MARTINGALE TRANSFORMS!

By D. L. BURKHOLDER
University of Illinois

1. Introduction. Let f = (f1, f2, - - -) be a martingale on a probability space
(Q,@,P).Letdy = fi,ds = fa— f1, -+~ sothat fo = D s ds,n = 1. It is con-
venient to say thatg = (g1, g2, -+ ) is a transform of f if g» = D4 v di , where
vn is a real @,_i-measurable function, n = 1,and @ C @, C -+ C @ are o-fields
such that {f., @, , n = 1} is a martingale. Note that g need not be a martingale.
It is easy to see that g is a martingale if and only if E |g| is finite for all n. This
condition is satisfied, for example, if each v, is bounded. Transforms of real (but
not of extended real) submartingales may be defined similarly.

Such transforms, particularly in the case in which the v, may take only 0 and 1
as possible values, have a long history and an interesting gambling interpretation.
See Halmos [5], Doob [3], and some of the earlier work referred to in [5]. The
emphasis is sometimes not on the transform g itself but on related sequences
{gm, , n = 1} where the m, are stopping times. Halmos’s skipping theorem and
Doob’s optional stopping and sampling theorems, which give conditions assuring
that {gm,} is a martingale or a submartingale, are examples (g may equal f).

We prove here that, under mild conditions, martingale transforms converge
almost everywhere. We also prove several related almost everywhere convergence
theorems for martingales and establish a number of inequalities that follow from
this convergence.

Inequalities and almost everywhere convergence results for the sequences
{gm,} mentioned above, whether or not they are martingales or submartingales,
follow immediately.

Our first result (Theorem 1) is that a transform g of an L, bounded martingale
f converges almost everywhere on the set where the maximal function v* of the
multiplier sequence v = (v1, 02, -+ ) is finite. Here v™(w) = supa [va(w)], the
boundedness condition on f is that sup, E |fs| < «, and g converging almost
everywhere means that lim, .. g.(w) exists and is finite for almost all w.

Consider a gambler faced with the prospect of winning d, dollars playing game
n in an infinite sequence of games. Under sup, E |f,| < « and the usual con-
dition of fairness (the expectation of d, given @, , his experience before playing
game 7, is 0), his sequence f of fortunes f, = > 1 dy converges almost surely to
a finite limit f., . Is there anything that he can do to make his fate more interest-
ing? Suppose that, under new rules, he can win v, d, rather than d, dollars, where
he is allowed to choose v, just before the nth game on the basis of his past experi-
ence @, . Can he choose v = (vy, v, - - -) subject to »™ < o so that his new
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sequence g of fortunes g, = i v dj converges to w, or, if this is not possible,
so that g oscillates pleasantly? According to Theorem 1, he cannot; his new
sequence will also converge almost surely to a finite limit g, . However, even if
v* < 1, g can be more interesting than f in at least one respect: F |f.| must be
finite since, by Fatou, E |f.| < lim inf, E |f,|; on the other hand E |g.| can be
infinite as the following simple example shows.

Let © be the set of positive integers and P satisfy P({k}) = 1/k — 1/(k + 1),
keQ Let fu(k) =n if n <k, = —1, if n = k. It is easily seen that
f=(f,fe, ) is an L, bounded martingale with limit function f, = —1.
Let g be the transform of f under the constant multiplier sequence
v=(1,—1,1, —1, .- -). Since d, the difference sequence of f, satisfies d.(k) = 1
ifn <k, = —kifn =k =0if n > k, we have that g.(k) = 7, if n < Fk,
=+ (=1)*%kifn = k, where ¢y, = 0,n = 0, %301 = 1,n = 1. Thus, g, the
limit function of g, satisfies P(|g.| = k) = P({k, k + 1, ---}) = 1/k implying
that E |go| = « and g is not L; bounded.

Using Theorem 1 and a stopping time argument, we prove (Theorem 3) that
if f and g are martingales relative to the same sequence of o-fields (g is not neces-
sarily a transform of f), f is L; bounded, and S.(g) = S.(f), n = 1, then g con-
verges almost everywhere. Here, and throughout the paper, Sa(f) = [Dre di’}
where d is the difference sequence of f. These inequalities are satisfied, of course,
if |es| = |da], n = 1, where e is the difference sequence of g. This is the case if g is
the transform of f under a multiplier sequence v satisfying v* < 1. However,
simple examples show that this relationship may hold between two martingales
fand g without g being a transform of f. Using a result of [2], we show (Theorem 6)
that, under the same conditions,

AP(g* > \) S Msup. Elfal, >0,

where g*(w) = supa |ga(w)| and M is a real number that satisfies the inequality
for all probability spaces, f, g, and \. We also prove an upcrossing inequality for g

(Theorem 7).
Let S(f) = [X_u_1d.’*. Austin [1] has shown that if f is an L, bounded martin-
gale, then S(f) is finite almost everywhere. Here we prove (Theorem 8) that

AP(S(f) > N\) = Msup. Elfal, >0,

where M is the same number as before. Furthermore, (Theorem 9) if 1 < p < »
and f is a martingale, then

MLES.(f)? < E|f.|" < N,ES.(f)?

where M, and N, are positive real numbers, depending on p but not on the prob-
ability space, f, or n. Some special cases of these inequalities have been known for
a long time (see Section 3), for example, in the case that d is an independent
sequence satisfying Fd, = 0,n = 1.

In this paper, we consider only real martingales indexed by the set of positive
integers. With slight modifications, most of the results, the upcrossing theorem
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being an obvious exception, carry over to complex martingales. Results for other
index sets, such as the set of integers or the set of nonpositive integers, also easily
follow. Some of the results, but not all, carry over to the submartingale case.
Roughly, those that refer to transforms usually do carry over to the submartingale
case; those that refer to the S.(f) usually do not. Whether any particular martin-
gale result presented here does or does not carry over is usually fairly easy to
check.

Iff = (fi, f2, -+ ) is any sequence of real functions, let f*, the maximal func-
tion of the sequence f, be defined by f*(w) = sup, |fa(w)|. This notation will be
used throughout the paper.

2. Almost everywhere convergence.

TareorEM 1. Suppose that g is a transform of an Ly bounded martingale f. Then
g converges almost everywhere on the set where the maxzimal function v* of the multi-
plier sequence v s finite.

This result implies the corresponding result for submartingales and, more
generally, for all sequences f of the form f = f* + f”, where f’ is an L, bounded
martingale and f” is a nondecreasing almost everywhere convergent sequence of
real functions.

Proor. We proceed in steps.

(i) If g is a transform of an Ly bounded martingale f and v* < 1, then
Eg. < Ef.,n = 1,and g converges almost everywhere. Here g is a martingale and
Efl = B(X pad)’ = D i Edil = Y rmy Eel' = Eg,’, using the orthogonality
of the difference sequences d and e of f and g, respectively. Therefore, g is also an
L; bounded martingale, hence converges almost everywhere.

(ii) If g is a transform of a uniformly bounded submartingale f and v* < 1, then
g converges almost everywhere. Since adding the same number to each term of f does
not change d, forn = 2, in the proof we may and do assume thatf = 0. Therefore,
> ra Edl £ Ef.),n = 1, since, forn = 2, Efpydp = E[fasB(dy| Qrt)] = 0
implying that Ef,” = E(faa + dn)? = Efsy + Ed,’. Let f = (i, /2, --+) and
G = (1,02, ) bedefined by fo = D iidi, dn = Dr1vidy,n = 1, where
dy = dyand d, = dp — E(dn | @a1),n = 2. Then f is a martingale and § is a trans-
form of f. Since Ed,’ = Eld, — E (dn| @n)]* £ Ed,’, n = 2, we have that
Ef.: = D ra Edl £ D ra Ed < Ef.E,n = 1, s0 that f is Ly bounded. By (i), §
converges almost everywhere; f and f converge almost everywhere by the classical
submartingale convergence theorem. Therefore, Y i E(dy | Giy) = fn — f» con-
verges almost everywhere as n — o, and, since each term in the sum is non-
negative almost everywhere, D r—s 0:E(d; | Gr_1) does also. Since g» = §n +
> rs vE(dy | @), n = 2, the desired result follows.

(iii) If g is a transform of an L, bounded martingale f and v* < 1, then g con-
verges almost everywhere. By a result due to Krickeberg [7], there are nonnegative
martingales f and f” relative to the original sequence of o-fields such that
f=f —f" Clearly,g = ¢’ — g”, where ¢’ and ¢ are the transforms of f and f”,
respectively, under the original multiplier sequence v. Therefore, in what follows,
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we may and do assume that f = 0. Let ¢ > 0. Thenfn = —min (fa,c),n = 1,
defines a umformly bounded submartingale f. Let § be the transform of f under
—v. By (ii), § converges almost everywhere and, since g(w) = §(w) if f* (w) =
SUpx |fau( w)l < ¢, we have that g converges almost everywhere on the set {f* < c}.
Now P(f* < «) = 1, which follows from the fact that f converges almost every-
where. Therefore, lettmg ¢ —> o, we obtain the desired result.

The proof of Theorem 1 may now be completed as follows. Let ¢ > 0. Let
In(w) = va(w) if |a(w)| < ¢, =0 otherwise, n = 1. Let § be the transform of f
under the uniformly bounded multiplier sequence & = (9, 9, - ) Clearly,
(iii) implies that § converges almost everywhere. Smce 9(w) = §(w) ifv*(w) < ¢,
we have that g converges almost everywhere on {v* < c}. Therefore, ¢ converges
almost everywhere on {v* < o} and the proof is complete.

REmARK. One consequence of Theorem 1 is that if f is an L, bounded martin-
gale, then, for all possible choices of + and —, the series ) n_y =& d, converges
almost everywhere. Here, as usual, d is the dlﬂerence sequence of f. Thisimplies,
using a standard Fubini argument, that S(f)* = > a1 ds’ < « almost every-
where. Thus, Theorem 1 provides another proof of Austin’s result [1]. Austin
proves that S(f) is finite by showing that the integral of S(f)® over the set
{f* < ¢} is finite for all ¢ > 0. (J. L. Doob has noticed that Theorem 1 provides
still another proof of Austin’s result: Let g be the transform of an L, bounded
martmgale f under the multiplier sequence (0, fi, f2, ---). Then S,(f)*

Jui = 20,0 = 1, and both f and g converge almost everywhere. Austin’s result

follows.)

THEOREM 2. If f is a martingale such that ES(f) < w, then f converges almost
everywhere.

Proor. Letry, 72, - - - be the Rademacher functions on the unit interval. Their

properties relevant here are that they take only 1 and —1 as possible values they
are mdependent relative to Lebesgue measure, and fo () dt = 0,n = 1. For
each ¢ in the unit interval, { D i ri(f)dp, n = 1} is a martmgale from which
follows that E |D_p rk(t)dkl is nondecreasing in n. Since

JOE | i r(t)di| dt < B3 | Xt re(8)dif® deff
= ES.(f),
we have, by the monotone convergence theorem, that
[ sup. B | i ri(t)dil dt < ES(f)
implying that, for some ¢,
sup. B | 2 i m(t)di| £ ES(F) < .

For thist, g = D_i=1 74(t)dy defines an L, bounded martingale g = (g1,92, «-)
and f is the transform of g under the (constant) multiplier sequence (r(t),
r2(t), - - -). Therefore, by Theorem 1, f converges almost everywhere.

THEOREM 3. Suppose that f and g are martingales relative to the same sequence of
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o-fields. If f is Ly bounded and S.(g) = Sa(f), n = 1, then g converges almost
everywhere.

Proor. Let ¢ > 0 and m = inf {n: |f.| = ¢ or S.(f) = ¢} where inf¢ = .
Then ESn(f) < » where Se, = 8. For Su(f) £ ¢+ |du| £ 2¢ + |fm| on {m < o},
Sn(f) £ con{m = =}, and letting m, = min (m,n), we have that [ (m<oo)|fm| =<
lim infa Jimeol fone| < SUDn E |fno| < sups B |fual < oo, in which E |fu,| < E |fi]
follows from the fact that {|f.|,n = 1} is a submartingale. Let §» = gm, . Then
G = (1, d2, -+ -) is a martingale by the optional stopping theorem [3]. Here we
have used our assumption that f and g are martingales relative to the same se-
quence of o-fields. Clearly, S(§) = Sun(g) = Sa(f). Therefore, ES(§) < « and,
by Theorem 2, § § converges almost everywhere. On the set {f* < ¢, S(f) < ¢}, m
= o and g = §. Since both f* and S(f) are finite almost everywhere (see Aus-
tin [1] or the above remark), the almost everywhere convergence of g follows.

Considering f» = > s 7i/k and g» = D im 1/k where 71, 72, - -+ are the
Rademacher functions, we see that Theorem 3 does not carry over to the sub-
martingale case.

TuEOREM 4. Suppose that f is a martingale with difference sequence d satisfying
Ed* < «. Then f converges almost everywhere on the set where S(f) < o, and
S(f) < « almost everywhere on the set where sup, fn < . More generally, if g ts
a transform of f under a multiplier sequence v, then g converges almost everywhere
on the set where S(g) < o and v* < o, and S(g) < o« almost everywhere on the
set where sup, gn < © and v < .,

By a result of Doob ([3], page 320), the condition Ed* < « on a martingale
f implies that the two sets {f converges} and {sup,f, < =} are equivalent (sym-
metric difference has measure 0). By Theorem 4, under the same condition,
{8(f) < o} is a third set equivalent to each, and, if v* < « almost everywhere,
the same three sets for the transform g are equivalent.

Proor. Let ¢ > 0. Let m = inf {n: S.(f) = ¢}, m, = min (m, n), fo = fm, -
Thenf = (fi,f2, - +) 1samart1ngale and S(f) < ¢+ d*. Therefore, ES(f) < o
and, by Theorem 2, f converges almost everywhere. On the set {S(f) < ¢},
m= o andf = fso thatf converges almost everywhere on this set, hence almost
everywhere on {S(f) < «}.

To prove the second part of the first statement, let c>0, m=
inf {n:|fa| Z ¢}, ma = min (m, n), fn Fg - Smcelfnl <c+d* f (.fl ,.f2 y T
is an Iy bounded martingale and, by Austin’s result, S( 7) is finite almost every-
where. On {f <c¢},m= o and S(f) = S(f). Therefore, S(f) < « almost every-
where on {f* < «}. But, by Doob’s result mentioned above, this set is equiva-
lent to {sup. fn < }.

Now suppose that g is a transform of f under a multlpher sequence v. Let
c > 0, i),,(w) = va(w) if [ta(w)| < ¢, =0 otherwise, and §» = D re1 D dy . Then

= (41, gz ,---) is a martingale with difference sequence ¢ satisfying
E’é < ¢E d* < «. Therefore, by the first statement of the theorem, § converges
almost everywhere on the set where S(§) < . Since g(w) = §(w) if v¥(w) < ¢
and S(§) = S(g) we have that g converges almost everywhere on the set where
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S(g) < » and v* < ¢. Also, S(§) < « almost everywhere on the set where
Sups §n < . Therefore, S(g) = S(§) < o« almost everywhere on {sup, . < «,
v* < ¢} = {supnga. < ©,v" < ¢}. Let ¢ — « to complete the proof.

The final part of Theorem 4 was inspired by the possibility of the following
application. By a result due to Gundy [4], if g is the sequence of 2"th partial sums
of a Walsh series, then {g converges} and {S(g) < «} are equivalent. As Gundy
has noticed, commenting on the present work, such a ¢ is the transform of a
martingale f with difference sequence d satisfying |d.(w)| = L,w e Qn =1 (di =1
and ds, ds, - -+ are Rademacher functions). Using the fact that here S(g) =
(D omeitn )¥ = v* and that v, — 0, hence v* < «, if ¢ converges, where v is the
multiplier sequence, we see that Gundy’s result follows from Theorem 4.

TuaeoreM 5. Suppose that f is an Ly bounded martingale with difference sequence
d. If A is an atom, then D_me |da| < o almost everywhere on A.

Proor. There is a real number sequence ¢ = (a1, a2, --+) such that d = a
almost everywhere on A, otherwise there would be a subset B of A in @ such that
0 < P(B) < P(A), contradicting the assumption that 4 is an atom. Let
vn(w) = 1ifa, 20, = —1ifa, < 0, we Q. By Theorem 1, g, = )5 ) di con-
verges almost everywhere as n — oo, and since g, = D i |ax| = D i |di]
almost everywhere on A, the result follows.

3. Inequalities.
Turorem 6. There is a real number M such that if f and g are martingales rela-

tive to the same sequence of o-fields and S.(g) = S.(f), n = 1, then
ANP(g* > \) S Msup. Elfal, r>0.

Proor. If a real number M satisfies this inequality for the Lebesgue unit
interval, then M satisfies the inequality for every probability space. Therefore, in
the proof we may and do assume that our probability space is the Lebesgue unit
interval. Let C be the collection of martingales g on this space such that ¢ is in C
if and only if there is a martingale f with sup. E |f.| < 1, such that f and g are
martingales relative to the same sequence of o-fields and S.(g) = S.(f), n = 1.
The collection C has the following two properties: (i) If g is in C, then its maximal
function g* is finite on a set of positive measure. (ii) If g1, g2, - - - are in C, then
there are independent i, §2, - - - in C such that g:* and §.* have the same dis-
tribution, & = 1, and if a1, as, - - - are real numbers such that Y s |ax| = 1,
then Y g1 axfi is in C. That is, letting §x = (fs1, faz, - -+ ), thereis a g in C such
that D _5-1 a;fin — §n» almost everywhere as k — «,n = 1. Property (i) is a con-
sequence of Theorem 3 and property (ii) will be verified below. Given any col-
lection C of sequences satisfying (i) and (ii), there is a real number M such that

AP(g* >N =M, \A>0, geC.

This is a special case of Theorem 2 of [2], and establishes the desired inequality if
sup. E |fa] = 1. For 0 < sups E |fa] < o, the inequality immediately follows. If
sups E |f.| = 0 or o, the inequality is trivially true.
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We now show that C has property (ii). Suppose that g1, g2, - - are in C and
that fr is a martingale related to g; as f is to g in the definition of C. Let
(Y, g, (f2, g2, - -+ be independent pairs of related martingales such that
(fx, g&) and (fi, g¢') have the same distribution, k¥ = 1. Choose distinct positive
integers py; satisfying pu < pre < - - - and let din = di; if n = py; for some j, =0
otherwise, where di' = (di, dsa, ---) is the difference sequence of fy'. Let
fin = Dt di; and define &, and i, similarly using gi" and the p;. Then
fo = (Fu, fiz, ) and & = (§u, Ore, ---) are martingales relative to
{@kn ,m = 1} where @iy is the o-field generated by fx1, -+, finand i1, -+ - , Gn -
Also, sups E |fin] £ 1 and Sa(§) £ Sa(fx), n = 1. Therefore, §1, §2, - - - are in
C. Clearly, they are independent and ¢;* and §,* have the same distribution.
Suppose that a;, as, --- are real numbers such that Y s |a;] = 1. Let
Fo = Dbt Ofin a0 §in = X _xet Gifkn - Each series contains only a finite number of
nonzero terms since {p;; :7 = 1} and {px; : 5 = 1} are disjoint if ¢ = k. Let @, be
the smallest o-field containing Uj— Gx,. Then f = (fi, fo,--+) and § =
(g1, G2, - - -) are martingales relative to {@, , n» = 1} since almost everywhere

E(farr| @a) = D im1 &iBE(frnia | @n)
= > i1 GE(frnra | Gin)
= 2kt Oifin
= fu
with a similar calculation for §. Also, E |fa| £ D i1 |ax| B |fin] < 1 and
Sa(f )2 = Z;"=1 (Zl?=1 (2] Jki)z = Z?=1 Zl?=1 akzli:i
= D i aSa(fi)? = Doim aSa(§)® = Su()’, n = 1.

Therefore, § = Y g1 axjr is in C and the proof is complete.

We now derive an upcrossing inequality for the martingales g of Theorems 3
and 6. The inequality follows from Theorem 6 with the use of a slight modification
of the combinatorial part of Snell’s proof of the upcrossing theorem for sub-
martingales [3].

Let a < b be real numbers. If x = (1, 2, - - ) is a real number sequence, let
ur(z) = 1, unpr(z) = 1if 2, = b, =un(z) ifa < 2, < b, =0if z, £ a, U () =
S i lura(x) — ue(2)]F, and U®(z) = sup, UZ(x). Here, ™ = max (0, t) for
¢ real. Since (b — @) [uns1(2) — un(2)]" £ (20 — @)[Uns1(x) — ua(x)], we have
that

(b — ) UV(x) £ 2im (3 — @)fwwn(e) — wa(2)]
= Una(2)T0 — imur(2) (T — Tr) + all — upa()]
< zal 4 |2 b wa(2) (2 — 2a)| + @

where 2 = 0. -
TueEoREM 7. There is a real number M such that if f and g are martingales rela-
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tive to the same sequence of o-fields and S,(g) < Sa(f), n = 1, then
AP((b — a)U™(g) —a" > \) £ Msup. Elf, N>0, a <b.

Proor. Let a < band hy, = D i wier Where gn = 2 1y € , wn = un(g), and
Uy is the function (depending on @ and b) defined above. Then & = (hy, kg, - --)
is the transform of g under the multiplier sequence w = (w; , wz, -+ -) andw™® < 1,
hence % is a martingale relative to the same sequence of o-fields as g and f, and
Sn(h) = Sa(g) £ Su(f), n = 1. Therefore, by Theorem 6, \P(h* > \) <
M sup, E |fa|, N > 0, and the same inequality holds for g*. Now (b — a)U%(g)
— a* = |ga] + |hal £ ¢* + A*, hence

AP((b — a)U%(g) — a* > \) < \P(g* > N/2) + \P(h* > \/2)
4M sup, E |f.l, x>0,

IIA

the desired result.

REMARKS. Suppose that f, as above, is L; bounded. Then EU®(f) is finite by
the standard upcrossing theorem. On the other hand EU*(g) can be infinite (al-
though EU®(g)? is finite for 0 < p < 1 as the above inequality easily implies).
For the g defined in the example described in Section 1, we have that
P(U%g) Z k) = P(gn = %n,n < 2k 4+ 2) = 1/(2k + 2), implying that
EU"(g) = .

If the statements of Theorems 6 and 7 are modified by relaxing the martingale
assumption on ¢ to the assumption that g is a submartingale, then they are no
longer true. However, if g is a transform of a submartingale f under a multiplier
sequence v satisfying »* < 1, then the inequalities of Theorems 6 and 7 do hold for
g (with possibly a different M ). This follows at once from Theorem 6 and the
proof of Theorem 7.

TrarorEM 8. If f is a martingale then

NP(S(f) > N) < M sup. E |f.), x>0,

and
NP(f* > \) = MES(f), >0,

where M s the same number as in Theorem 6.

Proor. In the proof we may and do suppose that there is a function r with
values in {—1, 1} such that r and f are independent and P(r = 1) = %. For if
no such r exists we can always consider another space (for example, the obvious
product space) on which is defined a martingale with the same distribution as f
and for which such a function does exist. Let k& be a positive integer. Let g, = 0
ifn <k, =rS(f) if n = k. Then both f and ¢ = (g1, g2, - - -) are martingales
relative to {@., n = 1} where @, is generated by fi, -+, foifn < k, by r, f1,
e faifn = ky Su(g) £ Sa(f),n = 1, and g* = Si(f). Thus, by Theorem 6,
AP(Sk(f) > N) = AP(¢* > \) £ M sup, E |f.], N\ > 0. Letting k — « gives
the desired result.

To prove the second inequality, we use the fact, established in the proof of
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Theorem 2, that f is a transform of a martingale g under a multiplier sequence
uniformly bounded by 1 such that sup. Elg. | = ES(f). Therefore, applying
Theorem 6 to f, we have that \P(f* > \) < M sup, E |g.| £ MES(f), complet-
ing the proof.

In the special case that f is the sequence of 2"th partial sums of a Walsh series
(clearly such an f is a martingale; see [6], [2], [4]), the first inequality ( essentially)
of Theorem 8 has been obtained by Yano [10].

TueoREM 9. Let 1 < p < . There are positive real numbers M, and N, such
that if f is a martingale then

M ES.(f)” £ E |ful” = NL,ESA(f)?, nz= 1.

This contains the inequality obtained by Paley [9] in the case that f is the
sequence of 2"th partial sums of a Walsh series, and the inequality obtained by
Marcinkiewicz and Zygmund [8] in the case that d, the difference sequence of f,
is independent and satisfies Ed, = 0, n = 1. (In the latter case, the inequality is
also true for p = 1.) Actually, Paley’s proof of his result can be carried over to
the general martingale case with only slight modifications. (Richard F. Gundy
is perhaps the first person to have noticed this.) Therefore, our proof below may
be viewed as an alternative to Paley’s proof. Although using some of the same
devices, it rests on two results unavailable to Paley: Marcinkiewicz’s interpola-
tion theorem and the fact that, under mild conditions, martingale transforms ¢
satisfy the inequality of Theorem 6.

If 1 < p < » and fis L, bounded, by letting n — «, one obtains from Theorem
9 the obvious inequality for S(f) and f. , where f. is the almost everywhere (and
L,) limit of f. Note that ES(f) can be infinite even if f is L; bounded: in the
example of Section 1, P(S(f) = k) = P({k,k + 1, ---}) = 1/k, k = 1.

ProoF. Let Go C @1 C - -+ C @ beos-fields and v, an @,_i;-measurable function
into theinterval [—1,1],n = 1. Let D1 = E(- | @1), Do = E(+ | Gx) — E(- | Gp1),
n =2 and T = 2 i— Dy . Note that if f,, is integrable, thenf, = E(fw | Gn)
defines a martingale f = (fi, f2, -+ -) and its transform g under v satisfies g, =
T.f almost everywhere,n = 1. By part (i) of the proof of Theorem 1, E | T,f., |* =
Eg.) £ Ef) < Ef.}, if the last expectation is finite, and, by Theorem 6,
AP(|Tuful > N) = NP(lga| > N) S NP(g* > \) < M sup, E|fa| < ME |f.|,x > 0.
Therefore, by Marcinkiewicz’s interpolation theorem ([11], Volume ITI), if
1 < p = 2, there is a positive real number M, such that if f» is an integrable
function then E |T.f»|” £ M,E |f.|®. Using the basic properties of conditional
expectations, it is easy to check that the restriction of 7T, to L is self-adjoint.
This implies that the inequality also holds for 2 < p < « since one may take
M, = My where 1/p + 1/q = 1. Moreover, M, depends only on p and may be
chosen not to depend on the probability space, the sequence of o-fields, the mul-
tiplier sequence v, the function f, , or the integer n. Note that if f is any martingale
relative to the above sequence of s-fields and g is its transform under the above v,
then T.f. = g» almost everywhere. Therefore,

E Ignlp é MPE |f"|p7 n ; 1.
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Let r1, 72, - -+ be the Rademacher functions (see the proof of Theorem 2). We
use Khintchine’s inequality: if 0 < p < «, there are positive real numbers 4,
and B, such that if @ = (a1, a2, ---) is a real number sequence then

A2k @)™ £ [0 X an()’dt £ By(Ziaa’)™,  n oz L

Now let f be a martingale with difference sequence d. For each ¢, { > r—y r4(t)ds ,
n = 1} is a transform of f and conversely. Therefore, for 1 < p < o,

A M, ESW(f)” £ MyT'E [5]2 k- ma(t)dif” dt
= [0 M, E | 2 ke mi(t)dif? dt
SEIfRS
= BuMLESA(f)", nz1,

the desired result.
TraEOREM 10. There is a real number M such that if f is a martingale then

BS.(f) < ME|fu log" Ifa + M, n=1,
and
E |fal £ MESA(f) log" Su(f) + M, n = 1.

Forrealt,log"t = 0ift < 1, = logtift = 1.

Proor. This, as the previous theorem, follows from Theorem 6 by interpola-
tion. Using an argument similar to that of the previous proof together with an
interpolation theorem ([11], Volume II, page 118), we have that there exists a
real number M such that if f is a martingale and ¢ is a transform of f under a
multiplier sequence v satisfying v* < 1 then

E|g £ ME |fu| log" |ful + M, =n2z1
Therefore, if r1, 75, --- are the Rademacher functions and ¢ is in the unit in-
terval, then
B | 2| < ME |f] log" |fa] + M,
and, again using Khintchine’s inequality,
ABSW(f) £ E [o| 2Zkmra(t) dildt £ ME |f,] log" |fa] + M.

To prove the second inequality of Theorem 10, we use the fact ([11], Volume
II, page 235) that there is a real number B such that if ¢ is a real number se-

quence then
Jo 1220 ana(t)| Tog™ | i aru(®)| dt < B( 2k’ log* (i o)t + B.
Since f is a transform of { Y i ri(¢)di, n = 1},
E|fal £ ME |2 =1 ru(t)di| log" |2 im1 ra(t)di| + M.
Integrating both sides with respect to ¢ leads to the desired result.
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