2.27) we deduce that
g (tosp") = (", 0, -+, 0) = £:7(e(3,0, -+, 0)),
which after differentiation with respect to ¢ gives
np"g (1p") = 2251 (8f(8)/880)smptt.0,--0 (3¢ (1, 0, - - - 0) /),

where we have written ¢'(u) = (d/du)g’(u). Consequently for a suitable con-
stant Cs ,

[old )l du = [l ()l du + Zio [t lg' ()] du
(2.42) =[5 19 ()] du + Srmve” [ 19" (™) dt
Co(1 4 [a# (2270 2251 [(0£7(5)/08:)amptt0.-0]) dl.
On the other hand for @ £ ¢ £ pa one has by (2.41) and Lemma 5
|(8fa’(8)/98:) emptti0,-- 0] S CoN™.

Consequently the integrand in the last member of (2.42) is bounded and thus
f3° lg'(w)| du < . Since we can treat the integral over v < 0 in a similar fashion,
the proof of the lemma is complete. Q.E.D.

When using the preceding result, we can give a simple proof of the next lemma
which represents the last step in the proof of our theorem.

LemMa 7. If (1.8) and (1.9) hold, then for Zy = e; the conditional distribution of
w has a jump of magnitude q; at the origin and has a continuous density on the set of
positive real numbers.

Proor. The jump at the origin was already determined in (2.30). To establish
the existence of a density function we define

gr(z) = (1/27) [Z7 79 (1) dt.
Integration by parts shows that for x > 0,
gr(z) = (=1/2mix){e""¢'(T) — ¢"¢'(=T)} + ha(a),

where hr(z) = (1/2wiz) [Z7 ¢ ¢’ (¢) dt. In view of Lemma 6, hr(z) converges
boundedly to a continuous function on z > 0, A(z), as T'— «. Also

IIA
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(2.43) g+ = limre ¢°(T) = ¢°(0) + limg.s [5 ¢'(2) dt
as well as
(2.44) g = limrw ¢’ (—T)

exist. But then by the inversion formula, for continuity points z;, z2,0 < 21 < 23,
of the distribution of w,

Play < w £ 2| Zo = ¢} = limpow [T7 (6777 — ¢ '/ —2mit)dxg’ () dt
= limz.e [22 gr(z) dz = [2 h(z)
+ limrao [2 (—1/2miz)[e g (T) — ¢™¢'(—T)] dz.
But,
(2.45) [2 (1/2miz)e g (T) dx = [32 (¢ '™ /2wix)g, dx
+ [2 (77 /2miz) (¢(T) — g4) da,

and as T'— « both terms on the right hand side of (2.45) tend to zero, the first
term by the Riemann-Lebesgue lemma and the second term by (2.43). We con-
clude by applying the same argument to the integral

[z (& /2miz) g’ (— T) da
that
Plzy < w =< 3| Zo = ¢} = [22 h(z) do.

This completes the proof of the lemma. Q.E.D.
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