ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM

By D. NEwroN aAND W. PARRY

University of Sussex

0. Introduction. In this paper we exhibit a factor of a normal dynamical system
which, although possessing a similar spectral structure, is not in general iso-
morphic to a normal dynamical system. In Section 1 we compute the entropy
and canonical system of measures associated with the factor decomposition. In
Section 2 we obtain a spectral decomposition for the factor automorphism
which resembles very closely the usual spectral decomposition of a normal dy-
namical system. The results of Section 2 are used in Section 3 to give an example
of a dynamical system with countable Lebesgue spectrum, and zero entropy
which is mixing of all orders. Such an example according to Rohlin [8], has been
found by Girsanov (unpublished).

For the theory of Lebesgue spaces and the associated concepts of measurable
partitions, homomorphisms, unitary rings c.f. [7], [9].

A dynamical system (X, &, m, T') (abbreviated to (X, T')) is a Lebesgue space
(X, ®, m) together with an automorphism 7 of (X, ®, m).

Let Uz be the unitary operator induced by 7' defined on L*(X) by

Usf = [T,

then Uy is an automorphism of the unitary ring L*(X). If L is a unitary sub-ring
of L}*(X) such that UL = L we refer to (L, Ur) as a unitary subsystem of the
unitary system (L*(X), Ur).

(X', ®, m, T') is said to be a factor of (X, ®, m, T) if there is a homo-
morphism ¢ of (X, ®, m) onto (X', &, m") such that ¢T = T’¢. In this case
U, defined by

Usf = fo

will be a ring isomorphism of (L(X’), Ur) into a unitary subsystem of
(LX), Ur).

Let (X', T') be a factor of (X, T) under the homomorphism ¢. Let X, =
{z:¢(z) = z'} and B = {B n X, :B £ ®}; then for almost all 2" & X’ there exists
a normalised measure m, such that (X, , ®.r , m.) is a Lebesgue space and for
every B ¢ ®, m.(B) is a measurable function such that

[x» mar(B) dm’ = m(B).

The measures m, are called the canonical system associated with the factor de-
composition ¢ *(z’) and are unique [m'].
One way of defining the canonical system m.- is by the formula

Jxo Fuly) dme = B(fa| 676",
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where this conditional expectation is evaluated at any member of ¢~'(z’) and
where {f.(z)} is a countable set whose linear span is dense in L*(X).

Let @ = [[7—<R:, R: = R the real line, and let ® be the usual product
o-algebra generated by the Borel subsets of B. A measure p, is defined on the
measurable space (2, ) by the requirement that the co-ordinate sequence
{2n(@)} (2n(w) = s if @ = {w,}) should be a stationary Gaussian process with
covariance sequence

R.(u) = fl e dp = fﬂ Tmin(®)Tm(w) APy
where i is a continuous symmetric normalised measure defined on the Borel sub-
sets of I = (—%, 3]; c.f. [4].
Let (2, ®, , m,) be the completion of (Q, @, p,); then (Q, ®, , m,) is a Lebesgue
space and the shift transformation 7, ,
Tﬂ{w"} = {w”+1}7 xﬁ( TM“") = xn+l(0))

is an automorphism. (@, T,) is called a normal dynamical system. We abbreviate

UT“ to U,, .
Our aim is to define a factor of (2, T,.). We define an equivalence relation ~ on
Q by: w ~ a if and only if 2,(w) = z.(a) for all integers n, or z.(w) = —2z.(a)

for all integers n. The partition @' of  into equivalence classes is a T,-invariant
partition. The canonical map ¢ which maps each point w onto the equivalence
class o’ which contains it is exactly two to one. The s-algebra &’ of subsets B’ for
which ¢~ (B’) ¢ ® has the property that ¢ '®’ is the smallest s-algebra for which
all functions of the form:
(0.1) 1T 2ay(w)
are measurable.

Let m’ be the measure defined by

m/(B') = m(¢™'B’)

and let T,” be the shift transformation on @', i.e., T, = T,'¢. We shall denote the
induced unitary operator on L*(Q') by U,’ = U r,» - It is clear that ¢ induces a
ring isomorphism U, of LX(2') into L*() such that U,U," = U,U, whose range
R, is the closure of the complex linear span R, of functions of the form (0.1). In
other words we have

TueorEM 1. The unitary systems (L*(2'), U,), (Rs, U.) are ring isomorphic.

Let & C L*Q) denote the closed complex linear span of {z.(w):n = 0,
=41, ---}; % is a Gauss linear subspace and if (y1, + -, ¥x) C & are orthogonal
then they are independent [3].

The nth Hermite polynomial H,(u) is defined by

Ha(u) = [(—1)"/nlle”(d"/du")e™".
It is not difficult to show:
(0.2) H;,(u) are polynomials involving even powers only.

H,1(u) are polynomials involving odd powers only.
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If > % |ai® = 1 then there exists constants a(ny , - - - , ny;) such that
(0.3) Ha(awn + -+ + atis) = D nipeeingen @(n1 -+ 1) Hpy (1) - -+ Ho (i)
([3] p. 106).

Let Q.() be the linear manifold of functions in L*(2) of the form
f(w) = Z"1+"'+ﬂk=ﬂ»"¢§0 a(nl e nk)Hl;'-l Hﬂj(yi(w)))

where (y1(w), -+, yx(w)) C X is a real orthonormal system and a(n; - - - ny)
are complex constants.

Evidently, Qo() = C (the subspace consisting of complex constant func-
tions), @1(X) =

UiQn(X) = Qu(X),n = 0,1, ---

Moreover, L*(2) = D 1m0 @ Q; (%) where Q; (SI:) is the closure of Q:(%) in L*(Q),

and the maximal spectral type of U, on Q,,( o) is u”* = pap™", 4 is the normalised
measure on I concentrated at 0, and * denotes convolution [2], [3].

1. The factor system (', T,.).

Lemma 1. If (X', T') isa homomorphic image under ¢ of the ergodic dynamical
system (X, T), where ¢ (2 is countable for almost all 2’ ¢ X ' then ¢ is essentially
n to 1 for some finite cardinal n, in the sense that there exists a partition
a = (A1, -+, A,), of almost all of X, such that A; n ¢*(z’) consists of only one
point. Moreover the canonical measures m.' are given by

ma(A;n ¢ (z')) = n7, i=1--,n

Proor. According to [9] there exists a countable partition @ = (4, 4, ---),
of almost all of X, such that 4;n ¢*(2") consists of only one point, and

(1.1) ma(A1n ¢ (2)) 2 ma(dan ¢ (2') 2

It suffices to show that if m(4:;) >0, m(4;) > 0 and j = 7, then
m(4; n ¢ (B')) £ m(4; n ¢ (B’)) for B'¢®'. Using the ergodicity of
T, A;n ¢ *(B’) is composed of disjoint parts which are mapped into 4; under
some iterate of 7. Without loss of generality we may assume T"(4; n ¢ (B’))
C A;,and T*(4;n ¢ 'B’) n A, = . Using (1.1) we have

m(A;n ¢ 'B’) = m(T"(4;n¢7'B’)) = m(T"(A:in¢B’)) = m(A:n ¢'B’).

CoroLrARY. Under the hypotheses of Lemma 1 the entropies of T, T’ are identical
ie. W(T) = WT').

Proor. We may assume R(T’) < « forin the contrary case there is nothing
to prove. Let ¢, ¢ be the partitions of X, X’ respectlvely into 1nd1V1d1a1 points.
Let B be a partltlon of X such that H(B) < « and V7 im0 (T")*8 = € [10], then
MT') = KT, 8) = H(B/8") where 5~ = Vim (T')7'8. Let « be the finite
partition of X defined by Lemma 1. Evidently

-1 7

T va)Z¢ld va=e
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where o~ = Vi T '@, and, consequently, ¢ ¢ v o~ = . Hence for every
8 > 0, there exists n such that

H(a/T" 78~ v o) < .
Therefore
WT') = KT, 8) = (T, T"¢7'8) < W(T)
=WT,T'¢ Bva)=H(T¢ BV a/T¢ 8 v o)
S H(e/T"6 8 v &) + H(T"$7'6/T"¢6'67)
<6+ K(T).
From Lemma 1 and the corollary we deduce:

THEOREM 2. The canonical measures with respect to the partztwn Q' are given by
assigning measure § to each of the points of ¢ (w'), and h(T,) = (T w) = 0or «
according as u is singular with respect to Lebesgue measure or not.

PrOOF. ¢ is a two to one map, and the entropy of a normal dynamical system is
0 or =, according as its spectral measure is singular with respect to Lebesgue
measure or not [6].

2. Spectral analysis of (2, 7.). In view of Theorem 1, an analysis of
(LX(Q), U,') amounts to an analysis of ( Rz , U ).

Lemma 2. (i) Quu(X) € By, n = 0,1,

(ii) Qen41(C) s orthogonal to By , n = 0 1 ..

Proor. (i) It suffices to prove that i Ha(yi(w)) € Ry if
m + -+ + m = 2n, and this follows without much difficulty from (0.2).

(ii) It suffices to show that J ]2 ( y,( w))™ is orthogonal to I 1% Hom, (v (w))

if {yiw), ¥/(w)} C « are real, y (@), -++, 9/ (w) are orthonormal and
n+ -+ np, =2n,m + - +mq—2m-|—1

Choose a real orthonormal system (21(w), -+, z1(w)) < X whose linear span
coincidences with the linear span by (y1(w), -+, ¥p(@), %' (@), -+, ¥ (w)).
Then

(2.1) yi(w) = 2jaaizi(w),i=1,---,p,

and

(22) yi'(0) = 2Diaaigw), i=1,+-,q
2iatlaif = 1, i=1,0

Using (2.1), (2.2) and (0.3) the integral
fﬂ Hf’=1 (ya(w))™ H"f'=1 Hmi(yil(w)) dmy,
is a linear combination of integrals of the form
(23)  Jo ILims (ai(@))™ TLict Hoii(ai(@) -+ TLica Hogi(zi(w) i
whereny, + -+ +n = 2n, D oiam’+ - + diamg = 2m + 1.
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The integral (2.3) can be written as
1T fo (@) Huyi(2i(@)) + - Hugi(2i(w)) dm,

since the orthogonal functions z;(w) are independent. ) .
Since Dt (nid +mi+ - +md) =2 +2m+ Lnd +m+ - + m,’
is odd for some 7 and for this 7,

Jo (2d())™ Hayi(24(w)) +++ Hugi(2:(w)) dm,
= (2r) 7 [ ™ Hpys(u) -+ Hus(uw)e ™ du = 0

since the integrand in this latter integral is an odd function. The proof of Lemma
2 is complete.
THEOREM 3. B, = Z:’:o @ Q2n(X) and the maximal spectral type of U s
:.:0 (#2n/2n+1) .

Proor. The first assertion is immediate from Lemma 2. By Theorem 1 the
maximal spectral type of U, is the same as the maximal spectral of U, on R, and
since the maximal spectral type of U, on Qz,(X) is u”™* the theorem is proved. (The
numerical factors are introduced to normalise the measure.)

3. An application. We shall need the following lemmas. The properties of con-
volution of measures that we use may be found in [11]. All the measures referred
to in this section are symmetric and defined on the Borel sets of I = (—%, ].

LEMMA 3. If uy < v1, po <K vy then pixus <K vixve .

Lemma 4. If fe L¥(1) where | is Lebesgue measure, and f is symmetric then fxf

18 bounded, symmetric, continuous and fxf(0) > 0 where
frg(\) = [1f(n — t)g(2) dl.

(N — t s taken mod I).

LemMA 5. uxl = lif u(I) = 1.

In the proof of the following lemma f* = fxf™".

LEMMA 6. If u <K L then there exists a positive integer N such that u” ~ 1.

Proor. By Lemma 3 it suffices to prove the lemma for a measure u such that
w(F) = fpf()\) dl where f e L™(1). We first note that u*(F) = fpr()\) dl. By
Lemma 4, f+f is continuous symmetric and f*/(0) > 0. It will suffice to prove
that, if u(F) = [rg(\) dl, where g is non-negative, continuous, symmetric and
9(0) > 0, then u” ~ I for some positive integer N.

Evidently g(A\) = bxs(\) = k(M) for some b > 0 and some open neighbour-
hood of 0, and

p"(F) = [rg"(\) dl 2 [#RV(N) dl

(The topology of I is obtained by identifying 4 and —%.)
The support of the continuous function A¥()\) is

NJ={M+ -+ Nmod N, -, Med}

and since {nJ} is an increasing sequence of open sets whose union is the compact
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space I, there exists an integer N such that NJ = I. Consequently x" > I and
u" < 1 follows from Lemma 3.

THEOREM 4. If p*u < I then (@', T,') has countable Lebesgue spectrum in the
orthogonal complement of the subspace of constant functions.

Proor. By Theorem 3 the maximal spectral type of (2, T.) in the orthogonal
complement of the constant function is I ~ > wy (u**/2%) (Lemmas 3, 5, 6). If
2N is the least even integer such that z* ~ [ then in each of the orthogonal sub-
spaces Qan(X), n = N, N + 1, - - -, there is a function with Lebesgue spectral
type with respect to U, . Consequently the multiplicity of the maximal spectral
type is No and by the separability of L*(Q") this multiplicity is uniform.

ExampLE. There is a normalised singular measure u on I (and consequently
there is a symmetric measure u) such that

Ru(w) = [16"™dy = O(n™*) forevery e>0  ([12] p. 146).

Since Ra(4*) = (Ba(w))® and Do (Ra(s))* < o it follows that u? < 1.

(@, T,) has zero entropy since y is singular [6]. (2, 7,) is mixing of all orders
since R,(u) — 0 [5].

Consequently (', T,") has zero entropy, is mixing of all orders and has count-
able Lebesgue spectrum (by Theorem 4). Moreover (2', T,’) is not isomorphic
to a normal dynamical system since any normal dynamical system with countable
Lebesgue spectrum has infinite entropy [6].
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