ON THE HODGES AND LEHMANN SHIFT ESTIMATOR IN
THE TWO SAMPLE PROBLEM'

By TERRENCE FINE®
University of California, Berkeley

1. Introduction. This note provides a characterization of the Hodges and
Lehmann (1960) estimator of shift in the two sample problem, A*, and suggests
an alternative estimator A. . The asymptotic variance of A, is never much more
than that of A* and for some underlying distributions it can be indefinitely smaller
(Theorem 3).

It is assumed that we are given a sample X, --- , X, of observations that are
iid as F(z) and a second sample, independent of the first, of observations
Y., -+, Y, that are iid as G(z). Furthermore, it is assumed that for some
initially unknown shift A, F(x — A) = G(x) ¢ G, where G is the class of all
absolutely continuous distributions, and G is otherwise unspecified. Let
N = n 4+ m and \y = n/N. The final assumption is that for some \g, 0 < N\ <
Ay = 1 — N\ < L. It is then desired to estimate A.

The empirical distributions for the samples X1, -+, X, and Yy, ---, Y
will be respectively denoted by F.(z) and G.(z). The total sample empirical
distribution Hy(z) when the sample X;, ---, X, is shifted to the right by an
amount A, is given by

Hy(z) = MF(x — A) + (1 — \y)Gu(2),
where in our notation the dependence of Hy upon A is implicit.

2. A characterization of A*. The shift estimator A* = med (¥: — X;)
(¢z=1,.-+-,m;j =1, --+,n) has been proposed and examined by Hodges and
Lehmann (1960). The asymptotic distribution of A* is normal with mean A and
asymptotic variance o3 given by

oas = (1205(1 — M\ )N)'[f2, G dGT2.
A characterization of A* is provided by

THEOREM 1. The estimator A* minimizes the two-sample version, of the Cramér-von
Mises statistic

(1) Wy = [24[Fu(z — B) — Gu(2)] da.
Proor. Choose some A > max (X; + 4, ---, X, + A, Yy, -+, Y,) and

replace the empirical distributions in (1) by their unit step definitions.
Equation (1) becomes

Wy = [2n DD 20U — Xi — AUz — X; — A)dr
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(2) + [2m Y Y Uz — Yo)U(e — ¥;) do
— 2(nm) 7 [0 201 225 Uz — X — D)U(x — Y;) da.
Evaluation of (2) after reduction yields
Wy = —n2> D tiymax (Xi, X;) — m D D tiamax (Yi, ¥;)
+ (am) 7 X 2 (X + Y5) 4 om) ™ 28 205 |V — Xy — AL

The only term involving A is (nm)™ D w1 D71 |Y; — Xi — A|, and it’s well
known that this term is minimized by A = med (Y; — X.), as claimed.

3. An alternative shift estimator. A shift estimator A., having desirable
properties when compared to A*, can be generated as follows. Define the statistic

(3) Vw(B) = [ocaya J(Hy) d(Fu(z — &) — Gu(z)),
where J(z) is such that for some 0 < ¢ <

JO(z) = 27° fo<z<e
(4) =0 fe<z<1l—ce

=—(1—-2)7 ifl—e<z=1

and J®(e) = — € *; Vyis closely related to Ty of Chernoff and Savage. Following
the technique of Hodges and Lehmann (1963) for the conversion of a test statistic
to a point estimator, we define

(5) A = sup {A: Vx(A) > 0}.

The definition of A, in (5) is partially justified by

LemMa 1. If J(x) 1s non-increasing in x, then V(A) is non-increasing in A.

PROOF. Zi, -+ , Zy is the ordered sample of elements X1 + A, -+, Xa + A,
Y, .-+, Yu, and we define

Zyi=1 ifZ;isanX + A
=0 ifZ;isal.
Then Vy(A) can be expressed as
Va(R) = NJ((N — 1)/N)[(1 — M)™" = Zww/M(1 = )]

+ NS (G = 1)/N) = J(E/N)]

ADN(L — M) 2o5m1 2w — /(1 — M)}
As A increases, the number of X -+ A terms in the first ¢ terms of the ordered total
sample is non-increasing. Hence, > %y Zy; is non-increasing. By hypothesis J
is non-increasing and thus J((¢ — 1)/N) — J(%/N) is non-negative. Since Vy

is a sum of non-negatively weighted, non-increasing terms, it is non-increasing in
A as claimed.
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The asymptotic behavior of A, follows from that of Vy and that of Vy is given
by

LemMa 2. The statistic Va(A) is asymptotically normally distributed with
variance o' = O(N') and mean

(6) my(8) = [ucaa [G(z) — F(z — B)J'(H(2)) dH(x),

where H(x) = \F(x — A) + (1 — \y)G(2).
Proor. Theorem 1 of Chernoff and Savage and the details of its proof establish
the asymptotic equivalence

Vy = focaa (Hy — H)J' (H) d(F — @) — [ocaar (F — G)J'(H) dH
— [ocact (Fn — F + G — Gn)J'(H) dH + 0,(N7?).

The mean and variance follow by direct calculation, although we omit the cum-
bersome expression for oy’. Asymptotic normality follows essentially from the
asymptotic normality of N %(F,, — F) and N %( G. — @), or reference to Cher-
noff and Savage.

A sufficient condition for the asymptotic normality of A. is

TuEOREM 2. If

(7) limysew Nmy(A + oN 7} = o [ GT(@) dG,

then A, is asymptotically normally distributed with asymptotic mean A and asymptotic
variance

ol = [2/\(1 — M)V 2 @I (@) dGT™ [ focacy<r o(1 — y)J ' (2)J ' (y) dx dy.

Proor. From (5) and tlhe fact that Vy is non-increasing, it’s immediate that
the event A. £ A + aN? is equivalent to the event Vy(A + aN?) > 0. By

the asymptotic normality of Vy this establishes that
Pla. — A £ oNY = cerf [—(aN"H([Z. G'T'(G) dG)/av],

and the theorem follows after some calculation and approximation to oy . For
our choice of J(z), and assuming the validity of (7), we have that

(8) ¢l = [2x(1 — M)NET[L + 128 + 16€[[2. G'T'(G) dG1

In order to compare the performance of A, and A* in terms of their asymptotic
variances we establish
TaroreM 3. Under the above definitions and assumptions (less (7))

(9) supg [limy.. (cae/0)] = o,
and

(10) infg [limy.ew (che/ol)] = 1 — O(€).
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Proor. Introduce the sequence of absolutely continuous distributions {E.}
with densities defined by

E,/(z) = 26,X if0 <2 =< (¢/6.)}
=5} if (¢/6.) <z < (t/6.) + 6n
(11) = 20,(A —2) i (#/8) F o<z = A =04 (8/5,)}
+ (1 =t = &.b)/6.)
=0 if  otherwise,

where §, is any sequence decreasing to zero. This sequence has the property, as
can be verified by integrating and taking limits, that for 0 < ¢t < 1,

iMaw [[Z0  En'J (Ea) dEw/ [Ze B, dEy)
= limn.. {J'(8) + 0(8:H)]/([1 + 0(8)]} = J'(8).

By properly selecting ¢, the limit of this sequence will yield the asserted sup and
inf.
To verify (9) observe that when (7) holds

(12) limy.e (che/o) = €1 + 126 + 16774 [Z. T (@) dG/ [, G dG}’.

Since (7) is valid for any of the E, , as is verifiable by integration in (6), let us
consider the sequence K, defined as E, but with ¢ = §, . For each n (12) is valid,
and asn — o,

i yaew (05 /0e) < [T (8))F = [J'(0)) = .

This verifies the supremum result.
The proof of the infimum condition is similar and rests on the observation

that for G’ = 0
(J2. GJ'(@) dG)’ = min, [J' () ([Z. @' dG)’ = (2. G dG)".

Thus a lower bound to limy.. (oas/cc) is [1 + 12¢* 4+ 16€"] ™. To prove that this
lower bound is the infimum we need only exhibit a sequence of distributions
such that limy.. (chs/o’) converges to this lower bound. The sequence {E,}
with ¢ = } will obviously suffice to complete the proof.

If G is a uniform distribution, then one can show that ¢’ = o(N~') and A.
is asymptotically non-normal. Hence the supremum is attainable within the class
of allowed distributions.
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